
Abstract
This work describes a genetic programming (GP) approach
that creates vegetation indices (VI’s) to automatically detect
the sum of healthy, dry, and dead vegetation. Nowadays, it is
acknowledged that VI’s are the most popular method for
extracting vegetation information from satellite imagery. In
particular, erosion models like the “Revised Universal Soil
Loss Equation” (RUSLE) can use VI’s as input to measure the
effects of the RUSLE soil cover factor (C). However, the results
are generally incomplete, because most indices recognize
only healthy vegetation. The aim of this study is to devise a
novel approach for designing new VI’s that are better -
correlated with C, using field and satellite information. Our
approach consists on stating the problem in terms of
optimization through GP learning, building novel indices by
iteratively recombining a set of numerical operators and
spectral channels until the best composite operator is found.
Experimental results illustrate the efficiency and reliability of
our approach in contrast with traditional indices like those
of the NDVI and SAVI family. This study provides evidence
that similar problems related to soil erosion assessment
could be analyzed with our proposed methodology.

Introduction
Soil erosion is a complex phenomenon that detaches and
transports soil material through the action of an erosive
agent. Soil erosion by flowing water on slopes is an impor-
tant land degradation problem at a global scale, because it is
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strongly influenced by human activities such as agriculture
and generates major environmental impacts and high
economic costs. Most estimates of soil erosion, as under-
taken by agricultural scientists, are at field scales (Brady and
Weil, 2008). The aim of erosion research at regional scales is
a general evaluation of the landscape and its susceptibility
to soil erosion, taking into account only the main factors
influencing the process. Therefore, the erosion assessment at
regional scale is usually based on empirical models or
expert evaluation. The most widely applied models are the
Universal Soil Loss Equation (USLE) (Wischmeier and Smith,
1978), and its revision, the Revised Universal Soil Loss
Equation (RUSLE) (Renard et al., 1997). USLE and RUSLE are
statistically-based water erosion models related to six
erosional factors:

A � R * K * L * S * C * P, (1)

where R and K set the dimensions of A as the average of
soil loss in Mg ha�1 yr�1. R is the rainfall-runoff factor and
is measured as the product of total storm energy, E, and the
maximum 30 minute intensity, I30, for all storms in a year,
so its units are described in terms of MJ mm ha�1 h�1 yr�1.
On the other hand, K represents the influence of soil
properties related to soil texture and structure on soil loss
during storm events; the units of K are Mg h MJ�1 mm�1.
The remaining factors are dimensionless and serve to scale
erosion relative to standard experimental conditions, which
are described within the USLE and RUSLE manuals cited
above. These scaling values range from 0 meaning no
erosion, to numbers greater than 1, where erosion is more
rapid than the experimental conditions. In this way, L
represents the slope length factor, S is the slope steepness
factor, C provides the ground cover factor, and P describes
the conservation support practice factor.

From the standpoint of soil conservation planning, the 
C factor is one of the most important parameters of RUSLE,
because it measures the combined effect of all interrelated
cover and management variables. Vegetation cover acts as a
protective layer between the atmospheric elements and soil.
For example, live or dead leaves and stems absorb most of
the energy of raindrops and surface water to decrease the
volume of rain reaching the soil surface (Asis and Omasa,
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2007). Roots also contribute to the mechanical strength of
soil. While the C factor is readily measured at local plot
scales for individual crops grown under standard conditions,
it is difficult to quantify over broad geographic areas of
mixed vegetation cover due to the labor and time required
for large numbers of individual measurements. In order to
avoid such problems, methods for extracting ground cover
information from satellite imagery have become powerful
tools to estimate biophysical properties from plants and
other objects protecting the soil surface (Ryerson, 1999).

There are three main approaches to the problem of
extracting C from satellite imagery as tools to generalize
local field plot samples to a broad area. The cover classifica-
tion method, the Linear Spectral Mixture Analysis, and the
Vegetation Index method. Traditionally, this task has been
achieved through the cover classification method, which
consists of assigning C values to labels that correspond to
specific characteristics of the Earth’s surface (Ryerson, 1999;
Folly et al., 1996). This method, however, results in C factor
estimates that are homogeneous for relatively large areas,
and do not adequately reflect the spatial variation in
vegetation density within cover classes over large geographic
areas (Wang et al., 2002). Another approach for estimating
vegetation fractional cover is known as Linear Spectral
Mixture Analysis (LSMA) that has proven useful for detecting
photosynthetic and non-photosynthetic vegetation, as well as
bare soil (e.g., Asner and Lobell, 2000; Guerschman et al.,
2009). In particular, Asis and Omasa (2007) proposed a
technique based on LSMA in order to estimate the C factor as
a function of the vegetation fractional cover. This approach
exploits the capacity of LSMA to estimate the fractional
abundance of ground vegetation and bare soil simultane-
ously in one pixel. Hence, the classification is at a sub-pixel
level, giving more variability to C map. However, in order to
perform an efficient un-mixing process that avoids misclassi-
fication, it is necessary to know a priori the components
being measured within a pixel.

In the literature several vegetation indices (VI’s) had
been explored to determine C. A vegetation index (VI)
applies a mathematical formula to the spectral channels of
satellite imagery in order to enhance the signal representing
the vegetation cover. Thus, VI’s are correlated with the C
factor using regression analysis (mainly linear regression).
However, several studies reported low correlations between
available empirical VI’s and C (e.g., Asis and Omasa, 2007;
de Jong, 1994; Smith et al., 2007). One reason is that the
response of the VI’s are focused mainly on healthy (green)
vegetation, and not on senescent (dry and dead) vegetation,
which can also be an important contributor to C.

