A 回答 (2件)
- 最新から表示
- 回答順に表示
No.2
- 回答日時:
stomachman さんが一般論を書かれていますので,
めちゃくちゃ易しい例題を蛇足につけましょう.
例題
x + y = a (1)
の条件の下で
f(x,y) = (x^2 + y^2)/2 (2)
の極値を求めよ.
(1)から y = a - x として(2)に代入すれば,
x の2次関数ですから x = a/2 で極値をとるのはただちにわかります.
ラグランジュ未定係数法でやるなら,stomachman さんの式にしたがって,
f の代わりに
g(x,y,λ) = (x^2 + y^2)/2 + λ(x+y-a)
を考えます.λと掛け算になっている x + y - a が(1)の変形です.
(1)から,λ(x+y-a) = 0 ですから,f の極値も g の極値も同じことです.
2変数関数の極値だと言うんだから, 偏微分して
∂g/∂x = x + λ = 0 (3)
∂g/∂y = y + λ = 0 (4)
で,(1)(3)(4)を連立方程式として解けば,
簡単に x = y = a/2 が得られます.
直接解いたのと同じ結果ですね.
え? 直接解く方が簡単?
そりゃ,(1)から簡単に変数1個消去できたからで,
(1)が面倒な式だったり,変数が沢山,条件式も沢山,だったら
簡単には行きませんよ.
もっと深刻なのは,原理的に消去困難な場合もあることです.
stomachman さんが書かれているように,等周問題が有名な例です.
xy 平面上の閉曲線 f(x,y) = 0 があって,
条件として1周の長さを指定する.
囲む面積が最大になるのはどんな f(x,y) か?
答が円なのは直感的にわかりますが,
ちゃんと示すのはそれなりに大変です.
どんな関数か,と聞いているんだから,変分法の問題です.
細かいことは別にして,囲む面積なんだから
【f(x,y) から面積を求める積分】 (5)
を一番小さくなるようにする.
条件は
【f(x,y) から周長を求める積分】= 一定 (6)
ですね.
(6)から,何か「消去」できますか?
f(x,y) はわかっていない(これから求めようとしている)のですから,
(6)の積分だってわかりません.
つまり,お手上げ.
こういうときがラグランジュ未定係数法の出番です.
No.1
- 回答日時:
条件付きで極値を求める問題(極値問題)、
すなわち、n個の変数に関するm個の条件式C:
C[j](x[1],x[2],....,x[n])=0 (j=1,2,...,m)
という条件下で(m<n)、目的関数f(x[1],x[2],....,x[n])の極値(極大か極小)を求める問題を解くには、
λ[j]を(j=1,2,...,m)任意の定数(ラグランジュ未定係数・ラグランジュ未定乗数)とし、
F(x[1],x[2],....,x[n]) = f(x[1],x[2],....,x[n]) + λ[1]C[1]+ ....+ λ[m]C[m]
とするとき、
∂F/∂x[i] = 0 (i=1,2,...,n)かつC[j]=0(j=1,2,...,m)
という連立方程式を解けばよい。
というやり方。変分法でしばしば使いますので、計算例は変分法の教科書を見ると良いです。特に有名なのは等周問題でしょう。
この問題を普通に考えると、
m個の変数x[m+1], .....,x[n]は条件式によって決まってしまうから、fは実質的にはn-m個の変数を持つ関数
f#(x[1],x[2],....,x[n-m])f(x[1],x[2],....,x[n-m], y[1],......y[m])
と考えることが出来ます。ここで、y[k]はCの条件を解いたもの。すなわち、x[1],x[2],....,x[n-m]を決めたときに上記の条件を満たすようなx[n-m+k]を与える関数: y[k] (x[1],x[2],....,x[n-m]) = x[n-m+k] であると考える訳です。
そしてf#が極値を取るx[j](j=1,2,....,n-m)を求めればよい。つまり
∂f#/∂x[j]=0 (j=1,2,....,n-m)
ところが、具体的にy[k](k=1,2,....,m)を求めることができない(或いは難しい。もの凄く複雑だ)。あーこまった。煮詰まっちゃった。ということになりますね。
つまり、y[k]を陽に求めなくても、陰関数のまま扱えるのが利点です。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
このQ&Aを見た人はこんなQ&Aも見ています
-
あなたの「必」の書き順を教えてください
ふだん、どういう書き順で「必」を書いていますか? みなさんの色んな書き順を知りたいです。 画像のA~Eを使って教えてください。
-
【大喜利】【投稿~1/9】 忍者がやってるYouTubeが炎上してしまった理由
【お題】・忍者がやってるYouTubeが炎上してしまった理由
-
最強の防寒、あったか術を教えてください!
