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Abstract

An inversion theorem for labeled trees and some limits of areas under

lattice paths

A dissertation presented to the Faculty of the
Graduate School of Arts and Sciences of Brandeis

University, Waltham, Massachusetts

by Brian Drake

The main result of this work is a combinatorial interpretation of the inversion of

exponential generating functions. The simplest example is an explanation of the fact

that ex−1 and log(1+x) are compositional inverses. The combinatorial interpretation

is based on building labeled trees out of basic building blocks. Using one set of rules

leads to trees counted by one exponential generating function, and the complementary

set of rules leads to the inverse function. We apply this inversion theorem to a variety

of problems in the enumeration of labeled trees and related combinatorial objects.

We also study a problem in lattice path enumeration. Carlitz and Riordan [10]

showed that reversed q-Catalan numbers approach a limit coefficientwise. This follows

from the interpretation of their q-Catalan numbers as counting the area between

certain lattice paths and the x-axis. We consider other well-known families of lattice

paths and find the analogous limits. For some families, the limits are interpreted

as counting restricted integer partitions, while others count generalized Frobenius

partitions and related arrays.
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CHAPTER 1

An inversion theorem for labeled trees

1.1. Introduction

Let’s begin by counting complete, unordered, binary trees with n leaves, each with

a distinct label from {1, 2, . . . , n}. An example is given in Figure 1.1 with n = 7.

1 4

2

5 7

3 6

Figure 1.1. A complete binary tree with labeled leaves.

Let’s let an denote the number of these trees. There is just one tree with a single

vertex, so a1 = 1. For n > 1, we can remove the root of one of these trees T and we

get an unordered pair {T1, T2} of trees. The trees T1 and T2 are complete, unordered,

binary trees, where the leaves of T1 are labeled with a subset S of {1, 2, . . . , n} and

the leaves of T2 are labeled by the complementary subset. This decomposition for our

example is given in Figure 1.2.

If S has k elements, then there are

1

2

(
n

k

)
akan−k

1



CHAPTER 1. AN INVERSION THEOREM FOR LABELED TREES

1 4

2

5 7

3 6

Figure 1.2. Decomposition into two trees.

possible unordered pairs. Summing over all k gives

an =
1

2

n∑
k=0

(
n

k

)
akan−k (1)

for n > 1, where we take a0 = 0. Let’s look at the exponential generating function

for these numbers an. We multiply both sides of (1) by xn/n! and sum on n. This

gives
∞∑
n=1

an
xn

n!
= x+

1

2

∞∑
n=2

n∑
k=0

(
n

k

)
akan−k

xn

n!
,

where the x on the right-hand side corresponds to the n = 1 term. Some rearranging

gives
∞∑
n=1

an
xn

n!
= x+

1

2

∞∑
n=2

n∑
k=0

akx
k

k!

an−kx
n−k

(n− k)!
.

Setting l = n− k, the equation becomes

∞∑
n=1

an
xn

n!
= x+

1

2

( ∞∑
k=1

ak
xk

k!

)( ∞∑
l=1

al
xl

l!

)
,

so if A(x) =
∑
anx

n/n!, then A(x) satisfies

A(x) = x+
1

2
A(x)2. (2)

2



CHAPTER 1. AN INVERSION THEOREM FOR LABELED TREES

We could solve (2) to get A(x) = 1−
√

1− 2x and use the binomial theorem to find

the explicit formula an+1 = (2n)!/(2nn!), but that is not what we want to emphasize

here. Notice that (2) is equivalent to

A(x) =

(
x− x2

2

)〈−1〉

,

where f 〈−1〉 denotes the inverse of f with respect to composition. We would like to

find a uniform interpretation of f and f 〈−1〉 as enumerating trees to work in a general

setting. In this case, x − x2/2 counts, up to sign, two trees. One is a single vertex

labeled 1, while the other tree is the following.

1 2

We want think of the single vertex tree as the “empty” tree and the second tree as a

basic building block labeled by {1, 2}, called a “letter”. Then we can interpret A(x)

as counting trees which are either empty or built up of letters according to certain

combining rules called “links”.

Consider the unordered tree

a b

to be a letter for any positive integers a 6= b. Given trees T1 and T2 made up of

letters, we can combine them by replacing a leaf of T1 labeled a with T2 if a is the

least leaf label of T2, and the leaf label sets of T1 and T2 are otherwise disjoint. The

trees we get by using these basic building block and this combining rule are exactly

the unordered complete binary trees with leaves labeled by distinct positive integers.

3



CHAPTER 1. AN INVERSION THEOREM FOR LABELED TREES

If we take the exponential generating function for those with leaf labels {1, 2, . . . , n},

then we recover A(x).

Let’s try looking at trees which can be made up of these same building blocks

with a subset of the combining rules. It will be simpler if we think of the letter

a b

as an ordered tree with a < b. Now suppose we are allowed to combine T1 and T2 only

if the label a of the leaf which is replaced is the smallest leaf label of T2 and is a right

child in T1. Then there is exactly one tree we can get with leaf labels {1, 2, . . . , n}.

This can be obtained by taking the tree with labels {1, 2} and combining it with the

tree with labels {2, 3}, and then with the tree with labels {3, 4}, and so on. We get

a tree as in Figure 1.3. The exponential generating function for these trees is ex − 1.

1

2

5

3

4

Figure 1.3. Tree with allowed links.

What are the trees made up using the complementary set of combining rules?

We use the combining rule that the leaf which is replaced must be a left child. The

trees with leaf labels {1, 2, . . . , n} are obtained as follows. Let (l1, l2, . . . , ln−1) be a

linear arrangement of {2, 3, . . . , n}. We start with a building block with leaf labels

{1, l1}, then replace the leaf labeled 1 with the building block labeled {1, l2}, then

replace the leaf labeled 1 with the building block labeled {1, l3}, and so on. Each

4



CHAPTER 1. AN INVERSION THEOREM FOR LABELED TREES

tree corresponds to a linear arrangement of {2, 3, . . . , n}, so there are (n − 1)! such

trees. An example is given in Figure 1.4. When we weight each letter by −1, then

the exponential generating function is log(1 + x) =
∑

(−1)n−1(n− 1)!xn/n!.

1

2

5

3

4

Figure 1.4. Tree with forbidden links.

Again, the exponential generating functions are inverses of each other: ex − 1 =

log(1+x)〈−1〉. Our main result is that this is true in general: If f(x) is the exponential

generating function for trees made up of basic building blocks, which we will call letters

and subject to certain combining rules, which we call allowed links, then f(x)〈−1〉 is

the exponential generating function for trees made up of the same letters with the

complementary set of combining rules, or forbidden links, with each letter weighted

by −1. We will define these terms more precisely in the next section, and state this

result as our inversion theorem.

5



CHAPTER 1. AN INVERSION THEOREM FOR LABELED TREES

1.2. Definitions

We use some standard notation. Following Stanley [41], we let N denote the set

nonnegative integers, P denote the set of positive integers, and [n] the set {1, 2, . . . , n},

where n ∈ P. If S is a finite set, we let #S denote its cardinality. For a formal power

series f , we let [xn]f denote the coefficient of xn in f . If f(x) is a formal power series

with zero constant term, then we let f(x)〈−1〉 denote the unique power series such

that f(f 〈−1〉(x)) = x.

Next let us recall some standard definitions for graphs. Let T be a graph with

vertex set V (T ) and edge set E(T ). If T is a connected graph with no cycles, we

say that T is a tree. A rooted tree is a pair (T, r), where r ∈ V (T ) is a distinguished

vertex, called the root of T . Suppose (u, v) ∈ E(T ) is an edge of a rooted tree (T, r)

such that v lies on the unique shortest path from u to r. We say that u is a child

of v, and that v is the parent of u. A vertex with no children is called a leaf. Note

that if (T, r) is a rooted tree with a single vertex, then that vertex is both the root

and a leaf. A vertex which is not leaf is called an internal vertex. An ordered tree T

is a rooted tree such that for each vertex v of T there is a fixed linear order of the

children of v. We think of the order as increasing from left to right, so that the “first

child” and the “leftmost child” are the same vertex.

We will be interested in ordered trees which have distinct positive integer labels

on their leaves. Initially the internal vertices will be unlabeled, but we will recursively

label these vertices so that each vertex is labeled with the label on its first child. We

define a leaf-labeled tree to be an ordered tree whose leaves are labeled by distinct

positive integers and whose internal vertices are recursively labeled in this fashion.

6



CHAPTER 1. AN INVERSION THEOREM FOR LABELED TREES

Next we want to define the composition T1 ◦ T2 of leaf-labeled trees T1 and T2.

Essentially, we can compose two trees by identifying the root of one tree with a leaf

of another. An example is given in Figures 1.5 and 1.6.

4

7

3

1

4

3

3

3

6

8

6
3

Figure 1.5. Leaf-labeled trees T1 and T2.

4

7

3

1

4

3

3

6

8

6
3

Figure 1.6. The composition T1 ◦ T2.

More formally, we define the composition T1 ◦ T2 as follows. Suppose that the set

of labels on T1 and the set of labels on T2 are disjoint except for one label, which

is the label of a leaf l of T1 and the root r of T2. If T1 has only a single vertex,

then T1 ◦ T2 = T2. Otherwise l has a parent v. Then T1 ◦ T2 is defined to be the

tree obtained by taking the disjoint union of T1 and T2 as graphs, removing l and

replacing its incident edge (v, l) with an edge (v, r). The linear order of the children

7
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of v is changed only by replacing l with r. The labels and other ordering of children

is unchanged. The root of T1 ◦ T2 is the root of T1.

If the label of the root of T2 does not match a the label of a leaf of T1, or if the

sets of labels are not otherwise disjoint, then the composition T1 ◦ T2 is undefined.

Notice that whenever (T1 ◦ T2) ◦ T3 is defined, then T1 ◦ (T2 ◦ T3) is also defined

and equals (T1 ◦ T2) ◦ T3. Therefore the notation T1 ◦ · · · ◦ Tk is well defined.

We now define an equivalence relation on leaf-labeled trees. Let T be a leaf-labeled

tree whose leaf labels are positive integers i1, i2, . . . , in with i1 < i2 < · · · < in. Let

j1, j2, . . . , jn be any sequence of positive integers with j1 < j2 < · · · < jn. Let T ′ be

the tree obtained from T by replacing each label ik by jk. Then we say that T and

T ′ are equivalent, and write T ∼ T ′. It is straightforward to check that this is an

equivalence relation.

Let A be a set of leaf-labeled trees. We say that A has the label substitution

property if the following is true:

If T ∼ T ′, then T ∈ A if and only if T ′ ∈ A.

We say that A has the unique decomposition property if the following is true:

If T ∈ A, then T 6= T1 ◦ · · · ◦ Tk for any T1, T2, . . . , Tk ∈ A.

If A has the label substitution property and the unique decomposition property, then

we say that A is an alphabet of leaf-labeled trees. If A is an alphabet and T ∈ A,

then we call T a letter.

For many applications, we will want to allow letters to come in different colors.

Let A be an alphabet of leaf-labeled trees, and let S be any set. We define the S-

colored alphabet AS to be the set of pairs (T, s), where T is a letter of A and s ∈ S.

We call (T, s) an S-colored letter, and say that T is a letter of color s. An S-colored

tree is a tree which is obtained by successively substituting S-colored letters into one

8



CHAPTER 1. AN INVERSION THEOREM FOR LABELED TREES

another. Two S-colored trees are equivalent only when they are equivalent as leaf-

labeled trees when the colors are ignored, and when there is a decomposition of each

tree into S-colored letters such that each pair of corresponding letters have the same

color.

Let AS be an S-colored alphabet, and let T1 and T2 be letters such that T1 ◦ T2

is defined. Then we say that T1 ◦ T2 is a link. We will be particularly interested in

equivalence classes of links.

For example, the set of trees of the form

a b

a

with a, b ∈ P, a < b is an alphabet. There are three equivalence classes of links.

Representatives are

b

a

a c

a b

a

b c

ac

a

a b

a

where a, b, c ∈ P, with a < b < c.

1.3. Main theorem

Let AS be an S-colored alphabet. Suppose that there are k equivalence classes

of S-colored letters of AS . Choose an ordering of these equivalence classes, and call

the classes type 1, type 2, . . . , and type k. If T is a tree which can be obtained as

a composition of letters of AS, then let mi(T ) denote the number of letters of type i

in T , for 1 ≤ i ≤ k. We also let m(T ) = m1(T ) + · · · + mk(T ) be the total number

9



CHAPTER 1. AN INVERSION THEOREM FOR LABELED TREES

of letters of the tree. These numbers are well defined by the unique decomposition

property of AS.

We partition the set of links into a set of allowed links L(AS) and a set of forbidden

links L(AS), such that all links in a given equivalence class are either all allowed

links or all forbidden links. A tree with allowed links is a tree which is obtained by

successively substituting S-colored letters into one another using only allowed links.

A tree with forbidden links is defined analogously. Note that any letter is both a tree

with allowed links and a tree with forbidden links. We also say that a leaf-labeled

tree with a single vertex is a tree with allowed links and a tree with forbidden links,

corresponding to the empty composition.

Define

fn(α1, α2, . . . , αk) =
∑

α
m1(T )
1 α

m2(T )
2 · · ·αmk(T )

k (3)

where the sum is over all trees T with allowed links and labels [n], and

fn(α1, α2, . . . , αk) =
∑

(−1)m(T )α
m1(T )
1 α

m2(T )
2 · · ·αmk(T )

k (4)

where the sum is over all trees T with forbidden links and labels [n]. Notice that the

trees with forbidden links are counted with an additional weight of −1 for each letter.

We also define the exponential generating functions

F (x) =
∞∑
n=1

fn(α1, α2, . . . , αk)
xn

n!
, (5)

and

F (x) =
∞∑
n=1

fn(α1, α2, . . . , αk)
xn

n!
. (6)

The following lemma gives a well-known formula for the composition of exponen-

tial generating functions. See, for example, [42, Theorem 5.1.4]. If gn(α1, α2, . . . , αk)

10
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and hn(α1, α2, . . . , αk) are polynomials in α1, α2, . . . , αk, then we define their expo-

nential generating functions as

G(x) =
∞∑
n=1

gn(α1, α2, . . . , αk)
xn

n!
,

and

H(x) =
∞∑
n=1

hn(α1, α2, . . . , αk)
xn

n!
.

Lemma 1.3.1. Let

hn(α1, α2, . . . , αk) =
∑

{π1,...,πr}

f(#π1) · · · f(#πr)g(r),

where the sum ranges over all set partitions {π1, . . . , πr} of [n], f(n) = fn(α1, α2, . . . , αk),

and g(n) = gn(α1, α2, . . . , αk). Then

H(x) = F (G(x)).

Let AS be an alphabet of colored leaf-labeled trees, L(AS) a set of allowed links,

and let Equations (3) and (4) denote the exponential generating functions for trees

with allowed and forbidden links, respectively.

Let π = {π1, π2, . . . , πj} be a set partition of [n], and let (T ′i , ri) be a rooted tree

with forbidden links and leaf labels πi, for 1 ≤ i ≤ j. Let T be a tree with links in

L(AS) and leaf labels {l(r1), l(r2), . . . , l(rj)}. Then T ◦T ′1 ◦ · · · ◦T ′j is defined. We say

that T ◦ T ′1 ◦ · · · ◦ T ′j is a (L(AS), L(AS)) composite tree on [n], or just a composite

tree when the alphabet and links are understood. In a composite tree we remember

the decomposition T ◦ T ′1 ◦ · · · ◦ T ′j , not just the resulting tree.

11
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Lemma 1.3.2. The composition F (F (x)) is the exponential generating function

for (L(AS), L(AS)) composite trees T ◦ T ′1 ◦ · · · ◦ T ′j, weighted by (−1)m, where m is

the total number of letters in the forest T ′1, . . . , T
′
j.

Proof. By Lemma 1.3.1,

F (F (x)) =
∞∑
n=1

∑
π1,...,πj

f(#π1) · · · f(#πj)f(j), (7)

where the inner sum is over all set partitions {π1, . . . , πj} of [n], and with the con-

densed notations f(i) = f i(α1, α2, . . . , αk) and f(i) = fi(α1, α2, . . . , αk). By defini-

tion, f(#πi) is the generating function for trees with forbidden links and i labeled

vertices in which each letter has an additional weight of −1. Therefore the product

f(#π1) · · · f(#πj) is the generating function for forests T ′1, . . . , T
′
j weighted by (−1)m.

Similarly, f(j) is the generating function for trees with allowed links and j labeled

vertices. So f(#π1) · · · f(#πj)f(j) is the weighted generating function for composite

trees corresponding to the partition {π1, . . . , πj}. Since the sum is over all partitions,

the result follows. �

Theorem 1.3.3 (Inversion Theorem). Let AS be an S-colored alphabet of leaf-

labeled trees, and let L(AS) be a set of allowed links. Then

F 〈−1〉(x) = F (x).

For the proof, we define a sign-reversing involution on the set of (L(AS), L(AS))

composite trees. The fixed point is the composite tree with a single vertex, which has

exponential generating function x. This involution is due to Parker [32].

Proof. Let T = T ◦ T ′1 ◦ · · · ◦ T ′k be a (L(AS), L(AS)) composite tree. Starting

at the root of T , we choose a letter as follows. At each letter R, move to the letter of

12
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T substituted into a leaf of R with the smallest label. This process ends at a letter

R0 of T , whose leaves c1, c2, . . . , cj are leaves of T . In T, c1, c2, . . . , cj are the roots

of trees with forbidden links. If c1, c2, . . . , cj are also leaves of T, then map T to the

composite tree obtained by making R0 part of the forest of trees with forbidden links

instead of a letter of T .