Problem Statement
The previous discussion shows that the information of
vegetation required by erosion models differs from the
information provided by conventional VI’s. According to de
Jong (1994), the evaluation of soil protective cover with VI’s
gives a good correlation as long as the vegetation is green,
but gives less satisfactory results for senescent vegetation.
Hence, for the erosion process the condition of the vegetation
is of minor importance because senescent vegetation will
protect the soil as well as vigorous vegetation. Nevertheless,
most of the VI’s used to estimate the RUSLE cover factor were
designed to distinguish healthy vegetation because those
indices use �red and �NIR bands only. Moreover, the combina-
torial possibilities of using other spectral channels have not
been comprehensively explored. A major difference with
previous works is that such indices have been designed by
experts using traditional representations that have a clear
and preferably physical well-founded definition. In this
paper, we will show how a powerful machine learning

strategy known as genetic programming (GP) is able to create
synthetic VI’s that can outperform previous man-made or
manually-designed VI’s in estimating the RUSLE soil cover
factor. For this task the problem is posed as a search
problem, where the objective is to find the index that
correlates best with C factor data. The GP algorithm then
builds new indices by iteratively recombining a set of
numerical operators and channels until the best composite
index is found. This paper follows a line of inquiry of
previous studies, in which vegetation indices were correlated
with C (e.g., Asis and Omasa, 2007; de Jong, 1994; Smith 
et al., 2007). We undertook a field survey in order to derive
the vegetation indices that best describe C for an area in
northwestern Baja California, Mexico (see Figure 1). This
study is the first step towards modeling regional soil erosion
caused by water using genetic programming (GP) as a combi-
natorial engine that synthesizes indices that better correlate
with on-site information than conventional indices taken
from the literature. In particular, this paper focuses on the
cover factor of the RUSLE model using our GP approach.

Brief Introduction to GP
Genetic programming (GP) can be defined as an evolutionary
computation technique inspired from the principles of
biological evolution (Poli et al., 2008). GP is an offshoot of
genetic algorithms, and is able to evolve a population of
computer programs (mathematical expressions or formulae)
that learn a user-defined function. GP starts with an initial
population of randomly generated programs. Each individual
computer program in the population is measured in terms of
how well it performs in the particular problem environment.
The computer programs in the initial population of the
process will generally have poor fitness. Nonetheless, some
individuals in the population will turn out to be somewhat
more fit than others. The Darwinian principle of reproduction
and survival of the fittest, as well as the genetic operators of
crossover and mutation are used to create a new offspring

Figure 1. Map of Baja California, Mexico showing the
geographical location of Todos Santos Watershed. The
figure also shows the location of field samples used to
estimate the C factor.



population of programs. Thus, generation by generation, GP
stochastically transforms populations of programs into new,
generally better, populations of programs. As is true for any
other stochastic process, the GP analysis can never guarantee
results; however, its heuristical search strategy can lead it to
escape traps that challenge deterministic methods.

Evolutionary computation techniques have been
successfully applied to photogrammetric problems, and
multispectral analysis and remote sensing problems, such as
edge detection, image segmentation and classification, and
feature extraction. For instance in photogrammetry, Olague
(2002) describes the use of genetic algorithms (GA) for
automating the photogrammetric network design process.
In feature extraction, Bhanu and Lin (2003) use a genetic
algorithm to select a set of features to discriminate desired
targets from the natural clutter false alarms in SAR (Synthetic
Aperture Radar) images. Furthermore, Daida et al. (1996)
devised a GP approach to identify ice-flow ridges from SAR
imagery. In the same way, the work made by Howard et al.
(1999) automates ship detection from SAR images of the
English Channel taken by the European Remote Sensing (ERS)
satellite using a two-stage GP process. Also, Ross et al. (2005)
used GP to evolve Boolean and general mathematical expres-
sions in order to discriminate among three specific minerals
(buddingtonite, alunite, and kaolinite) from hyperspectral
images. With respect to classification and segmentation,
Rauss et al. (2000) evolved genetic programs to classify
hyperspectral imagery. Harvey et al. (2002) devised GENIE
(GENetic Imagery Exploitation) system, which uses a hybrid
combination of linear genetic programming with conven-
tional classifier algorithms to cope with hyperspectral image
classification. Recently, Makkeasorn et al. (2009) developed a
two-stage GP algorithm to seek for the best vegetation index
in conjunction with soil moisture variation to aid in the
classification of riparian zones in a semi-arid landscape.
The main contributions of our work are the following:

1. The methodology describes for the first time a way of
synthesizing VI’s using field data and satellite information.

2. As a consequence of the proposed methodology, it is
possible to identify the basic components responsible of
good VI’s, which are specifically designed to solve a 
particular problem.

Thus, we take advantage of these contributions by
obtaining a reliable estimate of the C factor, according to
field measurements based on the RUSLE protocol (Dissmeyer
and Foster, 1980; Renard et al., 1997; Weltz et al., 1987;
Wischmeier and Smith, 1978). The structure of this paper is
as follows. The following section presents the materials and
methods used to develop our study. We begin with a
description of the study area in order to state the physical
conditions of our work. Then, we give an outline of the
preparation of field data and satellite imagery, and how to
relate vegetation indices to C. A brief description of the
Genetic Programming approach and a complete explanation
of our methodology are also presented in this section. The
next Section provides experimental results in order to
illustrate the quality of our synthetic vegetation indices
followed by our conclusions.

Materials and Methods
Study Area
The study area is the Todos Santos watershed located in
northwestern Baja California, Mexico between 31°35� to
32°16�N latitude and 116°53� to 115°51�W longitude and is
defined and described by Smith et al. (2007) (see Figure 1).
The watershed covers an area of approximately 4,900 km2;
the climate is Mediterranean, with cool, moist winters and

warm, dry summers. The area is topographically complex,
elevation ranges between sea level and 1,876 m. It is charac-
terized by large inter-mountain alluvial valleys, alluvial
deposits in stream-beds, and an alluvial coastal plain. Much
of the coastal plain and middle-elevation alluvial area have
been cleared for urban and agricultural development.
However, coastal scrub occurs along a belt of approximately
50 km inland and/or 500 m elevation. Another type of scrub-
land, Chaparral (evergreen sclerophyllous shrubs), covers the
upper slopes of coastal and inland hills. A plateau at the
upper limit of the watershed hosts pine forest and mountain
meadows. Hence, the land-cover of the watershed can be
summarized as follows: Shrub-land (chaparral and coastal
scrub) occupy approximately 69 percent of the total water-
shed, while agricultural and grazing areas occupy about 
22 percent. Other cover (evergreen, mixed woodlands, urban
areas, etc.) occupies 9 percent.

