

F. Daniel et al. (Eds.): BPM 2011 Workshops, Part I, LNBIP 99, pp. 414–426, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Event-Driven Exception Handling
for Software Engineering Processes

Gregor Grambow1, Roy Oberhauser1, and Manfred Reichert2

1 Computer Science Dept., Aalen University
{gregor.grambow,roy.oberhauser}@htw-aalen.de

2Institute for Databases and Information Systems, Ulm University, Germany
manfred.reichert@uni-ulm.de

Abstract. In software development projects, process execution typically lacks
automated guidance and support, and process models remain rather abstract.
The environment is sufficiently dynamic that unforeseen situations can occur
due to various events that lead to potential aberrations and process governance
issues. To alleviate this problem, a dynamic exception handling approach for
software engineering processes is presented that incorporates event detection
and processing facilities and semantic classification capabilities with a dynamic
process-aware information system. A scenario is used to illustrate how this
approach supports exception handling with different levels of available
contextual knowledge in concordance with software engineering environment
relations to the development process and the inherent dynamicity of such
relations.

Keywords: Complex event processing; semantic processing; event-driven
business processes; process-aware information systems; process-centered
software engineering environments.

1 Introduction

The development of software is a very dynamic and highly intellectual process that
strongly depends on a variety of environmental factors as well as individuals and their
effective collaboration. In contrast to industrial production processes that are highly
repetitive and more predictable, software engineering processes have hitherto hardly
been considered for automation. Existing software engineering (SE) process models
like VM-XT [1] or the open Unified Process [2] are rather abstract (of necessity for
greater applicability) and thus do not really reach the executing persons at the
operational level [3]. In sparsely governed processes without automated data
assimilation and process extraction, deviations from the planned process, exceptions,
or even errors often remain undetected. Even if detected, an automated and effective
exception handling is hard to find.

To increase the level of standardization (i.e., usage, repeatability, conformance,
etc.) of process execution, automated support for SE processes is desirable. To enable
this in a holistic way, an automated solution should be capable of some kind of

 Event-Driven Exception Handling for Software Engineering Processes 415

process exception handling so that the occurrence of exceptions does not deteriorate
process performance. Further, automated process exception support will only be
acceptable if it is not too complex or more cumbersome than manual handling [4].
Automated handling implies automated detection of exceptions that depends on the
capabilities of the system managing the processes [5]. However, existing process-
aware information systems (PAIS) are still rather limited regarding detection and
handling of exceptions [6]. Exceptions can arise for reasons such as constraint
violations, deadline expiration, activity failures, or discrepancies between the real
world and the modeled process [7]. Especially in the highly dynamic SE process
domain, exceptions can arise from various sources, and it can be difficult to
distinguish between anticipated and unanticipated exceptions. Even if they are
detected, it can be difficult to directly correlate them to a simple exception handler.
Due to its high dynamicity, SE has been selected as first application domain, but the
generic concept can also be applied to other domains.

Two fictional scenarios from the SE domain illustrate the issues:

- Scenario 1 (Bug fixing): In applying a bug fix to a source code file, the
removal of a known defect might unintentionally introduce other problems to
that file. E.g., source code complexity might increase if multiple people
applied “quick and dirty” fixes. Thus, the understandability and
maintainability of that file might drop dramatically and raise the probability of
further defects.

- Scenario 2 (Process deviation): In developing new software, the process
prescribes the development and execution of a unit test to aid the quality of
the produced code. For various reasons, the developer omits these activities
and integrates the produced code into the system. This could eventually
negatively affect the quality of that system.

These scenarios demonstrate the various challenges an automated process exception
handling approach for SE faces: Exceptions can arise relating to various items such as
activities, artifacts, or the process itself. Many of these exceptions may be difficult to
detect, especially for a PAIS without direct knowledge of the environment. It may
also be unclear when exactly to handle the exception and who should be responsible.
Generally, the knowledge about the exception can vary greatly, making unified
handling difficult and the application of standardized exception handlers unsuitable.
Both of the aforementioned scenarios will be used to show the applicability of our
approach to SE processes and their exception handling.

The remainder of this paper is organized as follows: Section 2 introduces the novel
exception handling approach, followed by Section 3 showing its technical realization.
An application scenario is presented in Section 4 and related work is discussed in
Section 5. Finally, Section 6 presents the conclusion.

2 Flexible Exception Handling

To respond to the special properties of dynamic SE process execution, this paper
proposes an advanced process exception handling approach. It is grounded on two
properties: the ability to automatically gather contextual information utilizing special
sensors and complex event processing; and second, an enhanced flexibility in the