Otherwise, let ci be the leaf of R0 with the smallest label, among those which are

not leaves in T. Denote the leaf rooted at ci by Rci . If R0 ◦ Rci is an allowed link,

then map T to the composite tree obtained by making Rci part of T . If R0 ◦Rci is a

forbidden link, then map T to the composite tree obtained by making R0 part of the

forest of trees with forbidden links.

Clearly this map changes the number of letters in the forest of trees with forbidden

links by 1, so it reverses sign. We need to prove that it is an involution.

Suppose that the leaves of R0 are children of T. Then when we apply the map

again, R0 will be the child with the smallest label connected by an allowed link.

Therefore the map is an involution in this case. The other cases are analogous. �

We illustrate the proof with an example. Let A be the set of trees

c

a

a b

a

where a, b, c ∈ P and a < b < c. A link is forbidden whenever it is obtained by

substituting a letter into the leaf with the smallest label.

A composite tree is given in Figure 1.7, where the letters in the tree with allowed

links have solid edges and the letters in the forest of trees with forbidden links have

dashed edges. This composite tree is counted with a weight of (−1)4.

13
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6

1

1

1

9

2

2

2

12

9

2

9

13

8

3

2

4

2

2

5

7
8

8 11

10

15

10

10

14

Figure 1.7. A composite tree.

To find the composite tree which is paired by the involution, we start with the

letter with labels 1, 2, and 6. The smallest label which is the root of another letter in

the tree with allowed links is 2, so we move to the letter with labels 2, 8, and 9. The

smallest label which is the root of a letter in the tree with allowed links is 9, so we

move to the letter with labels 9, 10, and 12. Now all of its leaves are leaves of the tree

with allowed links. So R0 is the leaf with labels 9, 10, and 12. For the next step we

choose the letter Rc2 with labels 10, 14, and 15, since 10 is the smallest label which is

the root of a tree with forbidden links with more than one vertex. The link R0 ◦Rc2

is an allowed link, so we pair our composite tree with the composite tree where Rc2

is part of the tree with allowed links.

14



CHAPTER 1. AN INVERSION THEOREM FOR LABELED TREES

1.4. Basic examples

In this section we consider some simple examples of the inversion theorem. For

convenience, we first recall the examples which have been previously mentioned.

Example 1.4.1. We take an alphabet to be the set of letters of the form

a b

a

where a, b,∈ P and a < b. All links are allowed links. As seen in the introduction,

the signed exponential generating function for trees with forbidden links is x− x2/2

and the exponential generating function for trees with allowed links is

1−
√

1− 2x =
∞∑
n=1

(2n− 2)!

2n−1(n− 1)!

xn

n!

= x+
x2

2!
+ 3

x3

3!
+ 15

x4

4!
+ 105

x5

5!
+ · · · .

The function 1−
√

1− 2x counts unordered binary trees with labeled leaves.

Example 1.4.2. We take the same alphabet as in Example 1.4.1, and allow links

in the right children. As in the introduction, the exponential generating function for

trees with allowed links is

ex − 1 = x+
x2

2!
+
x3

3!
+
x4

4!
+
x5

5!
+ · · · .

The signed exponential generating function for trees with forbidden links is

log(1 + x) =
∞∑
n=1

(−1)n−1(n− 1)!
xn

n!

= x− x2

2!
+ 2

x3

3!
− 6

x4

4!
+ 24

x5

5!
+ · · · .

15
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Example 1.4.3. Here we complete the example begun after the proof of the

inversion theorem. We take our alphabet to be letters of the form

c

a

a b

a

where a, b, c ∈ P with a < b and a < c. The forbidden links are links in the leftmost

leaf of a letter. The trees with forbidden links are exactly the trees counted by

log(1 + x), except that only those trees with an odd number of leaves appear. The

weights are different, however, because the number of letters making up a tree is this

case differs from the number of letters used in Example 1.4.2. Here a tree with 2n+1

leaves will be made of n letters and have a weight of (−1)n. Therefore the signed

exponential generating function for trees with forbidden links is

arctanx =
∞∑
n=0

(−1)n(2n)!
x2n+1

(2n+ 1)!

= x− 2!
x3

3!
+ 4!

x5

5!
− 6!

x7

7!
+ · · · .

Now applying the inversion theorem, we see that the exponential generating function

for trees with allowed links is

tanx = x+ 2
x3

3!
+ 16

x5

5!
+ 272

x7

7!
+ · · · .

There is a well-known combinatorial interpretation of the coefficients of this series, due

to André [2]. See also [41, Equation 3.58]. An up-down permutation, or alternating

permutation, is a permutation π = π(1)π(2) · · · π(n) such that π(1) < π(2) > π(3) <

· · · . André showed that [xn/n!] tanx is the number of up-down permutations of odd

length n. We want to show that the interpretation which follows from the inversion
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theorem is equivalent to André’s interpretation, by giving a bijection from the trees

counted by tanx to up-down permutations of odd length.

Given a tree T with allowed links, we first map T to an increasing complete binary

tree. A complete binary tree is a rooted, ordered tree in which every vertex has 0 or 2

children. A tree is increasing if the n vertices are labeled by distinct elements of [n],

and the labels increase on any path directed away from the root. Given a tree T with

allowed links, we identify all vertices with the same label and remove any loops from

the resulting graph. For example, the tree in Figure 1.8 is mapped to the increasing

binary tree of Figure 1.9.

1

1

1

5

4

4

4

9

6

6 7

6

8

2

2 3

2

Figure 1.8. A tree counted by tanx.

There is a well-known bijection from increasing complete binary trees to down-

up permutations of odd length. Given an increasing complete binary tree T with n

vertices, we define the code c(T ) as follows. The code of an empty tree is the empty

word. The code of a tree rooted at a vertex r is c(T1)rc(T2), where T1 is the left

subtree and T2 is the right subtree. For example, the tree in Figure 1.9 has code

17
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1

5

4

9

6

7

3

2

8

Figure 1.9. An increasing binary tree.

769451328. To get the usual up-down permutations instead, we compose with the

bijection in which we replace i with n− i+ 1 for each i. The corresponding up-down

permutation in our example is 341659782.

Example 1.4.4. We take the same alphabet as in Example 1.4.3, but let all links

be allowed links. Therefore the trees with forbidden links are just the letters, so their

signed exponential generating function is x − 2x3/3!. The exponential generating

function for trees with allowed links is(
x− 2

x3

3!

)〈−1〉

=
∞∑
n=0

(3n)!

3nn!

x2n+1

(2n+ 1)!

= x+ 2
x3

3!
+ 40

x5

5!
+ 2240

x7

7!
+ 246400

x9

9!
+ · · · .

The formula for the coefficients follows from the Lagrange inversion formula. The

sequence 1, 2, 40, 2240, . . . is A052502 in Sloane’s encyclopedia [38], and can be in-

terpreted as the number of permutations σ without fixed points such that σ3 is the

identity. From the inversion theorem we get a different interpretation. If we identify

all vertices with the same label and remove the resulting loops from the graph, we see

that this sequence counts increasing ordered trees in which each vertex has an even

number of children.

18
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Example 1.4.5. In this example we find an interpretation for the coefficients of

arcsinx. We take our alphabet to be

b

a

b c

a 

where a, b, c ∈ P, and a < b < c. The forbidden links are substitutions into right

children. In this case, the trees with forbidden links are exactly those counted by

ex− 1 with an odd number of leaves. The signed exponential generating function for

trees with forbidden links is

sinx = x− x3

3!
+
x5

5!
− x7

7!
+
x9

9!
− · · · .

Therefore the exponential generating function for trees with allowed links is

arcsinx =
∞∑
n=0

(2n)!

2nn!

x2n+1

(2n+ 1)!

= x+
x3

3!
+ 9

x5

5!
+ 225

x7

7!
+ 11025

x9

9!
+ · · · .

The sequence 1, 1, 9, 225, 11025, . . . is sequence A001818 in Sloane’s encyclopedia [38].

What are the trees with allowed links counted by this sequence? If we identify vertices

with the same label and remove loops from the resulting graph, we obtain a tree from

a set E of increasing ordered trees which may be described recursively as follows.

First, the tree with a single vertex 1 is a member of E. Also, the increasing tree

with vertex set {1, 2, 3} and edges (1, 2) and (2, 3) is a member of E. If T ∈ E has

vertex set S and u, v /∈ S with u < v, then we may obtain a tree T ′ with vertex

set S ∪ {u, v} as follows. The edge set of T ′ is obtained from the edge set of T by
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adding edges (r, u) and (u, v), where r < u and r is a non-leaf vertex of T . In T ′, the

vertex u is the leftmost child of r. An example of a tree with allowed links counted

by arcsin x is given in Figure 1.10, and the corresponding tree in the set E is given

in Figure 1.11.

1

1

1

1

3 8

6 10 2

2

2

4

5

5

5

9

7

7

11

3

6

Figure 1.10. A tree counted by arcsinx.

5

26

1

3

10 4

7

l l l

l

l

l

ll

9l

11l

8 l

Figure 1.11. A tree in E.

Example 1.4.6. In this example we consider a different interpretation of arcsinx

by taking a different set of letters and links. In this example, the set of letters is

20
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c

a

a b

a

where a, b, c ∈ P and a < b < c. Forbidden links are substitutions into left children

such that if a letter with leaf labels a < b < c is substituted into a letter with leaf

labels a < d < e, then we require c < d. Therefore there is only one tree with

forbidden links for any odd number of leaf labels, and none for any even number. So

the signed exponential generating function for trees with forbidden links is sinx, and

the exponential generating function for trees with allowed links is arcsin x. In this

case, what are the trees with allowed links? If we identify vertices with the same label

and remove loops from the resulting graph, we obtain an increasing ordered tree of

[n] such that each vertex has an even number of children, and if c1, c2, . . . , c2i are the

children of a vertex u ordered from left to right, then c1 < c2 > c3 < c4 > · · · < c2i.

Figure 1.12 gives a tree with allowed links, and Figure 1.13 gives the corresponding

increasing ordered tree.

Example 1.4.7. In this example we use the inversion theorem to find the expo-

nential generating function for total partitions. Suppose we take the set [n], partition

it into at least 2 blocks, then partition each of the non-singleton blocks into at least

2 blocks, and continue until only singleton blocks remain. Such a procedure is called

a total partition of [n] [42, Example 5.2.5]. Total partitions correspond to rooted

trees in which the leaves are labeled by [n], and each internal vertex has at least 2

children. These trees are sometimes called phylogenetic trees. We can count such

trees by the inversion theorem. We define an alphabet as follows. For each i ≥ 2

and {c1, c2, . . . , ci} ⊂ P, we take letters consisting of a root together with i children
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1

1

1

7

2

2

9

5

5 6

5

4

8

2 3

2

2

Figure 1.12. A tree counted by arcsinx, second version.

9

78

2

3

6

1

l l

ll

l

ll5

l

4 l

Figure 1.13. An increasing tree with alternating children.

labeled c1, c2, . . . , ci from left to right, where c1 < c2 < · · · < ci. All links are allowed

links.

The trees with forbidden links are just the letters, so their signed exponential

generating function is

1 + 2x− ex = x− x2

2!
− x3

3!
− x4

4!
− x5

5!
− · · · .
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Therefore the exponential generating function for total partitions is

(1 + 2x− ex)〈−1〉 = x+
x2

2!
+ 4

x3

3!
+ 26

x4

4!
+ 236

x5

5!
+ 2752

x6

6!
+ · · · .

The sequence 1, 1, 4, 26, . . . is A000669 in Sloane’s encyclopedia [38]. An example

of a tree with allowed links is given in Figure 1.14. The internal vertices have been

omitted for clarity, but should share the label of their first child. The corresponding

total partition is easy to find. The first step, for example, is to partition [10] into

{1, 4, 6}, {2}, and {3, 5, 7, 8, 9, 10}.

2

1 4

6 5

8

3

9 10

7

Figure 1.14. A tree corresponding to a total partition of [10].
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1.5. Series-parallel networks

In this section we consider a technique which can extend our simple examples to

interpret some more involved functions. We illustrate the technique with the example

of series-parallel networks.

Let A be an alphabet, L(A) a set of forbidden links, and k a positive integer.

Define A[k] to be the set of ordered pairs (a, i), where a ∈ A and i ∈ [k]. Then by

definition, A[k] is a [k]-colored alphabet. Letters (a, i) and (b, j) form a forbidden link

in L(A[k]) if and only if a and b form a forbidden link in L(A) and i = j.

By construction, the trees in the new alphabet A[k] with forbidden links are just

trees in A with forbidden links, with the entire tree colored one of k colors. If F (x) is

the signed exponential generating function for trees with letters in A and forbidden

links, then

kF (x)− (k − 1)x

is the signed exponential generating function for trees with letters in A[k] and forbid-

den links.

The same method could be used to replace F (x) with F (x)〈−1〉 by taking the trees

with allowed links in k colors in place of the trees with forbidden links.

Example 1.5.1 (Series-Parallel Networks). A series-parallel network is an elec-

trical network which is made up of distinct segments connected either in series or

in parallel. More formally, a series-parallel network on [n] is an equivalence class of

expressions formed with the set [n] and two formal binary operators, + and ⊕, with

the equivalence relations a+ b ≡ b+ a and a⊕ b ≡ b⊕ a. To convert these expression

to networks, we can think of ⊕ as connecting in parallel and + as connecting in series.
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For example, the expression

(
(1⊕ 6) + 2 + (3⊕ 5)

)
⊕ 4

corresponds to the following network.

4

31 2

56

The exponential generating function for series parallel networks is

(2 log(1 + x)− x)〈−1〉 = x+ 2
x2

2!
+ 8

x3

3!
+ 52

x4

4!
+ 472

x5

5!
+ · · · .

The sequence 1, 2, 8, 52, . . . is A006351 in Sloane’s encyclopedia [38]. See also [42,

Exercise 5.40] and the references given there. These numbers also arise in Li’s recent

study of point-determining graphs [26].

We can find an interpretation for (2 log(1+x)−x)〈−1〉 using the inversion theorem.

To interpret 2 log(1+x)−x, we take the trees counted by log(1+x) and color them in

two colors with the method described at the beginning of this section. By identifying

vertices with the same label and removing loops from the resulting graphs, we find the

following interpretation for [xn/n!](2 log(1+x)−x)〈−1〉. It is the number of increasing

ordered trees T on [n] with each edge colored one of two colors, such that if u is a

vertex of T with children c1, c2, . . . , ci ordered from left to right, then the colors of

(u, c1), (u, c2), . . . , (u, ci) alternate.

It is also straightforward to give a bijection from trees with allowed links to series-

parallel networks. Suppose that T is tree with allowed links, and let l be a letter of

T whose child vertices are both leaves of T . Suppose the leaf label of the left child
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Figure 1.15. A tree counted by (2 log(1 + x)− x)〈−1〉.

  2

  1   2

  2

10 7

6 2

1 l

l l l

l l

  1

4

l

  2   1   2

9 8 5

3l

l l l

  1

Figure 1.16. A restricted ordered tree on [10] with 2 colored edges.

vertex of l is u and the leaf label of the right child vertex is v. If l has color 1, then

replace l with a vertex labeled u ⊕ v. If l has color 2, then replace l with a vertex

labeled u + v. Then continue until T consists of only a single labeled vertex. That

label is the corresponding series-parallel network. For example, the tree in Figure
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1.15 corresponds to the network

((1⊕ 4) + 6)⊕ (2⊕ ((3 + (9⊕ 10))⊕ 8) + (5 + 7)).

We can also keep track of the number of letters of each type. The exponential

generating function is(
1

α
log(1 + αx) +

1

β
log(1 + βx)− x

)〈−1〉

= x+ (α + β)
x2

x!

+ (α2 + 6αβ + β2)
x3

3!
+ (α3 + 25α2β + 25αβ2 + β3)

x4

4!

+ (α4 + 90α3β + 290α2β2 + 90αβ3 + β4)
x5

5!
+ · · · .

The coefficient of αiβn−1−ixn/n! in this series is the number of series-parallel networks

on [n] with i parallel connections and n− 1− i series connections.

If we let s(n) denote the number of series-parallel networks on [n], then it is well-

known that s(n) = 2r(n) for n > 1, where r(n) is the number of total partitions of

[n] as given in Example 1.4.7. For n > 1, we can give a two to one map from trees

with allowed links and leaf labels n to total partitions as follows. Let T be a tree with

allowed links. If S is the set of labels which can be reached from the root of T by

following edges of the same color, then the corresponding a total partition has a root

labeled 1 with #S children, labeled by the elements of S in increasing order from left

to right. Then we continue to use the same rule to find the rest of the total partition.

For example, the tree in Figure 1.15 is mapped to the total partition corresponding

to the tree in Figure 1.14. The map we described is a 2 to 1 map because the root of

T can be part of a letter of 2 different colors.
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1.6. Parker’s theorem

In this section we derive a special case of the inversion theorem which counts un-

labeled trees with allowed and forbidden links. It is a theorem for ordinary generating

functions found independently by Parker [32] and Loday [27].

Suppose that we have an alphabet A such that if l is a letter of A, then any letter

which can be obtained from l by permuting the set of leaf labels of l is also in A.