Field Data Collection
The fieldwork involved the measurement of different
parameters for the C factor estimation. Experimentally, the 
C factor would be evaluated from long-term experiments
where soil loss would be measured from field plots for
which the other factors in Equation 1 were known. How-
ever, in the absence of long-term experimental data and to
have estimates for any variety of site conditions, it is
possible to estimate the C factor by using standard calibra-
tion of sub-factors. Wischmeier and Smith (1978) identified
three major sub-factors that determine the effectiveness of
vegetation in limiting soil erosion on rangelands. First, the
soil surface cover sub-factor is related to the fractional cover
of the soil surface by non-eroding material (basal area of
plants, rocks, and organic litter). Second, the canopy cover
sub-factor is related to the fractional cover of the soil surface
provided by above-ground plant biomass and the height that
raindrops fall after leaving the plant to impact the soil
surface. Third, the residual and tillage sub-factor is based on
the effects made of root biomass, other organic matter in the
soil, compaction, and surface stabilization.

Prior to the fieldwork, a detailed examination of satellite
imagery and topographic maps of the watershed was con-
ducted in order to identify representative sampling sites. Site
selection was subject to local uniformity regarding NDVI and
elevation/slope over at least a hectare surrounding the
specific measurement site. Hence, field sampling was
conducted between February and May 2007. A total of sixty-
seven (67) sampling sites were located and established in the
study area (see Figure 1; González-Botello and Bullock,
unpublished report, 2009). At each site, the percentage of
canopy cover was estimated using a line transect sampling
method described by Bauer (1943) and Zippin and Vander-
wier (1994). Measurements were taken at 20 different random
points along the 30 m transects placed at the perpendicular
direction to the predominant slope.

At each point, a plumb was dropped, then the surface
cover percentage was visually estimated within a 10 cm
diameter micro-plot around the plumb. Each observation
was classified using five linear categories in accordance with
its cover percentage (0 � 0 to 1%, 1 � 1 to 25%, 2 � 25 to
50%, 3 � 50 to 75%, and 4 � 75 to 100%). Hence, in order
to assign a unique value of surface cover (g) for each
transect, the average category of the 20 points was obtained.
Similarly, the height above ground of the lowest plant
structure touching the plumb line was registered (drop
height), and the values were averaged within each transect.
Thus, the height (h) and percentage of canopy cover (p) was
established. Finally, the surface roughness (r) was assessed
by adjusting field values to Table 5 and Table 6 from the
RUSLE model description (Renard et al., 1997) using an
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empirical scale. Buried root biomass (b) was defined by
primary productivity according to methodology described by
Weltz et al., (1987), which was assumed to be uniform as a
long-term average. Hence, the C factor was estimated for
each sampling site by using the following equation derived
from Table 10 in Wishmeier and Smith (1978):

(2)

This equation is similar to equations described by Weltz
et al. (1987) and Renard et al. (1997).

Satellite Imagery Preprocessing
A Landsat-5 TM scene (path 39, rows 037 and 038), taken on
13 April 2007 was downloaded from USGS1 and analyzed for
this study. Landsat TM has six visible/near infrared bands
(0.48 to 2.3 �m) with a spatial resolution of 30 m, and one
thermal band (11�m) with a spatial resolution of 60 m.
However the thermal band was not used in this work. We
used a Dark Pixel Correction (DPC) formula (Vincent, 1997)
to perform atmospheric effect correction on each band of the
TM image dataset. Then, the digital number (DN) of TM bands
1 to 5 and 7 were converted to exo-atmospheric reflectance
units as described by Chander and Markham (2003). Also
the satellite imagery was geometrically rectified using
topographic maps and well-known ground control points in
order to accurately link it to ground data. Image data were
extracted and matched with field data as follows. In each
image, the 67 field sites were located. A window of 3-by-3
pixels was selected around each sampling site, according to
the fact that each sampling site had been chosen to be
uniformly covered over at least a hectare (100-by-100
meters). Thus, for each window of nine pixels, the median
value was extracted and labeled with the corresponding
field site. Then, the whole data set was divided into two
parts. A set of 47 points, named “training dataset”, and a set
of 20 points, named “testing dataset.” The aim of both
datasets will be elaborated in the methodology subsection.

Relating the C factor to Vegetation Indices
Vegetation indices (VI’s) typically quantify the vigor of
vegetated land-cover, for example, by estimating vegetation
greenness. A vegetation index (VI) applies a mathematical
formula to the spectral channels of satellite imagery,
generally ratios or differences among bands, principal

 e(�0.039 . g . [0.24/r] n0.08)

C � 0.45(e[�0.012.b]) . (1�p . e[�0.328.h]) . 

component analysis, or other linear or non-linear combina-
tions of bands in order to enhance the signal of the vegeta-
tion cover presented on the surface of the Earth.

Vegetation indices have been explored for mapping the
C factor by regression analysis (primarily linear regression;
e.g., Asis and Omasa, 2007; de Jong, 1994; Sabins, 1997;
Smith et al., 2007). However, these studies report low
correlation with available vegetation indices. The reason is
that the response of conventional vegetation indices is
focused on healthy vegetation. Most of these VI’s only use
�red and �NIR bands in various combinations, because these
are the bands that distinguish healthy vegetation. Examples
include the Ratio Vegetation Index (RVI) (Jordan, 1969), the
Soil Adjusted Vegetation Index (SAVI) (Huete, 1988) and its
improvements, and the well-known Normalized Difference
Vegetation Index (NDVI) (Rouse et al., 1973; Tucker, 1979).
NDVI and RVI have been widely-used to estimate the C factor.

There are some indices that use additional bands, but
none of them have been used to estimate the RUSLE C factor.
For instance, Pinty and Verstraete (1992) proposed the
Global Environmental Monitoring Index (GEMI), which is
designed to minimize atmospheric noise and uses band �blue.
The Green Vegetation Index (GVI) developed by Crist and
Cicone (1984), extends the concept of the soil line in the
�red��NIR spectral space to a soil hyperplane in the space of
several bands by constructing a linear combination of these
bands (see Table 1). The Normalized Difference Water Index
(NDWI) reported by Gao (1996), uses the shortwave infrared
region of the spectra (SWIR bands) to detect liquid water, wet
soil and plant moisture. Recently, Khana et al. (2007)
developed a novel approach to parameterize the shape of a
part of the spectral signature by measuring the angle formed
between three consecutive bands. One of these angle indices
is the Shortwave Angle Slope Index (SASI) (Table 1), which
is a combination of NIR, SWIR1, and SWIR2 of MODIS sensor
bands, and it is useful to detect moisture contents.