とっても寒がりなのですが、冬に皆さんがされている最強の防寒、あったか術が知りたいです!
-
この人頭いいなと思ったエピソード
一緒にいたときに「この人頭いいな」と思ったエピソードを教えてください
-
【選手権お題その2】この漫画の2コマ目を考えてください
サッカーのワンシーンを切り取った1コマ目。果たして2コマ目にはどんな展開になるのか教えてください。
-
円に外接する多角形の周は、どうして円周より大きいのでしょうか
数学
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・集中するためにやっていること
- ・テレビやラジオに出たことがある人、いますか?
- ・【お題】斜め上を行くスキー場にありがちなこと
- ・人生でいちばんスベッた瞬間
- ・コーピングについて教えてください
- ・あなたの「プチ贅沢」はなんですか?
- ・コンビニでおにぎりを買うときのスタメンはどの具?
- ・おすすめの美術館・博物館、教えてください!
- ・ことしの初夢、何だった?
- ・【お題】大変な警告
- ・【大喜利】【投稿~1/20】 追い込まれた犯人が咄嗟に言った一言とは?
- ・洋服何着持ってますか?
- ・みんなの【マイ・ベスト積読2024】を教えてください。
- ・「これいらなくない?」という慣習、教えてください
- ・今から楽しみな予定はありますか?
- ・AIツールの活用方法を教えて
- ・【お題】逆襲の桃太郎
- ・自分独自の健康法はある?
- ・最強の防寒、あったか術を教えてください!
- ・【大喜利】【投稿~1/9】 忍者がやってるYouTubeが炎上してしまった理由
- ・歳とったな〜〜と思ったことは?
- ・モテ期を経験した方いらっしゃいますか?
- ・好きな人を振り向かせるためにしたこと
- ・スマホに会話を聞かれているな!?と思ったことありますか?
- ・それもChatGPT!?と驚いた使用方法を教えてください
- ・見学に行くとしたら【天国】と【地獄】どっち?
- ・これまでで一番「情けなかったとき」はいつですか?
- ・この人頭いいなと思ったエピソード
- ・あなたの「必」の書き順を教えてください
- ・14歳の自分に衝撃の事実を告げてください
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
プラスとマイナスが入った比率...
-
三角関数の最大値・最小値につ...
-
定積分についてです。微分する...
-
10の-9乗ってどういう意味ですか?
-
シグマなど文字を含んだままで...
-
滴定の実験で、結果をExcelで一...
-
3000円が3割なら10割はいくらで...
-
確率の問題で、「5人の中から3...
-
経済学での対数の理解
-
【数A 集合の要素の個数】 問題...
-
コブ・ダグラス型生産関数 問題
-
指数近似を行い、時定数を求め...
-
増加率、伸び率
-
ミクロ経済の無差別曲線の問題です
-
ナッシュ交渉解の求め方を教え...
-
便益 と 効用 意味の違い...
-
接線の方程式
-
ニュートン法をC言語でプログラム
-
数学の問題で質問です。 行きは...
-
パーセンテージの計算方法
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
プラスとマイナスが入った比率...
-
数学の記号
-
LaTeXで偏微分に関する表記法が...
-
三角関数の最大値・最小値につ...
-
シンプレックスの単体表の作り...
-
定積分についてです。微分する...
-
積分のくくりだし
-
円錐の問題なんですが
-
偏微分
-
f(x)=xlog(x+1)について解いて...
-
条件付き最大値・最小値
-
3000円が3割なら10割はいくらで...
-
確率の問題で、「5人の中から3...
-
10の-9乗ってどういう意味ですか?
-
滴定の実験で、結果をExcelで一...
-
シグマなど文字を含んだままで...
-
「日常生活における数列」とは...
-
【数A 集合の要素の個数】 問題...
-
【 数A 場合の数 】 問題 10円...
-
経済学での対数の理解
おすすめ情報