Suppose also that the set of allowed links L depends only on the underlying graph

and not on the leaf labels. With these assumptions, it follows that if T is a tree with

allowed links, then any tree which can be obtained by permuting the leaf labels of

T is also a tree with allowed links. If fn is the number of trees with allowed links

and leaf labels [n], then fn = n! gn, where gn is the number of underlying trees with

n leaves. The exponential generating function F (x) for the fn’s is also the ordinary

generating function for the gn’s.

With alphabets and links of this type, the labels do not carry any information.

So we can think of the letters as unlabeled, ordered trees, and specify links by sub-

stituting in the first child, second child, etc. The following theorem is the immediate

corollary of the inversion theorem in this case. As before, if T is a tree composed of

letters connected by links, then we use m(T ) to denote the number of letters in the

tree. As previously noted, the number m(T ) is well defined by the definition of an

alphabet.

Theorem 1.6.1. Let A be an alphabet of unlabeled trees and L(A) a set of allowed

links. Define generating functions f(x) =
∑
xm(T ) and g(x) =

∑
(−x)m(T ), where the

first sum is over all trees with allowed links and the second is over all trees with

forbidden links. Then we have

f(g(x)) = x.
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Parker uses this inversion theorem to study the iteration polynomials for x− xm

and x/(1 + xm−1), where m ≥ 2. Loday gives a number of additional examples. Here

we give some examples which apply this theorem to give an interpretation of some

well-known sequences. The first two examples are given by both Parker and Loday,

and the example of the large Schröder numbers can also be found in Loday’s work.

Example 1.6.2. In this example the only letter is a binary tree with 2 leaves,

and all links are allowed links. So the trees with allowed links are all binary trees,

counted by the number of leaves. These are counted by the Catalan numbers.

(x− x2)〈−1〉 =
1−
√

1− 4x

2

= x+ x2 + 2x3 + 5x4 + 14x5 + 42x6 + 132x7 + · · ·

Example 1.6.3. This example is the unlabeled analogue of Example 1.4.2. The

only letter is again a binary tree with 2 leaves, and all substitutions into right children

are allowed links. For any n ≥ 1, there is exactly one tree with allowed links and

n leaves, and exactly one tree with forbidden links with n leaves. The ordinary

generating functions for trees with allowed links and forbidden links are x/(1 − x)

and x/(1 + x), respectively. It is straightforward to verify that these are inverse

functions.

Example 1.6.4. For this example we take an alphabet of two letters; one is a

root with two ordered children and the other is a root with three ordered children.

The substitution of either letter into a first child of either letter is a forbidden link.

All other links are allowed.

There is a bijection from trees with forbidden links and n+1 leaves to compositions

of n with parts 1 and 2, as follows. At the root, record the number of children of the
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root minus one. Then if the first child is an internal vertex, repeat the process from

that vertex.

For example, the tree

corresponds to the composition (1,1,2,1). By the theory of free monoids, the gener-

ating function for compositions with parts 1 and 2 is 1/(1− x− x2). Since each tree

has an extra leaf, and to count each letter with a weight of −1, the signed generating

function for trees with forbidden links is x/(1 + x + x2). Therefore the generating

function for trees with allowed links is(
x

1 + x+ x2

)〈−1〉

=
1− x−

√
1− 2x− 3x2

2x

= x+ x2 + 2x3 + 4x4 + 9x5 + 21x6 + 51x7 + · · ·

These numbers are the Motzkin numbers, A001006 in Sloane’s encyclopedia [38]. By

the inversion theorem, they count ordered trees with n leaves in which every internal

vertex has 2 or 3 children, and the first child of every vertex is a leaf. We can remove

each first child and find one of the standard interpretations of the Motzkin numbers.

They count ordered trees with n vertices in which each vertex has 0, 1, or 2 children.

Example 1.6.5. We can extend the previous example to count ordered trees with

n vertices in which each vertex has degree at most r, for any fixed r ≥ 2. We take an
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alphabet with r letters, consisting of trees which are a root together with i children,

for i = 2, 3, . . . r + 1. Forbidden links are substitutions into first children.

By the same reasoning as in the previous example, the ordinary generating func-

tion for trees with forbidden links is

x

1 + x+ · · ·+ xr
=

x− x2

1− xr+1
.

If we take r = 3, for example, then the generating function for trees with allowed

links is (
x− x2

1− x4

)〈−1〉

= x+ x2 + 2x3 + 5x4 + 13x5 + 36x6 + 104x7 + · · · .

Notice that if we take the limit as r goes to infinity, then we are taking the inverse

of x − x2 and we recover the Catalan numbers. This gives the interpretation of the

Catalan numbers as counting ordered trees by the number of vertices.

Example 1.6.6 (Small Schröder numbers). We can also use the inversion theorem

to count ordered trees by the number of leaves. The number of ordered trees with n

leaves in which each internal vertex has at least 2 children is well known to be sn, the

nth small Schröder number. This is the unlabeled analogue of Example 1.4.7.

We take an alphabet consisting of all trees which are a root together with i ordered

children, for any i ≥ 2. All links are allowed links.

Since the trees with forbidden links are just the letters, their signed generating

function is

x− x2 − x3 − · · · = x− 2x2

1− x
.
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Therefore the generating function for the small Schröder numbers is(
x− 2x2

1− x

)〈−1〉

=
1 + x−

√
1− 6x+ x2

4

= x+ x2 + 3x3 + 11x4 + 45x5 + 197x6 + 903x7 + · · · .

Example 1.6.7 (Large Schröder numbers). The large Schröder numbers rn are

related to the small Schröder numbers by rn = 2sn for n > 1 and r1 = s1. We take

an alphabet with 2 letters. One is a root with two ordered children, colored 1. The

other is also a root with two ordered children, but colored 2. The forbidden links are

substitutions into right children in which the both letters have the same color.

For any n ≥ 2, there are 2 trees with forbidden links and n leaves: these are the

trees in Example 1.6.3 with the entire tree colored 1 or 2. Their signed generating

function is

x− 2x2 + 2x3 − 2x4 + · · · = x− x2

1 + x
.

Therefore the generating function for trees with allowed links is(
x− x2

1 + x

)〈−1〉

=
1− x−

√
1− 6x+ x2

2

= x+ 2x2 + 6x3 + 22x4 + 90x5 + 197x6 + 1806x7 + · · · .

We can also keep track of the number of letters of each type and obtain a sym-

metric statistic on Schröder numbers. The generating function for trees with allowed

links in which α keeps track of the letters colored 1 and β keeps track of the letters
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colored 2 is(
x− αx2

1 + αx
− βx2

1 + βx

)〈−1〉

=

(
x− abx2

(1 + ax)(1 + bx)

)〈−1〉

=
1− x(a+ b)−

√
x2(a− b)2 − 2x(a− 2ab+ b) + 1

2ab(1 + x)

= x+ (α + β)x2 + (α2 + 4αβ + α2)x3

+ (α3 + 10α2β + 10αβ2 + β3)x4

+ (α4 + 20α3β + 48α2β2 + 20αβ3 + β4)x5 + · · · .

This gives an interpretation to sequence A089447 in Sloane’s encyclopedia [38].

Example 1.6.8 (Guillotine partitions). We can generalize the previous example

to an alphabet with d letters, for any d ≥ 2. The trees with allowed links are known to

count certain partitions of an d-dimensional box. These are known by many names.

Yao et al. [46] use the term slicing floorplans, Bern et al. [7] consider iterated 2-

particle cut-constructible diagrams but settle for Mondrian diagrams, and Ackerman

et al. [1] call them guillotine partitions. We follow Ackerman et al., who are the first

to consider these partitions in dimensions greater than 2.

A guillotine partition is obtained from a d-dimensional box as follows. At each

step, either do nothing or cut a d-dimensional box B with a hyperplane normal to a

coordinate axis to obtain two d-dimensional boxes B1 and B2. The result, after any

finite number of steps, is a guillotine partition. We consider two guillotine partitions to

be the same if they have the same topological structure. For example, the 6 guillotine

partitions of a 2-dimensional box with 2 hyperplane cuts are shown in Figure 1.17.

Ackerman et al. [1, Observation 2] showed that there is a bijection from guillotine

partitions to certain trees which are easy to describe in terms of letters and links.
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Figure 1.17. Six guillotine partitions in the plane.

We take an alphabet of d letters. The letters are a root labeled i together with two

children, for i = 1, 2, . . . , d. The forbidden links are substitutions into right children

in which the parent and the new internal vertex have the same label. The number of

trees with allowed links and n leaves is the same as the number of guillotine partitions

with n− 1 hyperplane cuts. The generating function is(
x− dx2

1 + x

)〈−1〉

=
1− x−

√
x2 + 2x+ 1− 4xd

2(d− 1)

= x+ dx2 + (2d2 − d)x3 + (5d3 − 5d2 + d)x4

+ (14d4 − 21d3 + 9d2 − d)x5 + · · ·

= x+
∞∑
n=1

n∑
k=1

1

n

(
n

k − 1

)(
2n− k + 1

n+ 1

)
(−1)n−k+1dkxn+1

The formula for the coefficient of (−1)n−k+1dkxn follows from the Lagrange inver-

sion formula. These coefficents count certain Schröder paths. The coefficient of

(−1)n−k+1dkxn is the number of lattice paths from (0, 0) to (n, n) which do not go

above the diagonal y = x, using steps (1, 0), (0, 1) and (1, 1) with k left turns, but

with no left turns at (i, j) where i − j = 1. These numbers are A126216 in Sloane’s

encyclopedia [38].
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To find the number of guillotine partitions, we need to plug in the appropriate

integer for d. For example, the generating function for guillotine partitions in 3

dimensions is

1− x−
√
x2 − 10x+ 1

4
= x+ 3x2 + 15x3 + 93x4 + 645x5 + 4791x6 + 37275x7 + · · · .

The sequence 1, 3, 15, 93, . . . is A103210 in Sloane’s encyclopedia [38].

Example 1.6.9. We can generalize Example 1.6.7 in a different way, by increasing

the number of leaves on each letter instead of the number of marked letters. Fix

integer i, j ≥ 2, and consider an alphabet of 2 letters. One is a root labeled 1

together with i ordered children, and the other is a root labeled 2 together with j

ordered children. The forbidden links are links into rightmost children in which the

internal vertices have the same label. The signed generating function for trees with

forbidden links is

x− xi

1 + xi−1
− xj

1 + xj−1
=

x− xi+j−1

(1 + xi−1)(1 + xj−1)
.

If we take i = j = 3, for example, we get(
x− x5

(1 + x2)2

)〈−1〉

=

(
x− x2

1 + x2

)〈−1〉

= x+ 2x3 + 10x5 + 66x7 + 498x7 + 4066x9 + · · ·

as the generating function for trees with allowed links. The sequence 1, 2, 10, 66, 498, . . .

is A027307 in Sloane’s encyclopedia [38]. The sequence is known to count lattice paths

from (0, 0) to (3n, 0) that stay weakly in first quadrant, and where each step is either

(2, 1), (1, 2) or (1,−1). By the inversion theorem, the nth number in this sequence is

the number of complete ternary trees with 2n−1 leaves in which each internal vertex
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is colored one of two colors, such that each vertex and its rightmost child do not have

the same color.
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1.7. Lambert’s W function

In this section we find some interpretations of a classic example of series inversion.

The series

xex =
∞∑
n=1

n
xn

n!

= x+ 2
x2

2!
+ 3

x3

3!
+ 4

x4

4!
+ 5

x5

5!
+ · · ·

has the compositional inverse

W (x) =
∞∑
n=1

(−1)n−1nn−1x
n

n!

= x− 2
x2

2!
+ 9

x3

3!
− 64

x4

4!
+ 625

x5

5!
− · · · ,

which is known as Lambert’s W function. In the interest of signs, sometimes the tree

function

T (x) = −W (−x)

= x+ 2
x2

2!
+ 9

x3

3!
+ 64

x4

4!
+ 625

x5

5!
+ · · ·

is considered instead. The inverse of T (x) is xe−x. The number of rooted trees on

[n] is nn−1, a formula due to Cayley. The generating function for the series is T (x),

which is the reason for the name. In this section we consider three interpretations of

T (x) as counting trees with allowed links.

Example 1.7.1. We take an alphabet in two colors. Our letters are

  1

a

a b

  2

a

a b
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with a < b. We use 1 and 2 to denote the colors. The forbidden links are links into

right children such that the colors weakly increase. Then there is one uncolored tree

with leaf labels [n], which is the tree in our interpretation of ex−1. There are n ways

in which this tree occurs in a colored version as a tree with forbidden links. Following

a path from the root along the internal vertices, any of the n− 1 internal vertices can

be the first colored 2. The other possibility is that all the internal vertices are colored

1. Therefore the signed exponential generating function for trees with forbidden links

is

xe−x = x− 2
x2

2!
+ 3

x3

3!
− 4

x4

4!
+ · · · .

Then by the inversion theorem, the exponential generating function for the trees with

allowed links is T (x).

What interpretation of T (x) does the inversion theorem give us? By identifying

vertices which have the same label and removing loops from the resulting graph, we

get the following interpretation. The trees counted by T (x) are increasing ordered

trees in which the edges are colored 1 or 2, with two condition. First, if (u, v) is

an edge colored 1, then v is a leaf. Second, if an edge (u, v) is colored 2 and v has

children w1, w2, . . . , wi ordered from left to right, then (v, wi) is colored 1. If T is such

a tree with vertices labeled 1, 2, . . . , n, then we will call T a restricted 2-edge colored

increasing tree on [n].

Let an be the number of such trees on [n]. We would like to verify that an = nn−1

by showing that both sides satisfy the same recurrence and initial conditions.

If n = 1, then there is one tree, with a single vertex. So an = 1, and 11−1 = 1,

as desired. Now suppose n > 1, and let T be a restricted 2-edge colored increasing

tree on [n]. Let r be the rightmost child of the root. Since T is increasing, the root

is necessarily 1.

38



CHAPTER 1. AN INVERSION THEOREM FOR LABELED TREES

  1

  1

  2

  2

  1

  2

  1

  1

1

1

1

1

1

1

3

4

4

4

7

6

52

9

8

2

Figure 1.18. A tree with allowed links

  2

7

  2   2

  1

  1   1   1

  1
3

6 5

4 2 9 8

1
l

l l l l l

l l l

Figure 1.19. A restricted 2-edge colored increasing tree on [9]

Case 1: (1, r) has color 1. By definition, r is a leaf, and can be any number in

{2, 3, . . . , n}. The tree obtained from T by removing the edge (1, r) and the vertex r

is a restricted 2-edge colored increasing tree on [n]\{r}. This contributes (n−1)an−1

to the recurrence.

Case 2: (1, r) has color 2. If r is a leaf, then this contributes (n − 1)an−1 to the

recurrence by the reasoning in the previous case. Otherwise, let s be the rightmost

child of r. By the second condition on the tree T , the edge (r, s) has color 1 and s is a

leaf. Removing the edges (1, r) and (r, s) from T yields a forest with three components.
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Let the component containing 1 be T1 and the component not containing 1 or s be T2.

The third component is the single vertex s. We have an ordered pair of restricted 2-

edge colored increasing trees on sets S1 and S2, and a vertex s, such that {S1, S2, {s}}

is a partition of [n], and minS1 = 1 < minS2 = r < s.

How many ways are there to choose such a partition, with #S2 = k? First we fix r.

Next we choose s in n−r ways. Finally we choose k−1 elements of {r+1, . . . , n}\{s}.

There are (
n− r − 1

k − 1

)
ways to do this. Therefore the number of such partitions is

n−1∑
r=2

(n− r)
(
n− r − 1

k − 1

)
= k

n−1∑
r=2

n− r
k

(
n− r − 1

k − 1

)

= k
n−1∑
r=2

(
n− r
k

)

= k

(
n− 1

k + 1

)
.

Therefore this contributes
n−2∑
k=1

k

(
n− 1

k + 1

)
akan−k−1

to the recurrence. Combining the cases, we see that the an satisfy a1 = 1 and

an = 2(n− 1)an−1 +
n−2∑
k=1

k

(
n− 1

k + 1

)
akan−k−1 (8)

for n > 1.

We would like to show that the numbers nn−1 satisfy the same recurrence, by

deriving it from an identity of Abel. The identity we need [37, Equation 13a, p. 18]
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is

(x+ y + n)n

x
=

n∑
l=0

(
n

l

)
(x+ l)l−1(y + n− l)n−l.

Now we set x = −1 and y = 1 to obtain

−nn = −(n+ 1)n + n(n)n−1 +
n∑
l=2

(
n

l

)
(l − 1)l−1(n− l + 1)n−l.

Some rearranging gives

(n+ 1)n = 2n(nn−1) +
n∑
l=2

(l − 1)

(
n

l

)
(l − 1)l−2(n− l + 1)n−l, (9)

which is equivalent to (8) by replacing n 7→ n− 1, l 7→ k + 1, and nn−1 7→ an.

Example 1.7.2. We take an alphabet of letters

a b

a

with a, b ∈ P, a 6= b. Here we are allowing both a < b and b < a. The forbidden links

are

c

a

a b

a

where b < c. Then there are n trees with forbidden links and leaf labels [n], since the

leftmost leaf has an arbitrary label. The rest increase from left to right. So the signed

exponential generating function for trees with forbidden links is xe−x. Therefore the

exponential generating function for trees with allowed links is T (x). This is easy to

verify directly. Let T be a tree with allowed links, leaf labels [n], and root label r.