In order to define the relation between conventional VI’s
and C factor field samples, thirty vegetation indices extracted
from the literature were reviewed and applied over our
imagery data. VI’s were related to field data as follows. First,
the indices were calculated for each field site from training
dataset using the median values previously extracted from
satellite data. Thus, the VI’s values were combined with the
corresponding C factor field values. The combination yielded
a matrix of two columns and 47 rows. Then, the correlation
coefficient was computed over this matrix. Note that a
negative correlation can exist. We use ƒrx,y ƒ because a solution
with rx,y of �1 should be as good as a solution with rx,y of 1.
The best ten VI’s of those thirty calculated VI’s are shown at
Table 1. We can appreciate in Table 1 that the VI’s with the
best performance are variations of the RVI (which in fact,
stands at the third place). We decided to test five ratios using
different combinations of bands. Four of those ratios are at
the top ten, proving that the ratio structure is a simple, yet
very useful way to construct a vegetation index. Note that the
widely-used NDVI and EVI (based on Red and Near-Infrared
reflectivities) are far from the best. The best is the so-called
RVI4 because it uses short wave infrared reflectivities, which
are able to detect plant moisture and lignin/cellulose
components, more evident on senescent vegetation. Hence,
the low correlation coefficients obtained in general with
conventional VI’s show that the information of vegetation
required by erosion models differs from the information
provided by current VI’s.

Despite the drawbacks we have noted, VI’s have gained
increasing popularity in mapping RUSLE’s C factor (e.g., Asis
and Omasa, 2007; de Jong, 1994; Lin et al., 2002; and 
Lu et al., 2003; Smith et al., 2007). We believe that VI’s
represent a challenging search space where the
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1USGS Global Visualization Viewer at http://glovis.usgs.gov

TABLE 1. CONVENTIONAL VEGETATION INDICES AND THEIR CORRELATION
COEFFICIENT

Index Description ƒrtrainƒ

RVI4 �SWIR1/�SWIR2 0.512
RVI5 �SWIR1/�red 0.383
RVI1 �NIR/�red 0.342
GEMI h(1 � 0.25h) � (�red � 0.125)/(1 � �red) 0.329

where h� [2(�NIR
2 � �red

2) �
1.5�NIR � 0.5�red]/(�NIR � �red � 0.5)

RVI2 �NIR/�green 0.329
NDVI (�NIR � �red)/(�NIR � �red) 0.314
SAVI2 �NIR/(�red � b/a) 0.309
IPVI �NIR/(�NIR � �red) 0.314
SASI �SWIR1(�NIR � �SWIR2) 0.254
GVI �0.3344�blue � 0.3544�green �

0.4556�red � 0.6966�NIR 0.228
� 0.0242�SWIR1 � 0.2630�SWIR2

EVI G ((�NIR � �red)/(�NIR � C1*�red � C2*�blue � L)) 0.101
where G � 2.5;C1 � 6;C2 � 7.5; L � 1

(rx, y)



combinatorial possibilities not yet explored by experts
makes it a promising research area. In this work a GP
approach is chosen to exploit that search space.

Synthesizing Vegetation Indices through GP
GP has been very successful at evolving novel and unexpected
ways of solving problems producing a number of instances of
results that are competitive with human-produced results
(Koza, 2010). The executable nature of the individuals evolved
makes GP ideally suited for implementing multispectral
analysis and other remote sensing applications, such as
classifiers and mathematical indices that enhance the signal
of several features over the Earth’s surface by means of
supervised learning approaches (Agnelli et al., 2002).

The basic steps in a GP system are shown in Table 2. 
For a graphic overview refer to the GP diagram from Figure 2.
GP discovers how well a program works by running it, and
then comparing its behavior with some ideal (line 3). We
might be interested, as with this case, in how well a program
can find the implicit relation between the response of a
sensor and the field where that sensor was used. This relation
is quantified to give a numeric value called fitness. The
computer programs in the initial generation of the process
will generally have poor fitness. Nonetheless, some individu-
als in the population will turn out to be somewhat more fit
than others. Those programs that do well are chosen for
mating (line 4) and produce new programs for the next
generation (line 5). The primary genetic operations that are
used to create new programs from existing ones are crossover
and mutation. The former is defined as the creation of a child

program by combining randomly chosen parts from two
selected parent programs; and the latter is the creation of a
new child program by randomly altering a randomly chosen
part of a selected parent program.

In this section, we describe the three major preparatory
steps for applying GP to the creation of vegetation indices;
first the definition of the Terminals and Functions is set;
second, the fitness measure; and third, the parameters for
controlling the algorithm and the criterion for terminating a
run. Finally, we delineate the process to evaluate our results.

Representation and Search Space
In our work, candidate solutions being evolved by GP process
are encoded through tree-based representations that match
the mathematical expressions of the vegetation indices. For
example Figure 2 shows the tree representation of the NDVI
index. The variables and constants in the program (in this
case the reflectance values of NIR and Red bands) are leaves
of the tree. In the GP process they are called Terminals, while
the arithmetic operations (�, �, and 	) are internal nodes,
called Functions. The sets of allowed Functions and Termi-
nals are defined as the primitive set of a GP system, which
represents the problem search space.

The primitive set of our GP system is presented in 
Table 3. The features that comprise the primitive set were
stated as follows. The Terminal set was represented by
information on the spectral bands, for example the bands
�red, �NIR, etc., and angles based on that bands like �green,
�red, etc. Angles are formed at any vertex in the multispec-
tral broadband spectrum, as defined by Khana et al. (2007).
For instance �green is a combination of �blue, �green, and �red..
The equation for calculating �green is shown below:

�green � cos�1 ( (a2 � b2 � c2)/(2*a*b) ), (3)

where a, b, and c are Euclidean distances between vertices
�blue and �green; �green and �red; and �blue and �red, respectively.
The same equation can be applied for every angle. See Khana
et al. (2007) for further details. In addition, we considered
the a and b terminals, which represent the soil line parame-
ters (slope and y-intercept respectively). We determine soil
line parameters by manually extracting reflectance character-
istics of bare soil pixels from our Landsat imagery, followed
by the adjustment of a line to these pixels. Finally, to
complete the Terminal set we considered the top ten conven-
tional vegetation indices with the best performance over our
study area, represented by IRVI4, IGEMI, etc., described -
previously (Table 1). Note that despite the fact that NDVI and
EVI are not part of the top ten, we decided to include them as
INDVI and IEVI, because they are broadly-used indices. The
function set was represented by arithmetic operations 
(�, �, and *) because these functions are widely used in
common VI’s design. Furthermore, we decided to evaluate
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TABLE 2. GENETIC PROGRAMMING ALGORITHM

1. Randomly create an initial population of programs from the
available primitives.

2. Repeat . . .
3. Execute each program and compute its fitness.
4. Select one or two program(s) from the population with a

probability based on fitness to participate in genetic 
recombination.

5. Create new individual program(s) by applying genetic operations
with specified probabilities.

6. until an acceptable solution is found or some other stopping
condition is met (e.g., a maximum number of generations is
reached).

7. return the best individual up to this point.

Figure 2. GP syntax tree representing program for NDVI.

TABLE 3. FEATURES THAT INTEGRATE THE PRIMITIVE SET

Features Description

Terminals
�blue, �green, �red, �NIR, Bands of the Landsat-5 
�SWIR1, �SWIR2 TM multi-spectral image
�green, �red, �NIR, �SWIR1 Angles based on bands 

(according to Khana et al. (2007))
IRVI1, IRVI2, IRVI4, IRVI5, Best-performance and common
IGEMI, INDVI,IEVI conventional indices
a, b Slope and y-intercept of the soil line

Functions
�, �, * Arithmetic operators
NDSI, RSI Composite operators



explicitly the arithmetic structure of the broadly-used NDVI
and RVI by adding two composite operators: the Normalized
Difference Spectral Index (NDSI) and the Ratio Spectral Index
(RSI), which are defined as follows:

NDSI[i, j] � (Ri � Rj )/(Ri � Rj ), and (4)

RSI[i, j] � Ri/Rj, (5)

where Rk represents any reflectance at a single band k. NDSI
has been used in previous studies. For example, Inoue et al.
(2008) used NDSI to explore spectral indices for estimating
photosynthetic variables from hyperspectral imagery.

Fitness Function.
The fitness function was based on the correlation coefficient
rx,y that indicates the strength and direction of the linear
relationship between the C factor and each synthesized
vegetation index. In this work we choose to apply the
absolute value operator of rx,y because the closer the coeffi-
cient is to either �1 or 1, the stronger the correlation
between the variables. Hence, the fitness function is defined
as follows:

(6)

where E is the expected value and cov is covariance; x
represents the RUSLE C factor, y is the synthesized vegetation
index and rx,y is defined in the range {rx,y: �1 
 rx,y 
 1}.

�  
E((x � mx)(y � my))

sxsy
 ,

Q �  max(|rx,y|), such as  rx,y �  
cov(x,y)

sx sy

Initialization, GP Parameters, and Solution Designation.
GP process was programmed in MatLab with the GP toolbox
GPLAB (Silva, 2007). Table 4 provides the GP runtime param-
eters used during the experimental test. We carried out a
test-and-error process in our experiment to get the suitable
values for some parameters. For others, we used existing
settings, which have been reported to work well across a
variety of applications. The termination criteria was defined
by a maximum number of generations (50 in this case); thus,
the evolutionary process reaches an optimum index for each
single run. Refer to Koza (1992) and Poli et al. (2008) for
more details about definition of parameters and settings.

Figure 3 shows the flowchart of the procedure developed
to generate novel VI’s in order to estimate the C factor. After
the image preprocessing step, the initial population of
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Figure 3. General flowchart of the methodology to estimate C from vegetation indices synthesized by GP.

TABLE 4. PARAMETERS USED FOR GP TRAINING

Process configuration

Generations 50
Population size 50 individuals
Initialization Ramped Half-and-Half
Crossover probability 0.70
Mutation probability 0.3
Tree depth Dynamic depth selection
Dynamic max. depth 3 levels
Real max. depth 4 levels
Selection Lexicographic parsimony 

pressure tournament
Elitism criteria Keep the best individual



solutions is generated by randomly combining elements of
Terminals and Functions sets. After that, each individual of
the initial population is evaluated by the fitness function. The
next step is to select candidate solutions in order to rank all
individuals and discard the solutions with low fitness. Then,
the genetic recombination between selected trees is performed
through crossover or mutation operators. Finally, the next
generation results from the survival selection of the best
parent and child solutions. These steps are iterated until the
maximum number of generations is reached (50 generations
in our case). The best solution is kept from the population of
the 50th generation. This new synthetic vegetation index is
called GPVIj, where j stands for the run number. We will use
the acronym GPVI (Genetic Programming Vegetation Index) to
indicate our synthesized indices.

Accuracy Evaluation
The accuracy evaluation is implemented as usually done in
general machine learning through the two stages of training
and testing. The accuracy assessment was performed for
each GPVI by computing the absolute difference between
correlation coefficient obtained for the training and testing
datasets: D � ƒrtrain � rtestƒ.

A way of evaluating the importance of each element at
the primitive set is a frequency of use (FOU) unit, which
implies pattern recognition capability of the GP process
(Makkeasorn et al., 2009). The “survival of the fittest”
approach that is implicit in the algorithm, allows GP to
extract relevant elements useful to build VI’s from the pool
of elements. Based on this idea, better quality elements will
be used more often than the poorer quality ones, which are
eliminated during the evolutionary process. Counting the
frequency of use of each element at the primitive set can be
considered as an impact index to reflect the relative impor-
tance of each input parameter. Hence, we are able to find

what element is truly important and how important it could
be for extracting C from satellite imagery.

Finally, we perform a linear regression analysis in order
to map the GPVI into the C factor range. Hence, the C-values
derived from the indices were compared to the C-values
from the field measurements in order to validate the results.
In addition, we perform a quantitative comparison between
the RUSLE soil erosion estimation using the different sources
of C as input. Except for the C factor, all other factors (R, K,
L, S, and P) were determined using GIS software, according
to the procedure described by Smith et al. (2007).

Experimental Results and Discussion
After a few exploratory runs required to fine tune the
process configuration, 30 runs were performed to achieve
the final configuration. The best individual produced at the
end of each run was labeled as GPVIj (where j stands for the
run number) and is considered as a candidate solution.
Table 5 summarizes the performance of the solutions as
measured by the difference between rtrain and rtest. It can be
seen that the GP approach is consistently able to identify
reasonably VI’s that generalizes well into the testing dataset.
In general, the indices found by the GP process show better
performance than the conventional indices (see Table 1 and
Table 5). For example, the mean ƒrx,y ƒ for GPVIs on the
training dataset was 0.633 � 0.01; whereas the mean ƒ rx,y ƒ for
top ten conventional VI’s on training dataset was 0.311 �
0.01. Moreover all thirty GPVIs had a better ƒrx,y ƒ than the
best conventional index.