By identifying vertices with the same label in T and removing the resulting loops
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from the graph, we obtain an arbitrary tree rooted at r. The inverse map is also

easy to construct. Suppose a vertex v is a vertex of a rooted tree T with children

w1 < w2 < · · · < wi. Then we take letters with left leaf label v and right leaf label wj,

for j = 1, 2, . . . i. The letter containing w1 is substituted into the tree first, followed

by the letter containing w2, and so on. An example is given in Figures 1.20 and 1.21.

5

5

3 7 6

3

3

6

1

2
1

1

1 8 4

Figure 1.20. A tree with allowed links

5

7

3

6

1

2 8

4

l l l

l

l

l l

l

Figure 1.21. A tree on [8] rooted at 3

We can keep track of the number of increasing edges by considering our letters to

be of different types. Let us say that letters in which the left child is smaller than the
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left child are type 1 and the letters in which the left child is smaller than the right

are type 2. We will let α keep track of letters of type 1 and β keep track of letters of

type 2.

The signed generating function for trees with forbidden links is

x− (α + β)
x2

2!
+ (α2 + αβ + β2)

x3

3!
− · · ·+

(
n∑
i=0

(−1)n−1αn−iβi

)
xn

n!
+ · · ·

=
∞∑
n=1

(−1)n−1α
n − βn

α− β
xn

n!

=
1− e−αx + e−βx − 1

α− β

=
eαx − eβx

(α− β)eαxeβx
.

Then by the inversion theorem, the generating function for trees with allowed links is(
eαx − eβx

(α− β)eαxeβx

)〈−1〉

= x+ (α + β)
x2

2!
+ (2α + β)(α + 2β)

x3

3!
+ · · ·

=
∞∑
n=1

n−1∏
i=1

((n− i)α + iβ)
xn

n!
. (10)

This formula was found by Gessel and Seo [18]. Let f denote the inverse of (eαx −

eβx)/((α− β)eαxeβx). That is,

eαf − eβf = (α− β)xeαfeβf .

Rearranging terms and letting H = ef gives

Hα(1 + xβHβ) = Hβ(1 + xαHα),

which is their Equation 5.8. Then Equation (10) follows from their Theorem 5.1.
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Example 1.7.3. We take the same alphabet as in the previous example. The

forbidden links are

b

a

b c

a 

where a < b < c or a < b > c. There are n trees with forbidden links since the

rightmost leaf can be arbitrarily labeled, while the rest increase from left to right.

Therefore the signed exponential generating function for trees with forbidden links is

xe−x, and the exponential generating function for trees with allowed links is T (x).

Let T be a tree with allowed links. By identifying vertices with the same label

in T and removing the loops from the resulting graph, we get an ordered tree on [n]

such that for each edge (u, v) directed away from the root, if u < v, then v is a leaf.

2

3

6

7

4

6

6

6

4

2

5

1

4

8

4

Figure 1.22. A tree with allowed links
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2

78

6

4

3 5

1

l l l

l

l

l

ll

Figure 1.23. A restricted ordered tree on [8]

If we keep track of the two types of letters, the generating function for trees with

forbidden links is

x− (α + β)
x2

2!
+ (α2 + 2αβ)

x3

3!
− (α3 + 3α2β)

x4

4!
+ · · ·

= x+
∞∑
n=2

(−1)n−1(αn−1 + (n− 1)αn−2β)
xn

n!

= x+ (α− β)
∞∑
n=2

(−1)n−1αn−2x
n

n!
+ β

∞∑
n=2

(−1)n−1nαn−2x
n

n!

= x+ (α− β)

(
1− αx− e−αx

α2

)
+ β

(
xe−αx − x

α

)
=
α− β + (β − α + αβx)e−αx

α2

Therefore the generating function for trees with allowed links is

(
α− β + (β − α + αβx)e−αx

α2

)〈−1〉

=
α− β − βW

(
β−α−α2x

β
e(α−β)/β

)
αβ

= x+ (α + β)
x2

2!
+ (2α2 + 4αβ + 3β2)

x3

3!

+ (6α3 + 18α2β + 25αβ2 + 15β3)
x4

4!

+ (24α4 + 96α3β + 190α2β2 + 210αβ3 + 105β4)
x5

5!
+ · · · .
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Here W refers to Lambert’s W function. This expression for the inverse was

found using Maple. The coefficients of the series are sequence A054589 in Sloane’s

encyclopedia [38]. These polynomials were studied by Shor [40] and by Zeng [48].

They interpret the polynomials by counting improper edges in rooted trees on [n].

An edge (u, v) directed away from the root in a rooted tree T on [n] is proper if all

the descendants of v, including v itself, are larger than u. Otherwise, the edge is

improper. They show that the coefficient of αiβn−1−ixn/n! is the number of rooted

trees on [n] with i proper edges.

We’ll say that an edge (u, v) in a rooted tree directed away from the root is

increasing if u < v and decreasing if u > v. We will call v the child vertex of the edge

(u, v). The interpretation we get from the inversion theorem is that the coefficient of

αiβn−1−ixn/n! is the number of ordered trees on [n] with i increasing edges, in which

the child vertex of each increasing edge is a leaf.
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1.8. Ascents and descents in k-ary trees

In this section we count incomplete k-ary trees with all vertices labeled uniquely

by elements of [n]. For k ∈ P, an incomplete k-ary tree is defined recursively as a

root vertex v together with k ordered subtrees, any of which may be empty. The root

u of the ith subtree is called the ith child of v. As before, v is called the parent of

u. We will be interested in counting incomplete k-ary trees in which every vertex is

labeled. We will simplify our terminology and simply say that a k-ary tree on [n] is

an incomplete k-ary tree with n vertices, each labeled uniquely by an element of [n].

We will keep track of some statistics on k-ary trees on [n]. For 1 ≤ i ≤ k, an ith

ascent is a vertex u which is the ith child of its parent v, such that the label on u is

greater than the label on v. An ith descent is defined analogously. In the case k = 1,

we use simply ascent and descent in place of 1st ascent and 1st descent. Similarly,

for k = 2, we use left and right in place of 1st and 2nd.

For example, in the binary tree in Figure 1.24, the vertex labeled 4 is a left ascent,

1

4

2

5

7

3

6

l

l

l

l

l

l

l

Figure 1.24. An incomplete binary tree

the vertex labeled 1 is a left descent, the vertex labeled 5 is a right ascent, and the

vertex labeled 2 is a right descent.

Let Nk(a1, d1, · · · , ak, dk) be the number of k-ary trees on [n] with ai ith ascents

and di ith descents, for 1 ≤ i ≤ k, where n = a1 + d1 + · · ·+ ak + dk + 1.
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Gessel [16] showed that the exponential generating function

B =
∞∑
n=1

∑
a1+d1+a2+d2=n−1

N2(a1, d1, a2, d2)α
a1
1 β

d1
1 α

a2
2 β

d2
2

xn

n!

satisfies the functional equation

(1 + α1B)(1 + β2B)

(1 + α2B)(1 + β1B)
= e((α1β2−β1α2)B+α1−β1−α2+β2)x.

Therefore B can be expressed as

B =

(
1

(α1β2 − β1α2)B + α1 − β1 − α2 + β2

log

(
(1 + α1x)(1 + β2x)

(1 + α2x)(1 + β1x)

))〈−1〉

.

This expression for the exponential generating function is particularly interesting, be-

cause it demonstrates the non-obvious symmetry N2(a1, d1, a2, d2) = N2(a1, a2, d1, d2).

Similar results for unordered forests have been found by Gessel [17], and proven com-

binatorially by Kalikow [23]. We will derive the generating function B from the

inversion theorem, and find the analogous generating function for k ≥ 2.

We consider letters in colors (i, j), where i ∈ [k] and j ∈ [2]. Letters of color (i, 1)

are of the form

a b

a

with a, b ∈ P and a < b. Letters of color (i, 2) are of the form

b a

b

with a, b ∈ P and a < b.
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The allowed links are defined as follows. Any link which is a substitution into a

right child is an allowed link. Also, a link T1 ◦ T2 which is a substitution into a left

child is allowed if i1 > i2, where T1 has color (i1, j1) and T2 has color (i2, j2).

For example, the tree in Figure 1.25 is a tree with allowed links, with k = 2, and

1

(2,1)

(1,1)

(1,2)

(2,2)

(1,1)

(1,2)4

4
3

3

3

67

7
5

5

5

2

Figure 1.25. A tree with allowed links.

with the colors shown below each letter’s root.

Now we define a bijection ψ from trees with allowed links with labels [n] to k-ary

trees on [n]. Let T be a tree with allowed links. Each letter of T corresponds to an

edge of ψ(T ). If T contains a letter with color (i, j), left child label a and right child

label b, then b is an ith child of a in ψ(T ). The map ψ takes the tree in Figure 1.25

to the tree in Figure 1.24.

Notice that under this bijection, the second index in the colors keeps track of

ascents and descents. That is, if the letter with left child label a and right child label

b has color (i, 1), then by the construction of the letters, a < b, so b is an ith ascent.

If the letter has color (i, 2), then a > b and b is an ith descent.

Now let us consider trees with forbidden links. The forbidden links are substitu-

tions T1 ◦T2 into left children such that i1 > i2, where T1 has color (i1, j1) and T2 has

color (i2, j2).
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Let Nk(a1, d1, · · · , ak, dk) be the number of trees on [n] with forbidden links with

ai letters of color (i, 1) and di letters of color (i, 2), where n = a1+d1+· · ·+ak+dk+1.

Proposition 1.8.1.

Nk(a1, d1, . . . ak, dk) = (a1 + a2 + · · ·+ ak)! (d1 + d2 + · · ·+ dk)!
k∏
i=1

(
ai + di
ai

)
Proof. A tree with forbidden links is obtained from a sequence of letters T1, T2,

. . . , Tn−1 with colors (i1, j1), (i2, j2), . . . , (in−1, jn−1) such that i1 ≤ i2 ≤ · · · ≤ in−1 by

making substitutions into left children at each step. By construction, each of these

letters will have the same label r on their left child. Suppose the tree has ai children

of color (i, 1) and di children of color (i, 2) for each i. Then the number of letters in

which the right child is smaller than the left child is d1 + d2 + · · · + dk. Therefore

r = d1 + d2 + · · · + dk + 1. The labels less than r can be assigned arbitrarily on

the right children of letters with colors (i, 2) for any i. This contributes a factor of

(d1 + d2 + · · · + dk)! to Nk(a1, d1, . . . ak, dk). Similarly, the labels greater than r can

be assigned arbitrarily, contributing (a1 +a2 + · · ·+ak)!. Now among the letters with

color (i, 1) or (i, 2), the order in which they appear in T1, T2, . . . , Tn−1 is arbitrary,

contributing a factor of
(
ai+di
ai

)
. �

For example, a tree with forbidden links with k = 4 and n = 7 is given in Figure

1.26. The tree in Figure 1.26 has a1 = 2, d1 = 1, a2 = 2, d4 = 1 and all other ai and

di equal to zero.

We define the signed exponential generating function

K =
∞∑
n=1

(−1)n−1
∑

Nk(a1, d1, . . . , ak, dk)α
a1
1 β

d1
1 · · ·α

ak
k β

dk
k

xn

n!
.
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(1,1)

(1,2)

1

3

3

(1,1)

(2,1)

5

3

3

(2,1)

(4,2)

23

3

3

7

4

6

Figure 1.26. A tree with forbidden links.

Here the inner sum is over all nonnegative integers a1, d1, . . . , ak, dk such that a1 +

d1 + · · · + ak + dk = n − 1. We would like a closed form for K. To simplify our

notation somewhat, we define an auxiliary function Z(α1, β1, α2, β2) by

Z(α1, β1, α2, β2) = (α1β2 − β1α2)x+ α1 − α2 − β1 + β2. (11)

Notice that Z is pairwise antisymmetric. That is,

Z(α2, β2, α1, β1) = −Z(α1, β1, α2, β2). (12)

We can also express Z as

Z(α1, β1, α2, β2) = (α1 − β1)(1 + β2x)− (α2 − β2)(1 + β1x). (13)

To evaluate K, we use the fact that the beta function can be represented as an

integral and as a quotient of gamma functions. For positive integers, the quotient of

gamma functions is a quotient of factorials.
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Lemma 1.8.2 (Formula 6.2.1, [47]). For positive integers p and q,∫ 1

0

sp(1− s)q ds =
p! q!

(p+ q + 1)!
.

Proposition 1.8.3.

K =
k∑
i=1

(αi − βi)k−2 log

(
1 + αix

1 + βix

) ∏
j∈[k],i 6=j

1

Z(αi, βi, αj, βj)

Proof. By definition,

K =
∞∑
n=1

(−1)n−1
∑

Nk(a1, d1, . . . , ak, dk)α
a1
1 β

d1
1 · · ·α

ak
k β

dk
k

xn

n!
.

Using Proposition 1.8.1 and the fact that n = a1 +d1 + · · ·+ak +dk + 1, we can write

this as

K = x
∑ (a1 + a2 + · · ·+ ak)! (d1 + d2 + · · ·+ dk)!

(a1 + d1 + · · ·+ ak + dk + 1)!

k∏
i=1

(
ai + di
ai

)
× (−α1x)a1(−β1x)d1 · · · (−αkx)ak(−βkx)dk

where the sum is over all nonnegative integer values of a1, d1, . . . , ak, dk. Now we

apply Lemma 1.8.2.

K = x
∑∫ 1

0

sa1+···+ak(1− s)d1+···+dk ds
k∏
i=1

(
ai + di
ai

)
× (−α1x)a1(−β1x)d1 · · · (−αkx)ak(−βkx)dk

Interchanging the integral and summation and rearranging gives the following.

K = x

∫ 1

0

k∏
i=1

∑
ai,di

(
ai + di
ai

)
(−αixs)ai(−βix(1− s))di ds
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We can evaluate the summations individually.

K = x

∫ 1

0

k∏
i=1

1

1 + αixs+ βix(1− s)
ds

Expanding by partial fractions with respect to s, we have the following.

K = x

∫ 1

0

k∑
i=1

(αi − βi)k−1

1 + αixs+ βix(1− s)
∏

j∈[k],j 6=i

1

Z(αi, βi, αj, βj)
ds

Interchanging integration and summation again, we have

K = x
k∑
i=1

(αi − βi)k−1

∫ 1

0

1

1 + αixs+ βix(1− s)
ds

∏
j∈[k],j 6=i

1

Z(αi, βi, αj, βj)
.

Evaluating the integral gives

K = x
k∑
i=1

(αi − βi)k−1 1

x(αi − βi)
log

(
1 + αix

1 + βix

) ∏
j∈[k],j 6=i

1

Z(αi, βi, αj, βj)
,

which simplifies to the desired formula. �

Recall that we used Nk(a1, d1, · · · , ak, dk) to denote the number of k-ary trees on

[n] with ai ith ascents and di ith descents, for 1 ≤ i ≤ k, where n = a1 + d1 + · · · +

ak + dk + 1. Define the generating function

K =
∞∑
n=1

∑
Nk(a1, d1, . . . , ak, dk)α

a1
1 β

d1
1 · · ·α

ak
k β

dk
k

xn

n!
.

Theorem 1.8.4.

K =

 k∑
i=1

(αi − βi)k−2 log

(
1 + αix

1 + βix

) ∏
j∈[k],i 6=j

1

Z(αi, βi, αj, βj)

〈−1〉

Proof. Using the bijection ψ, we see that K counts trees with allowed links. The

result follows from the inversion theorem and Proposition 1.8.3. �
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1.9. Specializations of k-ary trees

We want to set various combinations of the ai and di equal to 0 or 1, either by

substituting into K or taking limits as appropriate. In Example 1.9.1 we show some

of the details in how this is done, and we omit the details in the other examples.

Example 1.9.1. Let’s count k-ary trees which are increasing in first children and

arbitrary in other children. So we want to set β1 = 0 and all other αi and βi equal

to 1 in the formula for K in Theorem 1.8.4. We accomplish this by first taking the

limit as βk 7→ αk. Since Z(αk, αk, αj, βj) = −(αj − βj)(1 + αkx) is nonzero for j 6= k,

the term i = k in the sum in Theorem 1.8.4 is zero after taking this limit. Next

we set αk = 1. Then we continue with taking the limit as βk−i 7→ αk−i and setting

αk−i = 1 for i = 1, 2, . . . k − 2. At the ith step, the denominator will have the factor

(αk−i − βk−i)
i coming from Z(αk−i, βk−i, αj, βj) with j > k − i. These terms are

canceled by the factor (αk−i− βk−i)k−2 in the numerator, so the limits of these terms

are still zero.

After taking these limits, we are left with taking the inverse of

(α1 − β1)
k−2 log

(
1 + α1x

1 + β1x

)(
1

(α1 − β1)(1 + x)

)k−1

.

Now there is no problem setting α1 = 1 and β1 = 0, to obtain(
log(1 + x)

(1 + x)k−1

)〈−1〉

.

This inverse can be expressed in terms of Lambert’s W function. We can also use

Lagrange inversion to find the formula ((k−1)n+ 1)n−1 for the number of these trees

on [n].

54



CHAPTER 1. AN INVERSION THEOREM FOR LABELED TREES

Next let us consider some specializations for ternary trees. In this case, the initial

terms are as follows.

K = x+
( 3∑
i=1

(αi + βi)
)x2

2!