The structural analysis of the GPVIs (i.e., the components
that made up the index) provides another interesting insight
into the strategies identified by the evolutionary process to
combine the primitive set. In this work we use a frequency
of use (FOU) unit, which represents how often an element is
used to generate a new index. Table 6 shows the frequency
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TABLE 5. VI’S SYNTHESIZED BY THE GP PROCESS AND THEIR CORRELATION COEFFICIENT

Index Description ƒrtrainƒ ƒrtestƒ Diff.

GPVI1 �green � (�SWIR1 � �NIR) * IRVI4 0.620 0.730 0.111
GPVI2 �SWIR1/(IRVI4/(IGEMI/IRVI4)) 0.635 0.722 0.087
GPVI3 NDSI(IRVI4,IGEMI) * (IRVI4 * �NIR) 0.619 0.681 0.062
GPVI4 NDSI(IRVI4, NDSI(�blue,IRVI4) * RSI(IGEMI,IRVI4)) 0.650 0.735 0.085
GPVI5 (RSI(IGEMI,IRVI4)/(IRVI4/�SWIR1)) * (RSI(IGEMI,IRVI4)/IRVI4) 0.638 0.743 0.105
GPVI6 NDSI(IRVI4,IEVI) * (RSI(IRVI4,�red) � IRVI4) 0.615 0.682 0.067
GPVI7 RSI(RSI(IGEMI,IRVI4), (�red � 2IRVI4)) 0.638 0.753 0.115
GPVI8 NDSI(NDSI(�NIR,�green) � IRVI4, (IGEMI � �blue) � IRVI4) 0.643 0.673 0.030
GPVI9 NDSI(NDSI(IRVI4,�green), IRVI4) * IGEMI 0.620 0.724 0.104
GPVI10 RSI((IGEMI/IRVI4)/(IRVI4 � IEVI), b) 0.635 0.707 0.073
GPVI11 (IGEMI/IRVI4)/IRVI4 0.633 0.773 0.140
GPVI12 (IRVI4 � (IRVI4 � IGEMI)) � (IGEMI/(IRVI4 � IGEMI)) 0.638 0.752 0.115
GPVI13 (IRVI4 � IGEMI) � (IGEMI � �green) 0.626 0.674 0.048
GPVI14 RSI(RSI(RSI(IGEMI,IRVI4),(IRVI4 � IEVI)), (IRVI4 � IEVI)) 0.638 0.717 0.079
GPVI15 ((�SWIR2/IGEMI) � �green) � (�red/NDSI(IGEMI,IRVI4)) 0.645 0.733 0.088
GPVI16 (IGEMI � IRVI4) � (�NIR � IGEMI) 0.626 0.679 0.053
GPVI17 RSI(�NIR,RSI(�red,�green)) � RSI(RSI(IRVI4,a),(IGEMI � IRVI4)) 0.648 0.645 0.002
GPVI18 NDSI((IRVI4 � IGEMI),a) * IGEMI 0.637 0.730 0.094
GPVI19 ((IGEMI*�SWIR1) � IGEMI) � IRVI4 0.622 0.629 0.008
GPVI20 NDSI(�NIR,(IRVI4 � NDSI(�blue,IGEMI))) 0.637 0.777 0.140
GPVI21 NDSI(�SWIR1,IGEMI)/NDSI(IGEMI,IRVI4) 0.640 0.698 0.059
GPVI22 (IGEMI � b) � (IRVI4 � IGEMI) 0.623 0.719 0.096
GPVI23 RSI((�blue � IGEMI), IRVI4*IRVI4*b) 0.648 0.710 0.062
GPVI24 NDSI((IRVI4*�NIR),�NIR) * (IRVI4 * �NIR) 0.614 0.688 0.074
GPVI25 IRVI4 * �SWIR1 * (�NIR � �blue) 0.618 0.744 0.127
GPVI26 RSI(RSI(RSI(IGEMI, IRVI4), IRVI4), �NIR*IRVI4) 0.637 0.735 0.099
GPVI27 RSI(IGEMI, IRVI4 � �NIR) � �NIR 0.642 0.639 0.003
GPVI28 RSI(NDSI(�red,IRVI4), RSI(IRVI4, RSI(IGEMI,IRVI4))) 0.643 0.655 0.013
GPVI29 RSI(RSI(IGEMI, IRVI4), IRVI4) 0.633 0.773 0.140
GPVI30 (IGEMI/(IRVI4 � IGEMI)) � IGEMI 0.638 0.752 0.115

(rx, y)



of use of each element at the primitive set. In the case of
elements belonging to Terminal set, it can be seen that IRVI4
has the highest FOU since it was used in all the 30 indices
(i.e., 100 percent of the time). IRVI4 is followed by IGEMI,
which was used 86.67 percent of the time. In most cases,
these elements appear together in all indices. By contrast,
the rest of the elements had FOU values less than or equal to
20 percent. There were few elements that were not used at
all (IRVI1I, IRVI2, IRVI5, INDVI). Note that NDVI was not used by
the GP process. This means that the GP algorithm identified
that NDVI is not suitable to estimate C accurately. This
statement will be illustrated below. Moreover, note that all
the spectral bands (�blue, �green, �red, �NIR, �SWIR1, �SWIR2) were
briefly used by the GP process. However, they are implicitly
used on the conventional indices belonging to Terminal set.
For example, IRVI4 contains �SWIR1 and �SWIR2, while IGEMI
contains �NIR and �red. This is interesting because the former
bands have been widely used to enhance plant moisture and
lignin/cellulose components (Khana et al., 2007; Streck 
et al., 2002), whereas the latter have been widely used to
detect green vegetation (Crist and Cicone, 1984; Jordan,
1969; Tucker, 1979). Twenty-eight out of the 30 GPVIs use
�SWIR1, �SWIR2, �NIR and �red. This could indicate that the GP is
able to identify spectral bands that are useful components to
estimate the RUSLE C factor.

In the case of elements at the Functions set, the impor-
tance of each operator was more equally-distributed. The
minus operator was used 46.67 percent of the time, whereas
the plus operator was the least used (16.67 percent). The
NDSI operator was used 36.67 percent of time, indicating that
the GP recognized the NDVI structure as a useful structure to
devise an index. This is interesting, inasmuch as the NDVI
structure has been widely used in many scientific and
operational applications (see reviews by Inoue and Olioso
(2006); Moran et al. (1997)). The RSI operator was the most
used: 60 percent of the time. This finding would indicate
that the GP algorithm recognized the simple yet powerful
properties of using a ratio format to eliminate a large
proportion of the noise caused by changing sun angles,
topography, clouds or shadow, and atmospheric conditions
(Matsuchita et al., 2007).

To validate the proposed approach, we compared the
relation between the field measurements of C with the best
three GPVI-derived C estimates. We considered that the most

suitable solutions are those that show a similar correlation
coefficient during the training and testing stages; hence, the
best regional map of C can be expected from them. There-
fore, according to the difference between rtrain and rtest, the
best three GPVIs obtained were GPVI17, GPVI27, and
GPVI19, respectively. We also decided to include the best
conventional index RVI4, the widely-used NDVI and the
traditional cover classification method to compare the
performance between all these approaches. Hence, we obtain
C values from VI’s by using linear regression analysis. For
the cover classification method, a land cover map of the
study area was obtained from the Comisión Nacional
Forestal (CONAFOR; available at: http://www.conafor.
gob.mx), and it is displayed as Figure 4. We assigned C
values to labels that correspond to specific vegetative cover
according to Table 10 from the USLE protocol (Wischmeier
and Smith, 1978).

Figure 5 shows that the GPVI-based C factor calculations
are the best related with field samples (GPVI17: R2 � 0.419,
RMSE � 0.017; GPVI27: R2 � 0.412, RMSE � 0.017; GPVI19:
R2 � 0.386, RMSE � 0.016). On the other hand C-RVI4
obtains a modest performance (R2 � 0.2622, RMSE � 0.019);
whereas NDVI and the cover classification method have a
poor performance in estimating C (R2 � 0.099, RMSE �
0.035; and R2 � 0.073, RMSE � 0.066, respectively).
According to Figure 5, regression line of GPVI17 is the
closest to the 1:1 line, which represents the field measure-
ments of C. All indices show a tendency to underestimate C.
For example, GPVI17 briefly underestimate C from �0.02
onwards; while GPVI27, GPVI19, RVI4, and NDVI underesti-
mate C from �0.04 onwards. This fact could indicate that all
indices tend to be more sensitive to the bare soil noise at
low vegetation covers. In addition, all indices, except
GPVI17 tend to overestimate C from 0 to �0.04 with
different magnitudes. This fact could mean that those
indices are not able to completely identify the elements that
comprise C, yielding to C calculations higher than field
measurements. Finally, the cover classification method
completely overestimates the C factor, due to the fact that
the homogeneity of the C factor estimates do not adequately
reflect the spatial variation of field measurements.

Table 7 shows the averaged soil erosion obtained from
testing dataset field locations, using the RUSLE model with
different sources of C. It can be seen that the best approxi-
mations to field measurements are those derived from the
synthetic indices. For example, the GPVI19-derived C factor
has the best approximation to the field survey. Nevertheless,
GPVI17- and GPVI27-derived C factors also yield a good
approximation. RVI4-derived C obtains a modest perform-
ance because its prediction is �50 percent higher than the
field survey. On the other hand, the NDVI and the Classifica-
tion cover methods have a prediction that is twice the field
measurements.

To illustrate the previous validation, we applied each
VI’s formula to the multi-spectral image in order to obtain
their C factor maps (see Figure 6). We used the same
adjustment criteria as Smith et al. (2007) to consider non-
vegetative covers on the new C factor maps. For instance,
negative values for C were set to 0. Moreover, C values
greater than or equal to 0.45 within agricultural areas were
assumed to be tilled and were set to C � 1.0. C values
within water bodies were set to 0. Finally, urban areas
(assumed to be largely paved or otherwise covered) were
assigned C � 0.02.

Figure 6 shows five maps of C factor that correspond to
linear regressions of GPVI17, GPVI27, GPVI19, RVI4, NDVI,
which have a range from 0.0 to 1.0 across the watershed,
and a mean of 0.0275 � 0.0252; 0.0224 � 0.0192; 0.0297 
� 0.0243; 0.0321 � 0.0280; and 0.0385 � 0.0356,
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TABLE 6. FREQUENCY OF INPUT PRIMITIVES USED IN THE
GP PROCESS

Terminals Functions

Input Frequency Input Frequency
�blue 16.67% ‘�’ 16.67%
�green 10.00% ‘�’ 46.67%
�red 6.67% ‘*’ 36.67%
�NIR 20.00% NDSI 36.67%
�SWIR1 3.33% RSI 60.00%
�SWIR2 3.33%
�green 10.00%
�red 10.00%
�NIR 16.67%
�SWIR1 16.67%
IRVI1 0.00%
IRVI2 0.00%
IRVI4 100.00%
IRVI5 0.00%
IGEMI 86.67%
INDVI 0.00%
IEVI 10.00%
a 6.67%
b 10.00%



respectively. C factor values were grouped into 10 classes
for comparative purposes, whereby classes ranged from 0
(water and full vegetation) to 1 (bare soil). According to 
on-field and imagery inspections, the study area is mostly
dominated by shrub-land, pasture land, and agriculture.
However there are some urban settlements at the west,
whereas some forest patches are depicted at the east.

At a general glance, all maps in Figure 6 seem to be
satisfactory, in regard to the main land cover units of the
study area. However, looking more closely at the maps, the
number of pixels assigned to certain classes gives a more
detailed picture. Note that a clear distinction over all maps
can be seen for the C factor values ranging from 0.0 to 0.001,
which represent highly-covered mountain forest. The
relative distribution of the pixels over all maps shows two
peaks: one at the first class and the other between fourth
and fifth classes. These finding would indicate that a greater
portion of the study area has C factor values ranging from 0
to 0.001 and 0.01 to 0.05. Note that at that range GPVIs 17,
19, and 27 are the closest indices to field measurements
according to Figure 5 and Table 7. Hence, the C maps from
GPVIs are more reliable than C maps from conventional
indices. On the other hand, the NDVI-based map shows a
briefly different tendency. It has the second peak between
the fifth and the sixth class. This fact can be explained by
the marked tendency of NDVI to overestimate C-values for
green vegetation (from 0 to 0.04) and to underestimate 
C-values for the litter layer and vegetation under stress
conditions (from 0.04 onwards). This phenomenon is
revealed in Figure 6e. It can be seen that NDVI is not sensi-
tive to the dry pasture land at the center of the watershed.
By contrast, the rest of the maps enhance this area because
they use information from the shortwave infrared bands,

which are able to discriminate dry plant matter from bare
soil (Khana et al., 2007). However, using information from
short wave bands only do not assure a good estimation of C
factor, as can be seen on the RVI4-based map (Figure 6d).
Below the dry pasture land at the center of the watershed, a
sparse, dry shrub land exists that RVI4 cannot completely
discriminate from bare soil. However, all GPVI-based maps
can enhance this and others similar areas because they use
more information from �NIR, �red besides �SWIR1, �SWIR2,,
reflective bands.