+
( 3∑
i=1

(α2
i + β2

i ) + 4
∑
i<j

(αiαj + βiβj) + 4
3∑
i=1

αiβi + 5
∑
i 6=j

αiβj

)x3

3!
+ · · ·

Example 1.9.2. Let’s consider incomplete ternary trees which are increasing in

their first two children and decreasing in the third. We take limits to set α1 = 1, β1 =

0, α2 = 1, β2 = 0, α3 = 0, β3 = 1. The resulting exponential generating function is(
(2 + x) log(1 + x) + x2 + 2x

(2 + x)2(1 + x)

)〈−1〉

= x+ 3
x2

2!
+ 17

x3

3!
+ 145

x4

4!
+ 1663

x5

5!
+ · · ·

Example 1.9.3. Let’s consider incomplete ternary trees which are increasing in

their first two children and arbitrary in the third. We take limits to set α1 = 1, β1 =

0, α2 = 1, β2 = 0, α3 = 1, β3 = 1. In this case the result is much simpler. We get(
x

(1 + x)2

)〈−1〉

=
1− 2x−

√
1− 4x

2x

=
∞∑
n=1

n!Cn
xn

n!

where Cn = 1
n+1

(
2n
n

)
is the nth Catalan number. In this example, notice that we do

not simply have Catalan many trees arbitrarily labeled.

Example 1.9.4. Let’s consider incomplete ternary trees which are increasing in

their first child, decreasing in the second, and arbitrary in the third. We take limits
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to set α1 = 1, β1 = 0, α2 = 0, β2 = 1, α3 = 1, β3 = 1. We get(
2 log(1 + x)

(1 + x)(2 + x)

)〈−1〉

= x+ 4
x2

2!
+ 31

x3

3!
+ 364

x4

4!
+ 5766

x5

5!
+ 115300

x6

6!
· · ·

This is sequence A138860 in the online encyclopedia [38].

Now let us consider a specialization for binary trees.

Example 1.9.5. We take α1 = 1, β1 = 0, α2 = 0, β2 = 1. So we are counting

incomplete binary trees which are increasing in the first children and decreasing in

the second. These are known as local binary search trees [42, Exercise 5.41]. The

substitutions in K in Theorem 1.8.4 give the exponential generating function(
2 log(1 + x)

2 + x

)〈−1〉

= x+ 2
x2

2!
+ 7

x3

3!
+ 36

x4

4!
+ 246

x5

5!
+ 2104

x6

6!
· · ·

This sequence is number A007889 in the online encyclopedia [38]. It also counts trees

known as alternating trees or intransitive trees [36].

Finally we consider the case of unary trees.

Example 1.9.6. With k = 1, it is clear combinatorially that K counts permu-

tations by the number of ascents and descents. The formula of Theorem 1.8.4, with

α1 = α and β1 = β, gives (
1

α− β
log

(
1 + αx

1 + βx

))〈−1〉

,

which simplifies to the exponential generating function for the Eulerian numbers

eβx − eαx

βeαx − αeβx
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= x+ (α + β)
x2

2!
+ (α2 + 4αβ + β2)

x3

3!
+ (α3 + 11α2β + 11αβ2 + β3)

x4

4!
+ · · · .

This symmetric form of the exponential generating function is due to Carlitz [9]. It

can also be found in Comtet’s book [12, Theorem G, p. 246].
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1.10. Numerator polynomials

In this section we consider alphabets that include a letter with only one leaf.

In most cases, there are infinitely many trees that can be constructed for any fixed

number of leaves. In order to count them, we will weight each letter by t. Then in the

exponential generating functions for the trees, the coefficients of xn/n! will be power

series in t, usually of the form

pn(t)

(1− t)2n−1
,

where pn(t) is a polynomial in t.

In some cases we will be able to interpret the polynomial pn(t) as counting trees

with letters in an alphabet using arbitrary links, counted by the number of forbidden

links.

Example 1.10.1 (Second order Eulerian polynomials). We would like to give an

interpretation to (x − t(ex − 1))〈−1〉 using the inversion theorem. For each i ∈ P,

consider the tree consisting of a root labeled a1 together with i children labeled

a1, a2, . . . , ai from left to right, with a1 < a2 < · · · < ai. We take the set of such

trees with labels a1, a2, . . . , ai ∈ P as our alphabet. All links are allowed links, and

we weight each letter by t.

Since the trees with forbidden links are just the letters, their signed exponential

generating function is

x− t(ex − 1) = x− tx− tx
2

2!
− tx

3

3!
− tx

4

4!
− · · · .

Then by the inversion theorem, the generating function for trees with allowed

links is

(x− t(ex − 1))〈−1〉 = t+ x−W (−tet+x)
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=
1

1− t
x+

t

(1− t)3

x2

2!
+
t+ 2t2

(1− t)5

x3

3!
+
t+ 8t2 + 6t3

(1− t)7

x4

4!
+
t+ 22t2 + 58t3 + 24t4

(1− t)9

x5

5!
+· · · .

We get an interpretation of
[
tkxn/n!

]
(x− t(ex − 1)) as the number of unordered

rooted trees with leaves labeled [n] and k internal vertices.

What can we say about the numerator polynomials? The coefficients are given by

sequence A008517 in Sloane’s encyclopedia [38]. They were studied by Gessel and

Stanley [19], who interpret them as counting Stirling permutations by descents. The

coefficients are sometimes called Second-order Eulerian numbers [20, p. 270]. We will

give an interpretation of the numerator polynomials in terms of trees later in this

section.

What happens when we replace ex − 1 with its inverse? Some computation gives

(x− t log(1 + x))〈−1〉 =
1

1− t
x+

t

(1− t)3

x2

2!
+

t2 + 2t

(1− t)5

x3

3!
+
t3 + 8t2 + 6t

(1− t)7

x4

4!

+
t4 + 22t3 + 58t2 + 24t

(1− t)9

x5

5!
+ · · · .

The numerator polynomial pn(t) is replaced by the reversed polynomial

tnpn(1/t). (14)

We would like to prove that (14) is true in general.

We start with some preliminary facts. Recall that the binomial coefficient is

defined as (
α

k

)
=
α(α− 1) · · · (α− k + 1)

k!

for any nonnegative integer k. Therefore(
α + k

k

)
=

(α + k)(α + k − 1) · · · (α + 1)

k!
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is a polynomial in α of degree k, with roots −1,−2, . . . ,−k.

Lemma 1.10.2. Suppose i ∈ N and f2 6= 0. Then

r(n+ i, n) = [un+i]

(
u+ f2

u2

2!
+ f3

u3

3!
+ · · ·

)n
is a polynomial in n of degree i.

Proof. We have

r(n+ i, n) = [un+i]

(
u+ f2

u2

2!
+ f3

u3

3!
+ · · ·

)n
= [ui]

(
1 + f2

u

2!
+ f3

u2

3!
+ · · ·

)n
.

Then by the binomial theorem,

r(n+ i, n) = [ui]
∞∑
j=0

(
n

j

)(
f2
u

2!
+ f3

u2

3!
+ · · ·

)j

=
∞∑
j=0

(
n

j

)
[ui]

(
f2
u

2!
+ f3

u2

3!
+ · · ·

)j
.

The only terms which contribute to the sum are those in which j ≤ i. Since f2 6= 0,

the j = i term is nonzero. The binomial coefficients in this sum are polynomials in

n; the one with the largest degree comes from the j = i term. �

We will also need the following result.

Theorem 1.10.3 ([43], Corollary 4.6). Let N : Z 7→ C be a polynomial of degree

d with N(−1) = 0, and let s be the greatest integer such that N(−1) = N(−2) =

· · · = N(−s) = 0. Then
∞∑
n=0

N(n)xn =
P (x)

(1− x)d+1

where P (x) is a polynomial of degree d− s with P (1) 6= 0.
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The next theorem establishes the polynomials we would like to consider.

Theorem 1.10.4. Let F (x) be a formal power series

F (x) = x+ f2
x2

2!
+ f3

x3

3!
+ · · ·

with f2 6= 0. Then

(x− tF (x))〈−1〉 =
∞∑
n=1

pn(t)

(1− t)2n−1

xn

n!
,

where pn(t) is a polynomial in t of degree at most n− 1.

Proof. Let F (x) = x + f2x
2/2! + f3x

3/3! + · · · with f2 6= 0, and define G(x) =

G(x, t) by

G(x) = (x− tF (x))〈−1〉

where the inverse is taken with respect to x. Equivalently,

x = G− tF (G), (15)

or

G = x+ tF (G). (16)

To apply Lagrange inversion in its usual form, we multiply the right side of (16) by

a new variable v. Then we use Lagrange inversion and set v = 1. So we take

G = v(x+ tF (G)),

and apply the Lagrange inversion formula [42, Theorem 5.4.2] to obtain

[vn]G =
1

n
[un−1](x+ tF (u))n.
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Equivalently,

G =
∞∑
n=1

1

n
[un−1](x+ tF (u))nvn,

or by setting v = 1 we get

G =
∞∑
n=1

1

n
[un−1](x+ tF (u))n.

We expand by the binomial theorem to obtain

G =
∞∑
n=1

n∑
i=0

1

n
[un−1]

(
n

i

)
xitn−iF (u)n−i.

Since F (u) has no constant term, the i = 0 terms are all zero. Now setting n 7→ n+ i,

we have

G =
∞∑
n=1

∞∑
i=1

1

n+ i

(
n+ i

i

)
xitn[un+i−1]F (u)n

=
∞∑
n=1

∞∑
i=1

(n+ i− 1) · · · (n+ 1)
xi

i!
tn[un+i−1]F (u)n. (17)

Then by Lemma 1.10.2,

q(n+ i− 1, n) = (n+ i− 1) · · · (n+ 1)[un+i−1]F (u)n
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is a polynomial in n of degree 2i − 2, with roots −1,−2, . . . ,−(i − 1). Therefore by

Theorem 1.10.3,

G =
∑
i≥1

(∑
n≥1

q(n+ i− 1, n)tn

)
xi

i!

=
∑
i≥1

pi(t)

(1− t)2i−1
xi

where pi(t) is a polynomial in t of degree at most i− 1. �

We need two more theorems to establish our result. The first is a statement

equivalent to the Lagrange inversion formula. An ordinary generating function version

is due to Schur [39] and Jabotinsky [22].

Theorem 1.10.5. Suppose F (x) = x + f2x
2/2! + f3x

3/3! + · · · . Let k ∈ P and

define A(n, k) and B(n, k) by

F (x)k

k!
=
∑
n≥0

A(n, k)
xn

n!
,

and

F 〈−1〉(x)k

k!
=
∑
n≥0

B(n, k)
xn

n!
.

Then A(n+ k, n) is a polynomial in n so it can be extended to n negative, and

A(n+ k, n) = (−1)kB(−n,−n− k).

The other result we will need is a theorem due to Popoviciu [35] (see also [43]).

Theorem 1.10.6. Suppose N : Z→ C is a polynomial in n. Define

F (x) =
∞∑
n=0

N(n)xn,
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and suppose that F is a rational function of x. Then

∞∑
n=1

N(−n)xn = −F (1/x).

We are now ready to state our result. We give two proofs. The first proof uses the

results we have recalled in this section and applies to a general formal power series.

The second applies only in the special case when F (x) or F 〈−1〉(x) counts trees with

allowed links, in which all of the letters are a root together with two children.

Theorem 1.10.7. Let F (x) = x+f2x
2/2!+f3x

3/3!+ · · · be a formal power series

with f2 6= 0, so

(x− tF (x))〈−1〉 =
∞∑
n=1

pn(t)

(1− t)2n−1

xn

n!
,

where pn(t) is a polynomial in t of degree at most n− 1. Then

(
x− tF 〈−1〉(x)

)〈−1〉
=
∞∑
n=1

(−1)n−1 t
npn(1/t)

(1− t)2n−1

xn

n!
.

First Proof. Let G = (x− tF (x))〈−1〉. Then as in Equation (17),

G =
∞∑
n=1

∞∑
i=1

(n+ i− 1) · · · (n+ 1)
xi

i!
tn[un+i−1]F (u)n

=
∞∑
n=1

∞∑
i=1

(n+ i− 1) · · · (n+ 1)
xi

i!
tn

n!

(n+ i− 1)!
A(n+ i− 1, n)

=
∞∑
i=1

∞∑
n=1

A(n+ i− 1, n)tn
xi

i!
(18)

where A(n+ i− 1, n) is defined as in Theorem 1.10.5. By Theorem 1.10.4, we have

∞∑
n=1

A(n+ i− 1, n)tn =
pi(t)

(1− t)2i−1
.
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Now let G̃ =
(
x− tF 〈−1〉(x)

)〈−1〉
. Then by the analogous calculation,

G̃ =
∞∑
i=1

∞∑
n=1

B(n+ i− 1, n)tn
xi

i!
.

Applying Theorem 1.10.5, we have

∞∑
n=1

B(n+ i− 1, n)tn = (−1)i−1

∞∑
n=1

A(−n,−n− i+ 1)tn.

Substituting n 7→ n− i+ 1, we have

∞∑
n=1

B(n+ i− 1, n)tn = (−1)i−1

∞∑
n=1

A(−n− i+ 1,−n)tn−i+1

= t−i+1(−1)i−1

∞∑
n=1

A(−n− i+ 1,−n)tn

= t−i+1(−1)i−1 −pi(1/t)
(1− 1/t)2i−1

where the last equality is an application of Theorem 1.10.3. Simplifying gives

∞∑
n=1

B(n+ i− 1, n)tn = (−1)i−1 t
npi(1/t)

(1− t)2i−1

as desired. �

Second Proof. Let A be an alphabet of trees, each of which is a root together

with two children. Let L be a set of allowed links. Let F (x) be the exponential

generating function for trees with allowed links. We define a new alphabet AT as

follows. Every tree with letters in A and links in L is a letter of AT . Each tree that

consists a root together with a single child, both labeled i with i ∈ P, is also a letter

of AT . The set AT does not necessarily have the unique decomposition property,

so we consider each letter of AT to be uniquely marked to distinguish letters and

combinations of letters. We let all links of letters in AT be allowed links.
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The exponential generating function for trees with letters in AT and allowed links,

where each letter carries a weight of t, is (x−tF (x))〈−1〉, since the trees with forbidden

links are just the letters of AT .

Let Y ′ be a tree with letters in AT . We consider a tree Y obtained from Y ′ by

removing all vertices of outdegree 1 and forgetting the distinguishing markings on

the letters. Then Y is a tree with letters in A and arbitrary links. How many ways

could such a tree Y be obtained from a tree with letters in AT ? Each leaf of Y could

be replaced by a chain of vertices of degree 1, so each leaf should carry an additional

weight of (1− t)−1. Similarly, the root of Y should carry a weight of t(1− t)−1. (The t

is the weight of the letter to which the root belongs). Each internal vertex is either an

allowed link or a forbidden link. As with the root, the internal vertices at forbidden

links should carry an additional weight of t(1− t)−1. The internal vertices at allowed

links should carry an additional weight of t(1− t)−1 + 1 = (1− t)−1, since they may

or may not have been the root of a letter of AT in Y ′.

If Y is a tree with letters in A and arbitrary links, let fb(Y ) denote the number

of forbidden links and let al(Y ) denote the number of allowed links. We have

(x− tF (x))〈−1〉 =
x

1− t
+
∑
n≥2

∑
Y

tfb(Y )+1

(1− t)2n−1

xn

n!

where the inner sum is over all trees Y on [n] with letters in A and arbitrary links.

By an entirely analogous construction, we have

(x− tF 〈−1〉(x))〈−1〉 =
x

1− t
+
∑
n≥2

(−1)n−1
∑
Y

tal(Y )+1

(1− t)2n−1

xn

n!

where the inner sum is over all trees Y on [n] with letters in A and arbitrary links.

Here the power of −1 comes from the fact that each tree in F 〈−1〉 carries a weight of
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(−1)n−1 since it is a tree with forbidden links, in which each letter is a root together

with two children.

Another consequence of the fact that each letter of A is a root together with two

children is that if Y is a tree on [n] with letters in A and arbitrary links is that

al(Y ) + fb(Y ) = n− 2,

from which the result follows. �

Notice that in the second proof we get an interpretation of the numerator polyno-

mials, at least in the special case where F (x) counts trees with allowed links L from

an alphabet A consisting of trees which are a root together with two children:

pn(t) =
∑
Y

tfb(Y )+1 (19)

where the sum is over trees Y with letters in A and arbitrary links. In particular,

[t]pn(t) = [xn/n!]F (x) and [tn−1]pn(t) = (−1)n−1[xn/n!]F 〈−1〉(x) for n ≥ 2.

Let us now return to the numerator polynomials in our first example. By (19),

the numerator polynomial pn(t) for (x− t(ex−1))〈−1〉 counts complete ordered binary

trees with leaves labeled [n], in which each internal vertex shares a label with its left

child and the label of the left child of any vertex is less than the label of its right

child. Let an edge be internal if its child vertex is an internal vertex. Then [tk]pn(t)

is the number of these recursively labeled binary trees with leaf labels [n] and k − 1

internal left edges.

Example 1.10.8 (Narayana polynomials). This example uses the inversion the-

orem of Parker and Loday. Therefore our letters will have unlabeled leaves, and we

consider the ordinary generating function in x. Consider an alphabet consisting of a
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single tree, a root together with two children. All links in right children are allowed

links.

The generating function we want to consider is(
x− tx

1− x

)〈−1〉

=
1− t+ x+

√
1− 2t− 2x− 2xt+ t2 + x2

2

=
1

1− t
x+

t

(1− t)3
x2 +

t+ t2

(1− t)5
x3 +

t+ 3t2 + t3

(1− t)7
x4

+
t+ 6t2 + 6t3 + t4

(1− t)9
x5 +

t+ 10t2 + 20t3 + 10t4 + t5

(1− t)11
x6 + · · ·

These numerator polynomials are well known as Narayana polynomials. Their coef-

ficients are sequence A001263 in Sloane’s encyclopedia [38]. Here we recover one of

the well-known interpretations for these polynomials: The coefficient of tk in the nth

numerator polynomial is the number of complete binary trees with n leaves and k

internal left edges.