Conclusions and Future Work
In this work a novel genetic programming approach was
described, which automatically creates vegetation indices
that have a good correlation with the RUSLE C factor. In this
way, several new indices were designed that result in
improved correlation coefficients with C factor field
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Figure 4. General land cover map for the watershed. This map includes the
assigned C-factor values for the land cover types

TABLE 7. MEAN AND STANDARD DEVIATION OF THE SOIL
EROSION RATES FOR TESTING DATASET USING

DIFFERENT C ESTIMATIONS

Soil erosion in
Method used to estimate C Mg km�2 yr.�1

Field survey 76.6 � 157.4
GPVI17 67.1 � 97
GPVI19 76.5 � 103.5
GPVI27 68.6 � 97.4
RVI4 119.7 � 184.4
NDVI 193.7 � 393.3
Cover Classification 170.6 � 358.8
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(a) (b)

(c) (d)

(e) (f)

Figure 5. Comparison of the C factor measured in the field against calculated C factor using
(a) GPVI17, (b) GPVI27, (c) GPVI19, (d) RVI4, (e) NDVI, and (f) Cover classification method.
The solid line is the 1:1 line, and the dashed line is the regression line.

samples, and actually it gives reasonable better performance
than widely-used indices such as NDVI and an alternative to
RVI, the so-called RVI4.

Thus, we introduce several new indices called GPVIj,
from which we distinguish as the best GPVI17, GPVI27,
and GPVI19. Such indices achieved ƒrx,y ƒ values during the
training stage of 0.65, 0.64, and 0.62, respectively; while

the conventional indices NDVI and RVI4 achieved a ƒrx,y ƒ

value for the training stage of 0.31 and 0.51, respectively.
In general, all thirty GPVIs had a better correlation coeffi-
cient than the best conventional index. Hence, our results
demonstrate that GP is a useful tool to find out different
band combinations that are able to identify the basic
elements to estimate the RUSLE C factor. In particular, our
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Figure 6. C factor maps derived using (a) GPVI17, (b) GPVI27, and (c) GPVI19. The figure also shows
the pixel distribution for each map.

(a)

(b) (c)
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(d) (e)

Figure 6 continued. C factor maps derived using (d) RVI4, and (e) NDVI. The figure also shows the
pixel distribution for each map.

GP approach was able to identify �SWIR1, �SWIR2, �NIR and �red
as the most useful bands for extract the RUSLE C factor from
satellite imagery. Moreover, GP was able to recognize the
simple yet powerful property of using the ratio (RSI) and
the NDSI structures to eliminate a large proportion of the
noise caused by changing sun angles, topography, clouds
or shadow, and atmospheric conditions. Hence, this paper
shows that our approach obtain fairly good results on
estimating C for a particular watershed (Todos Santos).
However, the generality of our approach depends on
further application to other watersheds, which is part of
our future work.

Based on our experimental results, we believe that the
data mining capability of the GP makes this approach ideally
suited for implementing multi-spectral analysis and other
remote sensing applications, such as classifiers and mathe-
matical indices that enhance the signal of several features
over the Earth’s surface. Moreover, the advantage of the GP
approach is its open box characteristic. If a black box where
used (e.g., neural networks, fuzzy logic, and most statistical
approaches), we could hardly find out what input parameter
is truly important and how important it could be.

Our future work has two main purposes. The first
purpose is related to the generality of our approach to obtain
a good index to estimate C. The generality of our approach
depends on its further application to other watersheds. We
believe that as we keep applying our approach to different
field sites, we could identify a tendency on the elements
that comprises the best indices; or even identify a single

index that could perform well in general. This information
would give us certainty on that index, and then would not
require us to synthesize new indices. We encourage the use
of the indices reported on this paper to estimate C, so we
can obtain a feedback to generalize on different conditions,
and we can find a single index that could be applied to
estimate the C factor in general. The second purpose will
focus on estimating the soil erosion rate in Todos Santos
watershed with the RUSLE model; based on the C factor maps
obtained from this work. Table 7 shows that the best
approximations to field measurements are those derived
from the synthetic indices. However, we understand that
these results apply for the data samples only. We will have
to carry out an extensive field campaign to strongly
demonstrate that our improved estimations of C could yield
to an improvement on the prediction of soil erosion rates.
Nevertheless, the results presented here give us a useful
insight into how the improvements on the C factor could be
extended over the entire watershed; and encourage us to
keep exploring this research avenue.
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ASPRS WEBINAR SERIES
Have you wanted to attend an ASPRS conference workshop but 
didn’t have the time to spend away from the office? Are your 
travel funds limited? No problem. Here’s why.

ASPRS Workshops are at your fingertips with the ASPRS 
Webinar Workshop Series. Now you can take popular ASPRS 
Workshops from your home or office through the ASPRS 
Webinar Workshop Series. Just sign up and log in on the 
Webinar date. You will be able to interact with others 
attending the Webinar and ask questions, just as if you 
were attending the Workshop at one of our conferences. 
The only thing you’ll miss is the coffee break!

Attendees consistently rate ASPRS Workshops as 4s and 
5s (with 5 being Strongly Agree) for the usefulness of the 
content, quality and effectiveness of the instructor(s), and 
whether or not the workshop would be recommended to 
others. Continuing Education Units (CEUs) are available for 
ASPRS Webinar Workshops. And ASPRS Workshops are af-
fordable.

http://www.asprs.org/webinarseries/index.html
You benefit from having these excellent ASPRS workshops delivered to you. So don’t wait; sign up today.