We can also get an interpretation for [tkxn](x − tx(1 − x)−1)〈−1〉 by considering

a different alphabet. Take an alphabet consisting of all trees made up of a root

together with k children, for k ∈ P, and let all links be allowed links. Then (x −

tx(1− x)−1)〈−1〉 is the generating function for trees with allowed links by the number

of letters. Therefore [tkxn](x− tx(1− x)−1)〈−1〉 is the number of ordered trees with n

leaves and k internal vertices.

Example 1.10.9. For this example, we would like to take the different alphabets

and sets of allowed links that give us interpretations of xex and W (x). Our new

generating function is as follows.

(x− txex)〈−1〉 =
1

1− t
x+

2t

(1− t)3

x2

2!
+

3(t2 + 3t)

(1− t)5

x3

3!
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+
4(t3 + 13t2 + 16t)

(1− t)7

x4

4!
+

5(t4 + 39t3 + 171t2 + 125t)

(1− t)9

x5

5!
+ · · ·

Let pn(t) denote the nth numerator polynomial. The coefficients of these poly-

nomials do not yet have an entry in Sloane’s encyclopedia [38]. The sums of the

coefficients appear, however. We have pn(1) = 1, 2, 12, 120, 1680, . . . , (2n)!/n!, . . . for

n = 1, 2, . . .. This is sequence A001813. The examples in Section 1.7 give us the fol-

lowing three interpretations for this sequence, and more generally for the coefficients

of the numerator polynomials.

First, suppose that T is an increasing ordered tree on [n] with edges colored 1

and 2. We say that a non-root internal vertex u of T is color nonincreasing if (r, u)

has color i and (u, v) has color j and i ≤ j, where r is the parent of u and v is the

rightmost child of u. Then [tk]pn(t) is the number of increasing ordered trees on [n]

with k − 1 color nonincreasing vertices.

Second, suppose that T is an ordered tree on [n]. Let u be an internal vertex with

children c1, c2, . . . , cl ordered from left to right. We say the vertex ci is a descending

child if ci > ci+1. The rightmost child cl cannot be a descending child. Then [tk]pn(t)

is the number of ordered trees on [n] with k − 1 decreasing children.

Third, suppose that T is an ordered tree on [n]. Let u be a non-root internal

vertex with parent r. We say that (r, u) is an increasing internal edge if r < u. Then

[tk]pn(t) is the number of ordered trees on [n] with k − 1 increasing internal edges.
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CHAPTER 2

Limits of areas under lattice paths

2.1. Introduction

We begin with the motivating example of Carlitz and Riordan’s q-Catalan numbers

[10]. We follow the notation of Fürlinger and Hofbauer [14], who also give a number

of additional references.

Consider paths from (0, 0) to (n, n) which do not go above the line y = x and

consist of east steps (0, 1) and north steps (1, 0). We call such a path w a Catalan

path of length 2n, and define its weight, a(w), to be the area of the region enclosed

by w and the path of length 2n of alternating east and north steps. An example is

given in Figure 2.1.

Figure 2.1. A Catalan path of length 14 and weight 5.

Let C̃n(q) =
∑
qa(w), where the sum is over all Catalan paths w of length 2n. We

will also use the generating function

f(x) =
∞∑
n=0

C̃n(q)xn.
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We can decompose an arbitrary Catalan path to get a functional equation for

f(x), by cutting at the first return to the line y = x. This gives the recurrence

C̃n+1(q) =
n∑
i=0

qiC̃i(q)C̃n−i(q). (20)

Multiplying both sides of (20) by xn+1 and summing on n ≥ 0 gives the functional

equation

f(x) = 1 + xf(x)f(qx).

The first terms are

C̃0(q) = 1

C̃1(q) = 1

C̃2(q) = q + 1

C̃3(q) = q3 + q2 + 2q + 1

C̃4(q) = q6 + q5 + 2q4 + 3q3 + 3q2 + 3q + 1

C̃5(q) = q10 + q9 + 2q8 + 3q7 + 5q6 + 5q5 + 7q4 + 7q3 + 6q3 + 4q + 1

C̃6(q) = q15 + q14 + 2q13 + 3q12 + 5q11 + 7q10 + 9q9 + 11q8 + 14q7 + 16q6

+ 16q5 + 17q4 + 14q3 + 10q2 + 5q + 1.

It seems that the coefficients of the highest terms in q are stabilizing. That is, if we

define reversed polynomials

Cn(q) = q(
n
2)C̃n(q−1),

then Cn(q) = 1+q+2q2 +3q3 +5q4 + · · · for n at least 5. Why do we have this limit?

The polynomial Cn(q) counts paths of length 2n by the area a between the path and
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the path consisting of n east steps followed by n north steps. If n is large compared

with a, then such a path starts with a number of east steps and ends with a number

of north steps. The steps in the middle outline a Ferrers diagram of a partition of

a. Continuing our example, Figure 2.2 shows the partition corresponding to the path

in Figure 2.1. We use a somewhat nonstandard convention for Ferrers diagrams, in

which the parts are vertical segments, arranged horizontally from right to left.

Figure 2.2. A Catalan path corresponding to the partition 5+5+4+1+1.

As Fürlinger and Hofbauer note [14, Equation (2.7)], we can use this observation

to evaluate the limit

lim
n→∞

Cn(q) =
∞∏
j=1

1

1− qj
(21)

by interpreting it as the generating function for partitions.

We take (21) to be our starting point for this chapter. We consider some other

well known lattice paths, such as Schröder and Motzkin paths, as well as some natural

generalizations, and investigate limits analogous to (21).

Other authors have considered lattice path counting by area. Krattenthaler [24]

finds a number of identities for q-Catalan and q-ballot numbers. Gessel [15] considers

the area under paths with steps {(1, j) | j ≤ 1, j ∈ Z} to prove a q-analogue of

the Lagrange inversion formula. Goulden and Jackson [21, Section 5.5] give another
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exposition of the same result. Recurrences for the sum of areas of all paths of fixed

length have been investigated [25, 28, 29, 33, 34, 44, 45]. There has also been

some interest [5, 6] in bijections between lattice paths and permutations taking area

statistics to inversion statistics.

In this chapter we will find some additional standard notations to be useful. If

a ∈ R, we use bac to denote the greatest integer less than or equal to a, and dae for

the least integer greater than or equal to a.
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2.2. Shifted Schröder paths

In this section we consider Schröder paths and a generalization whose reversed

area polynomials have similar limits.

Consider paths from (0, 0) to (n, n) which do not go above the line y = x, con-

sisting of steps (0, 1), (1, 0), and (1, 1). If w is such a path, we say it is a Schröder

path to (n, n), and define its weight aSch(w) to be twice the area between w and the

line y = x. We double the area so that aSch(w) will always be an integer. An exam-

ple Schröder path with the weight illustrated is given in Figure 2.3. The number of

Schröder paths to (n, n) is traditionally denoted rn and called the nth large Schröder

number [8]. For weighted paths, we define r̃n(q) =
∑
qaSch(w), where the sum is over

all Schröder paths to (n, n).

Figure 2.3. A Schröder path to (7, 7) with weight 18.

The first terms are

r̃0(q) = 1

r̃1(q) = q + 1

r̃2(q) = q4 + q3 + q2 + 2q + 1

r̃3(q) = q9 + q8 + q7 + 2q6 + 3q5 + 4q4 + 3q3 + 3q2 + 3q + 1
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r̃4(q) = q16 + q15 + q14 + 2q13 + 3q12 + 4q11 + 5q10 + 7q9 + 8q8 + 9q7 + 10q6

+ 11q5 + 10q4 + 7q3 + 6q2 + 4q + 1.

These polynomials were studied by Bonin, Shapiro, and Simion [8], whose results

include a functional equation for the generating function and a formula for the sum

of the area under all Schröder paths of fixed length.

We now introduce our generalization of Schröder paths. Fix a set S of nonnegative

integers, with 0 ∈ S. Consider paths from (0, 0) to (n, n) not rising above the line

y = x with steps (1, 0) and (j, 1), where j ∈ S. We call such a path an S-shifted

Schröder path to (n, n), and denote the set of such paths by SchS(n). Note that

Sch{0,1}(n) is the set of ordinary Schröder paths to (n, n), and Sch{0}(n) is the set of

Catalan paths of length n.

As for ordinary Schröder paths, we define the weight aSch(w) of an S-shifted

Schröder path w to be twice the area between w and the line y = x. Define

r̃(S)
n (q) =

∑
w∈SchS(n)

qaSch(w)

and the generating function

gS(x) =
∞∑
n=0

r̃(S)
n (q)xn.

Define the height of a point (x, y) ∈ Z2 to be x− y. Notice that the step (1, 0), as

well as each step (j, 1) with j > 0, does not reduce the height. The only step which

reduces the height is (0, 1). This observation leads to a decomposition of S-shifted

Schröder paths as follows.
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Let w be a S-shifted Schröder path which begins with a step (j, 1). We decompose

w as

w = (j, 1)wj−1(0, 1)wj−2(0, 1) · · · (0, 1)w0,

where each wi is an S-shifted Schröder path of maximal length. For example, if w

is the S-shifted Schröder path in Figure 2.4, then w3 = (1, 0)(1, 1)(0, 1)(1, 0)(0, 1),

Figure 2.4. An S-shifted Schröder path.

w2 = (2, 1)(0, 1), w1 is empty, and w0 = (1, 1)(1, 0)(0, 1). Let len(w) = k when w is

an S-shifted Schröder path to (k, k). Then it is easy to see that

aSch(w) = j2 − j +

j−1∑
i=0

(
aSch(wi) + 2ilen(wi)

)
. (22)

Let w be a S-shifted Schröder path which begins with a step (1, 0). Then w =

(1, 0)w1(0, 1)w0 with w1 and w0 as before, and

aSch(w) = 1 + aSch(w1) + 2len(w1) + aSch(w2). (23)
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This decomposition and Equations (22) and (23) imply that gS(x) satisfies

gS(x) = 1 + qxgS(x)gS(q2x) +
∑

j∈S,j 6=0

qj
2−jxjgS(x)gS(q2x) · · · gS(q2j−2x). (24)

For any S, Equation (24) can be used to compute r
(S)
n (q) for small values of n. In some

cases it is also possible to solve the functional equation at q = 1 to count unweighted

paths to (n, n). We will consider some examples, but first we find the reversed area

polynomials and their limits.

For any set S, the S-shifted Schröder path w0 with the largest weight consists

of n east steps (1, 0) followed by n north steps (0, 1). The weight is aSch(w0) =

n2. Therefore r̃
(S)
n (q) is a polynomial of degree n2, and we can define the reversed

polynomials r
(S)
n (q) by

r(S)
n (q) = qn

2

r̃(S)
n (q−1).

Before evaluating the limit of the reversed polynomials, let us see roughly how

a path with weight n2 − a can correspond to a partition of a. For example, the

Schröder path in Figure 2.3 corresponds to the region of Figure 2.5 for the reversed

polynomials. If we divide the region of Figure 2.5 into vertical strips to make the parts

of a partition, doubling the area of each strip, we get the partition 11 + 9 + 8 + 2 + 1.

For an S-shifted Schröder path, this process will not always give integer parts. To

correct this problem, we distribute the area under a step (j, 1) evenly among j parts

to get an odd part repeated j times. That is, if the step of type (j, 1) starts at a

point (r, s), then the quadrilateral with vertices (r, 0), (r, s), (r + j, s + 1), (r + j, 0)

and doubled area 2sj + j corresponds to j parts of size 2s+ 1.

For example, the S-shifted Schröder path in Figure 2.4 corresponds to the partition

20 + 19 + 11 + 11 + 6 + 3 + 2 + 1 + 1 + 1 + 1.
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Figure 2.5. A Schröder path with reversed weight 31.

Theorem 2.2.1.

lim
n→∞

r(S)
n (q) =

∞∏
i=1

1

1− q2i

∑
j∈S

qj(2i−1).

Proof. Fix a nonnegative integer a, and let n > a. We want to show that

[qa]r
(S)
n (q) is the number of partitions of a in which the multiplicity of each odd part

is in S, and the multiplicity of each even part is unrestricted.

By definition, [qa]r
(S)
n (q) is the number of S-shifted Schröder paths w to (n, n)

such that the region R(w) bounded by w, the x-axis, and the line x = n has area

a/2. Let w be such a path, and define a partition π(w) = π1(w) +π2(w) + · · ·+πt(w)

of a as follows. Let Ri be the area of R(w) ∩ Ti, where Ti is the region of the plane

bounded by x = n− i and x = n− i+ 1. Then, if Ri > 0, define the ith part of π(w)

to be

πi(w) =

{
2Ri if Ri is an integer, and

2bRic+ 1 if Ri is not an integer.

Notice that if Ri is an integer, then the corresponding step w∩Ti must have type

(1, 0). This gives an even part πi(w) which may be repeated with additional steps

(1, 0) with the same y-coordinate.
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If Ri is not an integer, then w∩Ti is part of a step (j, 1). All j parts corresponding

to this step will be equal to πi(w). Moreover, no part corresponding to a different

step can be equal to πi(w). Therefore the multiplicity of the odd part πi(w) is in S.

Since n > a, the line y = x cannot intersect R(w). Therefore π(w) is an arbitrary

partition of a with the multiplicity of odd parts in S, and even parts unrestricted.

It is easy to see that the map w 7→ π(w) is reversible, and gives a bijection.

Therefore limn→∞ r
(S)
n (q) is the generating function for partitions with odd part mul-

tiplicities in S, as desired. �

Setting S = {0, 1} in Theorem 2.2.1 gives the limit for ordinary Schröder paths.

Corollary 2.2.2.

lim
n→∞

rn(q) =
∞∏
i=1

1 + q2i−1

1− q2i

= 1 + q + q2 + 2q3 + 3q4 + 4q5 + 5q6 + 7q7 + 10q8 + 13q9 · · · .

The number of partitions with distinct odd parts and unrestricted even parts is

sequence A006950 in Sloane’s encyclopedia [38].

Note that Equation (21) also follows as a special case of Theorem 2.2.1, with

S = {0} and q 7→ q1/2. Now let us consider some different sets S.

Example 2.2.3 (S = {0, 2}). Here are the first terms, which follow from the

generating function (24).

r̃
({0,2})
0 (q) = 1

r̃
({0,2})
1 (q) = q
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r̃
({0,2})
2 (q) = q4 + 2q2

r̃
({0,2})
3 (q) = q9 + 2q7 + 3q5 + 3q3

r̃
({0,2})
4 (q) = q16 + 2q14 + 3q12 + 6q10 + 7q8 + 7q6 + 5q4

r̃
({0,2})
5 (q) = q25 + 2q23 + 3q21 + 6q19 + 10q17 + 13q15 + 16q13 + 20q11 + 19q9

+ 15q7 + 8q5

Figure 2.6. A {0,2}-shifted Schröder path and partition 11+11+6+6+5+5+3+3.

Merlini et al. [30] studied {0, 2}-shifted Schröder paths. For an example, see

Figure 2.6. The generating function for such paths without regard to area can be

found by substituting q = 1 and S = {0, 2} in (24) and solving. This gives

∞∑
n=0

r̃({0,2})
n (1)xn =

1−
√

1− 4x− 4x2

2x(1 + x)
(25)

= 1 + x+ 3x2 + 9x3 + 31x4 + 113x5 + 431x6 + 1697x7 + · · · .
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The number of such paths to (n, n) is sequence A052709 [38]. The limit

lim
n→∞

r({0,2})
n (q) =

∞∏
i=1

1 + q2(2i−1)

1− q2i
(26)

= 1 + 2q2 + 3q4 + 6q6 + 10q8 + 16q10 + 25q12 + 38q14 + · · ·

gives the sequence A101277 [38].

Example 2.2.4 (S = E = {0, 2, 4, 6, . . .}). We can find the first terms from the

generating function (24).

r̃
(E)
0 (q) = 1

r̃
(E)
1 (q) = q

r̃
(E)
2 (q) = q4 + 2q2

r̃
(E)
3 (q) = q9 + 2q7 + 3q5 + 3q3

r̃
(E)
4 (q) = q16 + 2q14 + 4q12 + 6q10 + 7q8 + 7q6 + 5q4

r̃
(E)
5 (q) = q25 + 2q23 + 4q21 + 7q19 + 11q17 + 14q15 + 18q13 + 20q11 + 19q9 + 15q7 + 8q5

r̃
(E)
6 (q) = q36 + 2q34 + 4q32 + 8q30 + 12q28 + 19q26 + 26q24 + 35q22 + 43q20 + 52q18

+ 57q16 + 61q14 + 57q12 + 46q10 + 30q8 + 13q6

By making the appropriate substitutions in (24), we see that gE satisfies gE(1 −

xgE)2(1 + xgE) = 1, where gE denotes gE(x) at q = 1. So the generating function for

E-shifted paths without regard to area

∞∑
n=1

r(E)
n (1)xn = 1 + x+ 3x2 + 9x3 + 32x4 + 119x5 + 466x6 + 1881x7 + · · ·

gives sequence number A063020 [38].
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In this case, the limit is

lim
n→∞

r(E)
n (q) =

∞∏
i=1

1

1− q2i
(1 + q2(2i−1) + q4(2i−1) + · · · )

=
∞∏
i=1

1

(1− q4i)(1− q4i−2)2
(27)

= 1 + 2q2 + 4q4 + 8q6 + 14q8 + 24q10 + 40q12 + 64q14 + 100q16 + · · · .

This is sequence number A015128 [38], which also counts overpartitions.

Example 2.2.5 (S = O = {0, 1, 3, 5, . . .}). Here are the first terms.

r̃
(O)
0 (q) = 1

r̃
(O)
1 (q) = q + 1

r̃
(O)
2 (q) = q4 + q3 + q2 + 2q + 1

r̃
(O)
3 (q) = q9 + q8 + q7 + 3q6 + 3q5 + 4q4 + 3q3 + 3q2 + 3q + 1

r̃
(O)
4 (q) = q16 + q15 + q14 + 3q13 + 3q12 + 5q11 + 6q10 + 8q9 + 9q8 + 11q7 + 12q6 + 11q5

+ 10q4 + 7q3 + 6q2 + 4q + 1

Let gO denote gO(x) at q = 1. The functional equation (24) with S = O and q = 1

simplifies to

gO = 1 + xg2
O +

xgO
1− x2g2

O

.

A power series solution

∞∑
n=1

r(O)
n (1)xn = 1 + 2x+ 6x2 + 23x3 + 99x4 + 456x5 + 2199x6 + 10961x7 + · · ·

gives the number of O-shifted paths without regard to area, which is sequence number

A133656 [38].
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The limit of the area polynomials for S = O is

lim
n→∞

r(O)
n (q) =

∞∏
i=1

1

1− q2i
(1 + q2i−1 + q3(2i−1) + · · · )

=
∞∏
i=1

1 + q2i−1 − q4i−2

(1− q4i)(1− q4i−2)2
(28)

= 1 + q + q2 + 3q3 + 3q4 + 6q5 + 6q6 + 11q7 + 13q8 + · · · ,

giving sequence A131942 [38].

Example 2.2.6 (S = {0, 1, 2, 3, . . . , k − 1}). The limit is

lim
n→∞

r({0,1,··· ,k−1})
n (q) =

∞∏
i=1

1

1− q2i
(1 + q2i−1 + q2(2i−1) + · · ·+ q(k−1)(2i−1))

=
∞∏
i=1

1− qk(2i−1)

1− qi

=
∏
i≥1

i 6≡k mod 2k

1

1− qi
. (29)

For example, the limit for {0, 1, 2},

lim
n→∞

r({0,1,2})
n (q) = 1 + q + 2q2 + 2q3 + 4q4 + 5q5 + 8q6 + 10q7 + · · · ,

gives sequence A131945 [38].

Here are the first terms for S = {0, 1, 2}.

r̃
({0,1,2})
0 (q) = 1

r̃
({0,1,2})
1 (q) = q + 1

r̃
({0,1,2})
2 (q) = q4 + q3 + 2q2 + 2q + 1

r̃
({0,1,2})
3 (q) = q9 + q8 + 2q7 + 2q6 + 4q5 + 5q4 + 5q3 + 5q2 + 3q + 1
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r̃
({0,1,2})
4 (q) = q16 + q15 + 2q14 + 2q13 + 4q12 + 5q11 + 8q10 + 10q9 + 12q8 + 13q7 + 15q6

+ 17q5 + 16q4 + 13q3 + 9q2 + 4q + 1

Substituting q = 1 and S = {0, 1, 2} in (24) and solving

∞∑
n=1

r({0,1,2})
n (1)xn =

1− x−
√

1− 6x− 3x2

2x(1 + x)
(30)

= 1 + 2x+ 7x2 + 29x3 + 133x4 + 650x5 + 3319x6 + · · ·

gives the generating function for the number of paths without regard to area. The

number of such paths is sequence A064641 [38].
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2.3. Motzkin paths

Define a Motzkin path of length n and rank l to be a path from (0, 0) to (n, 0) which

does not go below the x-axis, consisting of steps (1, j), with j ∈ {−l, . . . ,−1, 0, 1, . . . , l}.

The weight aM(w) of a Motzkin path w of rank l is defined to be the area between w

and the x-axis. It is not difficult to see that aM(w) is always an integer. An example

of a Motzkin path of rank 2 is given in Figure 2.7. Define m̃
(l)
n (q) =

∑
qaM (w), where

the sum is over all Motzkin paths of length n and rank l, and let

hl(x) =
∞∑
n=0

m̃(l)
n (q)xn.

Figure 2.7. A Motzkin path of rank 2, length 11, and weight 17.

Motzkin paths of rank l were considered by Mansour et al. [31], who give a system

of equations which can be used to enumerate the unweighted Motzkin paths of rank

l.

Before continuing with the general case, let us consider the classical case l = 1 for

concreteness. Motzkin paths of rank 1 are usually simply called Motzkin paths. These

paths may be decomposed by their first return to the x-axis, giving the functional

equation

h1(x) = 1 + xh1(x) + qx2h1(x)h1(qx). (31)

Equation (31) is equivalent to the recurrence

m̃
(1)
n+1(q) = m̃(1)

n (q) +
n−1∑
k=0

qk+1m̃
(1)
k (q)m̃

(1)
n−1−k(q), (32)
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with m̃
(1)
0 = 1. These q-Motzkin numbers m̃

(1)
n (q) are also considered by Cigler [11,

Equation (37)]. Solving for the initial terms gives

m̃
(1)
0 (q) = 1

m̃
(1)
1 (q) = 1

m̃
(1)
2 (q) = q + 1

m̃
(1)
3 (q) = q2 + 2q + 1

m̃
(1)
4 (q) = q4 + q3 + 3q2 + 3q + 1

m̃
(1)
5 (q) = q6 + 2q5 + 3q4 + 4q3 + 6q2 + 4q + 1

m̃
(1)
6 (q) = q9 + q8 + 3q7 + 5q6 + 7q5 + 8q4 + 10q3 + 10q2 + 5q + 1

m̃
(1)
7 (q) = q12 + 2q11 + 3q10 + 6q9 + 8q8 + 12q7 + 16q6 + 18q5 + 19q4 + 20q3

+ 15q2 + 6q + 1.

Notice that the coefficients of the highest powers of the even length polynomials

appear to be approaching a different limit than those for odd length.

For any l, the path with the largest area counted by m̃
(l)
2n(q) consists of n steps

of type (1, l) followed by n of type (1,−l), so m̃
(l)
2n(q) is a polynomial in q of degree

ln2. The path with the largest area counted by m̃
(l)
2n+1(q) consists of n steps of type

(1, l), then one step of type (1, 0), then n of type (1,−l). Therefore m̃
(l)
2n+1(q) is a

polynomial in q of degree l(n2 + n). Define reversed polynomials

m
(l)
2n(q) = qln

2

m̃
(l)
2n(q−1), and m

(l)
2n+1(q) = ql(n

2+n)m̃
(l)
2n+1(q

−1).
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Now we introduce the objects counted by limn→∞m
(l)
2n(q). These are certain arrays

defined by Andrews [3]. Let n be a nonnegative integer. A generalized Frobenius

partition of n is a two-rowed array of non-negative integers(
a1 a2 · · · as
b1 b2 · · · bs

)
such that each row is arranged in nonincreasing order and

n = s+
s∑
i=1

ai +
s∑
j=1

bj. (33)

Let φk(n) be the number of generalized Frobenius partitions of n in which there are

at most k repetitions of an integer in each row. Denote its generating function by

Φk(q) =
∞∑
n=0

φk(n)qn.

Andrews develops the following general principle [3, Section 3] for counting gen-

eralized Frobenius partitions. If fA(z) = ΣPA(m,n)zmqn is the generating function

for PA(m,n), the number of ordinary partitions of n into m parts subject to restric-

tions A, then the constant term in z in fA(zq)fB(z−1) is the generating function for

generalized Frobenius partitions in which the first row is subject to the restrictions

A and the second row is subject to the restrictions B.

Choosing A = B to be the condition that each part is nonnegative and is repeated

at most k times, we see that Φk(q) is the constant term in z in the product Gk(z)

defined by

Gk(z) =
∞∏
i=0

(1 + zqi+1 + · · ·+ zkqk(i+1))(1 + z−1qi + · · ·+ z−kqki). (34)
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From this Andrews calculates [3, Theorem 5.1]

Φk(q) =

( ∞∏
i=1

1

1− qi

)k ∞∑
t1,··· ,tk−1=−∞

ζ(k−1)t1+(k−2)t2+···+tk−1qQ(t1,t2,...,tk−1), (35)

where ζ = e2π
√
−1/(k+1) and Q is the complete symmetric polynomial

Q(t1, t2, . . . , tk−1) =
∑

1≤i≤j≤k−1

titj. (36)

For k = 1, 2, or 3, Equation (35) simplifies to a product formula. For example, when

k = 2 we have [3, Equation (5.9)],

Φ2(q) =
∞∏
i=1

1

(1− qi)(1− q12i−10)(1− q12i−3)(1− q12i−2)
(37)

= 1 + q + 3q2 + 5q3 + 9q4 + 14q5 + 24q6 + 35q7 + 55q8 + · · · .

We will see that this product is in fact the limit of the polynomials m
(1)
2n (q) counting

Motzkin paths of even length.

The objects counted by limn→∞m
(l)
2n+1 are a variation on generalized Frobenius

partitions. Consider two-rowed arrays of nonnegative integers(
a1 a2 · · · as1
b1 b2 · · · bs2

)
where |s2− s1| ≤ l, such that each row is arranged in nonincreasing order and in each

row every integer occurs no more than 2l times. The weight of such an array is

n = s1 + s2 +

s1∑
i=1

ai +

s2∑
j=1

bj. (38)
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Let ψ2l(n) be the number of such arrays with weight n, and define the generating

function

Ψ2l(q) =
∞∑
n=0

ψ2l(n)qn.

For example, the six arrays counted by ψ2(3) are(
1
0

) (
0
1

) (
2
) (

2

) (
0 0
0

) (
0
0 0

)
.

We only define Ψk(q) for even k, since these are the arrays which arise in counting

generalized Motzkin paths. The subscript is chosen to be compatible with that of

Φk(q).

Next we give a formula for Ψk(q) analogous to Andrews’s result (35). For k =

2 it simplifies to a product formula. We use the following variant of Andrews’s

general principle. If fA(z) = ΣPA(m,n)zmqn is the generating function for the number

PA(m,n) of ordinary partitions of n into m parts subject to restrictions A, then the

constant term in z in fA(zq)fB(z−1q) is the generating function two-rowed arrays in

which the first row is subject to the restrictions A, the second row is subject to the

restrictions B, both rows have the same length, and the weight of an array is given

by Equation (38). To allow the length of the rows to differ by at most l, we consider

the constant term in (z−l + · · ·+ zl)fA(zq)fB(z−1q).

Theorem 2.3.1.

Ψ2l(q) = (−1)l
( ∞∏
i=1

1

1− qi

)2l ∞∑
t1,t2,...,t2l−1=−∞

ζ(2l−1)t1+(2l−2)t2+···+t2l−1+2l2qεl

where ζ = e2π
√
−1/(2l+1) and

εl = εl(t1, . . . , t2l−1) =
2l−1∑
i=1

lti +
∑

1≤i≤j≤2l−1

titj +

(
l

2

)
. (39)
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Proof. By our variant of Andrews’s general principle, Ψ2l(q) is the constant term

in z in H2l(z), defined by

H2l(z) =

( l∑
j=−l

zj
) ∞∏

i=0

(1 + zqi+1 + · · ·+ z2lq2l(i+1))(1 + z−1qi+1 + · · ·+ z−2lq2l(i+1)).

This is similar to (34); in fact, we have

H2l(z) = (z−l + · · ·+ zl)
1

1 + z−1 + · · · z−2l
G2l(z)

= zlG2l(z).

Now we can follow Andrews [3, Proof of Theorem 5.1]. Let ζ = e2π
√
−1/(2l+1).

Then

H2l(z) = zl
∞∏
i=0

(1 + zqi+1 + · · ·+ z2lq2l(i+1))(1 + z−1qi + · · ·+ z−2lq2li)

= zl
∞∏
i=0

2l∏
j=1

(1− ζ−jzqi+1)(1− ζjz−1qi)

=

( ∞∏
i=1

1

1− qi

)2l

zl
2l∏
j=1

∞∑
tj=−∞

(−1)tjq(
tj+1

2 )ztjζ−jtj ,

using Jacobi’s triple product identity [12, p. 106]. We can find the constant term by

setting t2l = −t1 − t2 − · · · − t2l−1 − l.

Ψ2l(q) =

( ∞∏
i=1

1

1− qi

)2l ∞∑
t1,...,t2l−1=−∞

(−1)lζ−t1−2t2−···−(2l−1)t2l−1−2l(−t1−···−t2l−1−l)

× q(
t1+1

2 )+···+(t2l−1+1

2 )+(−t1−t2−···−t2l−1−l+1

2 )
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= (−1)l
( ∞∏
i=1

1

1− qi

)2l ∞∑
t1,...,t2l−1=−∞

ζ(2l−1)t1+(2l−2)t2+···+t2l−1+2l2

× q
t21+···+t22l−1+lt1+···+lt2l−1+

∑
1≤i<j≤2l−1

titj+l(l−1)/2

,

which is the desired formula. �

Corollary 2.3.2.

Ψ2(q) =
∞∏
i=1

1

(1− q2i−1)2(1− q12i−8)(1− q12i−6)(1− q12i−4)(1− q12i)

= 1 + 2q + 3q2 + 6q3 + 10q4 + 16q5 + 26q6 + 40q7 + 60q8 + · · ·

Proof. By Theorem 2.3.1,

Ψ2(q) = −
( ∞∏
i=1

1

1− qi

)2 ∞∑
t=−∞

ζt+2qt
2+t,

where ζ = e2π
√
−1/3. Using Jacobi’s triple product identity [12, p. 106], we have

Ψ2(q) = −ζ2

∞∏
i=1

1

(1− qi)2
(1− q2i)(1 + ζq2i)(1 + ζ−1q2i−2)

= −ζ2(1 + ζ−1)
∞∏
i=1

(1− q2i)(1 + ζq2i)(1 + ζ−1q2i)

(1− qi)2

=
∞∏
i=1

(1− q2i)(1− q2i + q4i)

(1− qi)2

=
∞∏
i=1

(1− q2i)(1 + q6i)

(1− qi)2(1 + q2i)
.

Canceling some terms and multiplying gives

Ψ2(q) =
∞∏
i=1

(1 + q6i)

(1− q2i−1)2(1− q4i)
.
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Using an identity of Euler [4, Corollary 1.2], we have

Ψ2(q) =
∞∏
i=1

1

(1− q2i−1)2(1− q4i)(1− q12i−6)

=
∞∏
i=1

1

(1− q2i−1)2(1− q12i−8)(1− q12i−6)(1− q12i−4)(1− q12i)
,

as desired. �

Next we want to explain the relationship between Motzkin paths of rank l and

two-rowed arrays. First let us describe the bijection informally. For a Motzkin path

w of rank l and length 2n or 2n + 1, the first n steps give the first row of the array

and the last n steps give the second row. If w has odd length, the middle step gives

the difference in length between the two rows. Suppose 1 ≤ i ≤ n, and the ith step

has type (1, j). We place n− i in the first row of the array l− j times. For the second

row we follow a similar rule, reading from right to left. For example, the Motzkin

path in Figure 2.7 corresponds to the array(
3 3 2 2 2 1 0 0 0 0
3 2 2 1 1 1 1 0 0

)
,

which has weight 43 = 2(52 + 5) − 17, as desired. Additional examples are given

following the proof for the case l = 1.

It will be convenient to introduce some notation. For a fixed positive integer l, let

w0(2n) be the path of n steps of type (1, l) followed by n steps of type (1,−l). Also let

w0(2n+ 1) be the path of n steps of type (1, l), followed by one horizontal step (1, 0),

followed by n steps of type (1,−l). If w is a Motzkin path of length t, we define R(w)

to be the region between w and w0(t). Let R(w)1 = R(w) ∩ {(x, y) ∈ R2 | x ≤ n} be

the “left half” of R(w). Finally, let Diagl(i, j) = {(x, y) ∈ R2 | i ≤ lx− y ≤ j} be the

diagonal strip between the lines y = lx− i and y = lx− j, where i < j.

92



CHAPTER 2. LIMITS OF AREAS UNDER LATTICE PATHS

Theorem 2.3.3. We have

(i) lim
n→∞

m
(l)
2n(q) = Φ2l(q),

and

(ii) lim
n→∞

m
(l)
2n+1(q) = Ψ2l(q).

Proof. Fix a positive integer l. First we prove (i). Let

F =

(
a1 a2 · · · as
b1 b2 · · · bs

)
be a generalized Frobenius partition of t such that in each row, any integer occurs

at most 2l times. Let n ≥ 2 max{a1 + 1, b1 + 1}. We will construct a Motzkin path

w(F ) of length 2n such that the area of R(w(F )) is t.

For each nonnegative integer p < n, suppose p occurs exactly α(p) times in the

first row of F and exactly β(p) times in the second row of F , with α(p), β(p) ∈

{0, 1, . . . , 2l}. In w(F ), let the (n−p)th step have type (1, l−α(p)) and the (n+p+1)th

step have type (1, β(p)− l).

First let us check that w(F ) is a Motzkin path of rank l. Since α(1) + α(2) +

· · ·+α(t− 1) = β(1) + β(2) + · · ·+ β(t− 1) = s, the path ends on the x-axis. By the

choice of n, w(F ) must start with at least dn/2e steps of type (1, l) and end with at

least dn/2e steps of type (1,−l). Therefore w(F ) cannot go below the x-axis. Hence

w(F ) is a Motzkin path of rank l as desired.

Clearly the map F 7→ w(F ) is reversible. We need to show that the area of

R(w(F )) is t. It is enough to show that the area of R(w(F ))1 is a1 +a2 + · · ·+as+s/2.

Suppose that (n − p − 1, h) lies on w(F ). Then R1(w(F )) ∩ Diagl(h − l(n − p −

1 − α(p)), h − l(n − p − 1)) is the union of a parallelogram with corners (n − p, lh),

(n − p, lh − α(p)), (n, lh + lp), and (n, lh + lp − α(p)) and a triangle with corners
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(n−p, lh), (n−p, lh−α(p)), and (n−p−1, h). The area of the parallelogram is pα(p)

and the area of the triangle is α(p)/2. For p = 0 the parallelogram degenerates to a

line segment and for α(p) = 0 both regions degenerate to line segments, but in either

case the area formula is correct. The union of these parallelograms and triangles for

all p, 0 ≤ p < n is R1(w(F )). The sum of the areas is a1 + a2 + · · · + as + s/2, as

desired. This completes the proof of (i).

Next we prove (ii). Let

F ′ =

(
a1 a2 · · · as1
b1 b2 · · · bs2

)
be an array of nonnegative integers with |s1 − s2| ≤ l, each row arranged in non-

increasing order, and no integer appearing more than 2l times in either row. Set

t = a1 + · · · as1 + b1 + · · ·+ bs2 + s1 + s2, and let n > 2 max {a1 + 1, b1 + 1}. We will

construct a Motzkin path w(F ′) of length 2n+ 1 such that the area of R(w(F ′)) is t.

For each nonnegative integer p < n, suppose p occurs exactly α(p) times in the

first row of F ′ and exactly β(p) times in the second row of F ′, with α(p), β(p) ∈

{0, 1, . . . , 2l}. In w(F ′), let the (n − p)th step have type (1, l − α(p)), and let the

(n+p+2)th have type (1, β(p)− l). Finally let the (n+1)th step have type (1, s1−s2).

It is easy to see that F ′ 7→ w(F ′) is a bijection.

Using the same argument as for Motzkin paths of even length, R1(w(F ′)) has

area a1 + · · · + as1 + s1/2. Similarly, the region R2(w(F ′)) = R(w(F ′)) ∩ {(x, y) ∈

R2 | x ≥ n + 1} has area b1 + · · · bs1 + s2/2. The remaining region, Rm(w(F ′)) =

R(w(F ′)) ∩ {(x, y) ∈ R2 | n ≤ x ≤ n + 1} is a trapezoid with area 1/2 · (s1 + s2). If

one or both of the si is zero the trapezoid is degenerate, but the area formula is still

correct. We have R(w(F ′)) = R1(w(F ′)) ∪ Rm(w(F ′)) ∪ R2(w(F ′)), and the area of

the union is a1 + · · · as1 + s1/2 + b1 + · · ·+ bs2 + s2/2 + s1/2 + s2/2 = t, as desired. �
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For example, consider the generalized Frobenius partition

F =

(
3 3 0
2 0 0

)
.

Here α(p) = 0 for p > 3, so the first n−4 steps are upsteps (1, 1). The entry 3 occurs

twice in the first row of F , so α(3) = 2 and the (n− 3)th step is a downstep (1,−1).

Continuing in this manner, the resulting path w(F ) is given by

u · · ·u︸ ︷︷ ︸
n−4 times

duuh udhd d · · · d︸ ︷︷ ︸
n−4 times

,

where u, h, and d correspond to upsteps (1, 1), horizonal steps (1, 0), and downsteps

(1,−1), respectively. Figure 2.8 gives an illustration of w(F ) and R(w(F )) for t = 6,

with the subdivision into parallelograms and triangles shown.

Figure 2.8. An area decomposition for an even length Motzkin path.

For an example of odd length, consider the array

F ′ =

(
3 1 1
3 3 1 0

)
.

Here w(F ′) corresponds to the path given by

u · · ·u︸ ︷︷ ︸
n−4 times

hudu d hhdu d · · · d︸ ︷︷ ︸
n−4 times

,

illustrated in Figure 2.9.
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Figure 2.9. An area decomposition for an odd length Motzkin path.
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2.4. Colored Motzkin paths

In this section we consider a particular coloring of Motzkin paths which corre-

sponds to generalized Frobenius partitions with colored entries.

Define a colored Motzkin path of length n and rank l to be a Motzkin path of

length n and rank l in which each step of type (1, j) is colored one of
(

2l
l+j

)
colors, for

j ∈ {−l, . . . ,−1, 0, 1, . . . , l}. For convenience we will label the colors by subsets of

{1, 2, . . . , 2l}. A step of type (1, j) can be colored by any of the subsets of {1, 2, . . . , 2l}

of cardinality l + j. This seemingly arbitrary choice for the number of colors for

each step is chosen so that if a step contributes i occurrences of an integer to a

corresponding array, then the step will be colored by a subset of cardinality i or

2l − i.

Let c̃m(l)
n (q) =

∑
qaM (w), where the sum is over all colored Motzkin paths w of

length n and rank l, and the weight aM(w) is the area between the path w and the

x-axis. As in Section 2.3, we can define reversed polynomials

cm
(l)
2n(q) = qn

2

c̃m
(l)
2n(q−1), cm

(l)
2n+1(q) = qn

2+nc̃m
(l)
2n+1(q

−1).

For colored Motzkin paths of rank 1, there is no color choice for steps (1, 1) and

(1,−1), while steps (1, 0) are colored one of 2 colors. These colored rank 1 paths are

well known to be counted by the Catalan numbers [13]; counting them by area gives

some new q-Catalan numbers.

In the l = 1 case, we can decompose the paths by cutting at the first return to

the x-axis. This gives the recurrence

c̃m
(1)
n+1(q) = 2c̃m(1)

n (q) +
n−1∑
i=0

qi+1c̃m
(1)
i (q)c̃m

(1)
n−i−1(q), (40)
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with c̃m
(1)
0 (q) = 1. The first terms are as follows.

c̃m
(1)
0 (q) = 1

c̃m
(1)
1 (q) = 2

c̃m
(1)
2 (q) = q + 4

c̃m
(1)
3 (q) = 2q2 + 4q + 8

c̃m
(1)
4 (q) = q4 + 4q3 + 9q2 + 12q + 16

c̃m
(1)
5 (q) = 2q6 + 4q5 + 12q4 + 20q3 + 30q2 + 32q + 32

c̃m
(1)
6 (q) = q9 + 4q8 + 9q7 + 20q6 + 34q5 + 56q4 + 73q3 + 88q2 + 80q + 64

c̃m
(1)
7 (q) = 2q12 + 4q11 + 12q10 + 24q9 + 46q8 + 72q7 + 116q6 + 156q5 + 206q4 + 232q3

+ 240q2 + 192q + 128

Now let us recall the colored generalized Frobenius partitions of Andrews [3]. We

will use k copies of the nonnegative integers, written ji, where j ≥ 0 and 1 ≤ i ≤ k.

We call i the color of j. We define a total order (the lexicographic order) on colored

integers by ji < lh when j < l or j = l and i < h. We say that ji and lh are distinct

except when j = l and i = h.

Let cφk(n) be the number of generalized Frobenius partitions of n in which the

entries are distinct and taken from k-copies of the nonnegative integers. We call such

an array a generalized Frobenius partition of n in k colors. The weight is found by

ignoring the colors and using (33) as for ordinary generalized Frobenius partitions.

Define the generating function

CΦk(q) =
∞∑
n=0

cφk(n)qn.
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Andrews found a formula [3, Theorem 5.2] analogous to (35):

CΦk(q) =
∞∏
i=1

1

(1− qi)k
∞∑

t1,t2,...,tk−1=−∞

qQ(t1,t2,...,tk−1), (41)

where Q(t1, t2, . . . , tk−1) is the complete symmetric polynomial (36). When k = 1, 2,

or 3 this simplifies to a product formula [3, Corollary 5.2]. In particular,

CΦ2(q) =
∞∏
i=1

1− q4i−2

(1− q2i−1)4(1− q4i)
(42)

= 1 + 4q + 9q2 + 20q3 + 42q4 + 80q5 + 147q6 + 260q7 + 445q8 + · · · .

Now we address the limit of paths of odd length. Consider two-rowed arrays(
a1 a2 · · · as1
b1 b2 · · · bs2

)
T

in which the entries are distinct and taken from 2l copies of the nonnegative integers,

such that |s1 − s2| ≤ l, each row is arranged in nonincreasing order, and the entire

array is colored in one of
(

2l
l+(s1−s2)

)
colors by choosing T ⊆ {1, 2, . . . , 2l} with #T =

l + (s1 − s2). The weight of such an array is found by ignoring the colors and using

formula (38). Let cψ2l(n) be the number of such arrays with weight n, and define the

generating function

CΨ2l(q) =
∞∑
n=0

cψ2l(n)qn.

The 24 arrays counted by cψ2(3) are(
11

01

)
{1}

(
12

01

)
{1}

(
11

02

)
{1}

(
12

02

)
{1}

(
11

01

)
{2}

(
12

01

)
{2}

(
11

02

)
{2}

(
12

02

)
{2}(

01

11

)
{1}

(
02

11

)
{1}

(
01

12

)
{1}

(
02

12

)
{1}

(
01

11

)
{2}

(
02

11

)
{2}

(
01

12

)
{2}

(
02

12

)
{2}(

02 01

01

)
∅

(
02 01

02

)
∅

(
01

02 01

)
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(
21

)
{1,2}

(
22

)
{1,2}

.

Theorem 2.4.1. We have

CΨ2l(q) =

( ∞∏
i=1

1

1− qi

)2l ∞∑
t1,t2,...,t2l−1=−∞

qεl

where εl is defined in (39).

Proof. By Andrews’s general principle, CΨ2l(q) is the constant term in z in

CH2l(q) =

( l∑
j=−l

(
j + l

2l

)
zj
) ∞∏

i=0

(1 + zqi+1)2l(1 + z−1qi+1)2l.

By the binomial theorem,

CH2l(q) = zl(1 + z−1)2l 1

(1 + z−1)2l

( ∞∏
i=1

(1 + zqi)(1 + z−1qi−1)

)2l

.

Then by Jacobi’s triple product identity [12, p. 106],

CH2l(q) = zl
( ∞∏
i=1

1

(1− qi)2l

) 2l∏
j=1

∞∑
tj=−∞

ztjq(
tj+1

2 ).

The remainder of the calculation follows as in Theorem 2.3.1, with ζ = 1, and without

the power of −1. �

Corollary 2.4.2.

CΨ2(q) = 2
∞∏
i=1

1

(1− qi)(1− q4i−3)(1− q4i−2)2(1− q4i−1)

= 2 + 4q + 12q2 + 24q3 + 50q4 + 92q5 + 172q6 + 296q7 · · · .
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Proof. By Theorem 2.4.1,

CΨ2(q) =
∞∏
i=1

1

(1− qi)2

∞∑
t=−∞

qt
2+t

=
∞∏
i=1

(1− q2i)(1 + q2i)(1 + q2i−2)

(1− qi)2

= 2
∞∏
i=1

(1− q4i)(1 + q2i)

(1− qi)2

= 2
∞∏
i=1

1

(1− qi)(1− q4i−3)(1− q4i−2)2(1− q4i−1)
,

as desired. �

Theorem 2.4.3. We have

(i) lim
n→∞

cm
(l)
2n = CΦ2l(q),

and

(ii) lim
n→∞

cm
(l)
2n+1 = CΨ2l(q).

Proof. Let F be a generalized Frobenius partition of t in 2l colors.

F =

(
a1 a2 · · · as
b1 b2 · · · bs

)
Let n > 2 max{a1 + 1, b1 + 1}. We construct a colored Motzkin path cw(F ) of length

2n and rank l. For each integer p such that 0 ≤ p < n, suppose that pu1 , pu2 , . . . , puα(p)

are all occurrences of p of any color in the first row of F and pv1 , pv2 , . . . , pvβ(p)
are the

occurrences of p of any color in the second row. Then the (n− p)th step of cw(F ) has

type (1, l − α(p)), and is colored {1, 2, . . . , 2l} \ {u1, u2, . . . , uα(p)}. The (n+ p+ 1)th

step has type (1, β(p)− l) and is colored {v1, v2, . . . , vβ(p)}.

For an array
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F ′ =

(
a1 a2 · · · as1
b1 b2 · · · bs2

)
T

we follow the same rule to construct w(F ′), except that we add an additional step

after the nth step of type (1, s1 − s2) and color T .

The rest of the details are the same as for Theorem 2.3.3. �
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2.5. Generalized Catalan paths

In this section we define paths to give an interpretation of the generalized Frobe-

nius partitions counted by φ2l−1(n) and cφ2l−1(n).

Consider paths from (0, 0) to (n, n) which do not rise above the line y = x with

steps (j, 1− j) and (1− j, j), where j ∈ {1, 2, . . . , l}. We call such a path a Catalan

path of rank l and length 2n. Define the weight a(w) of a Catalan path w of rank l

to be the area between w and the path of steps alternating (1, 0) and (0, 1). Define

the generating function C̃
(l)
n (q) =

∑
qa(w), where the sum is over all Catalan paths w

of rank l and length 2n.

An equivalent Dyck path version of Catalan paths of rank l are paths from (0, 0)

to (n, 0) not going below the x-axis and consisting of steps (1, j) where j is an odd

integer, −(2l + 1) ≤ j ≤ 2l + 1. We will continue to use Catalan paths of rank l

instead.

Note that Catalan paths of rank 1 are just the Catalan paths described in the

introduction. For Catalan paths of rank 2, we have

C̃
(2)
0 (q) = 1

C̃
(2)
1 (q) = q + 1

C̃
(2)
2 (q) = q5 + q4 + 3q3 + 4q2 + 3q + 1

C̃
(2)
3 (q) = q12 + q11 + 3q10 + 6q9 + 9q8 + 12q7 + 15q6 + 18q5 + 19q4 + 18q3 + 12q2

+ 5q + 1

C̃
(2)
3 (q) = q22 + q21 + 3q20 + 6q19 + 11q18 + 16q17 + 25q16 + 35q15 + 48q14 + 62q13

+ 77q12 + 93q11 + 111q10 + 124q9 + 133q8 + 134q7 + 127q6 + 111q5 + 85q4

+ 53q3 + 24q2 + 7q + 1.
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The Catalan path of rank l and length 2n with largest area consists of n steps of

type (l, 1 − l) followed by n steps of type (1 − l, l), and has weight (l − 1)n2 +
(
n
2

)
.

Define reversed polynomials

C(l)
n (q) = q(l−1)n2+(n2)C̃(l)

n (q−1).

Theorem 2.5.1.

lim
n→∞

C(l)
n (q) = Φ2l−1(q).

Proof. Fix an integer l > 1. Let

F =

(
a1 a2 · · · as
b1 b2 · · · bs

)
be a generalized Frobenius partition of t in which no integer occurs more than 2l− 1

times in either row, and let n ≥ max{2(a1 + 1), 2(b1 + 1)}. For each nonnegative

integer p < n, suppose p occurs α(p) times in the first row and β(p) times in the

second row, with α(p), β(p) ∈ {0, 1, 2, · · · , 2l − 1}. Define a Catalan path w(F ) of

rank l and length 2n, such that the (n − p)th step has type (l − α(p), 1 − l + α(p))

and the (n+ p+ 1)st step has type (β(p)− l + 1, l − β(p)).

Since α(1) + α(2) + · · · + α(n) = β(1) + β(2) + · · · β(n) = s, the path does end

at (n, n). Also note that n is large enough so that the path does not go above the

diagonal. Hence the map gives a Catalan path of length 2n and rank l. Clearly the

map is reversible. It remains to show that a(w(F )) = (l − 1)t2 +
(
t
2

)
− n.

It is enough to show that the region R1 enclosed by w(F ), the line y = −lx/(l−1),

and the line y = t−x has area a1 +a2 + · · ·+as + s/2. Suppose p appears α(p) times

in the first row of F , with α(p) > 0. By dividing R1 into diagonal strips along lines

of slope −1/(l − 1), we see that the step corresponding to p gives a subregion of R1

consisting of a parallelogram and triangle. It is easy to see that the triangle has area
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α(p)/2. If (l− 1) ≥ α(p), then we can find the area of the parallelogram by enclosing

it in a rectangle. This gives the area of the parallelogram as

(pl + (l − α(p)))(p(l − 1) + ((l − 1)− α(p))− 2
(pl)(p(l − 1))

2

−2
((l − 1)− α(p))((pl) + (pl + (l − α(p))))

2
= pα(p),

as desired. See Figure 2.10. The computation for (l − 1) ≤ α(p) is similar.

pl l - α (p) 

(l -1) - α (p) 

p (l -1) 

Figure 2.10. Area calculation for a parallelogram.

Adding the parallelograms and triangles over all p gives a1+a2+· · ·+as+s/2. �

For example, the generalized Frobenius partition

F =

(
2 2 2 0
2 1 1 0

)
with l = 3 and n = 5 corresponds the Catalan path of rank 2 shown in Figure 2.11.

The path is shown in bold. The shaded region is subdivided into parallelograms and

triangles as described in the proof of Theorem 2.5.1.

Now we consider the colored version. Let w be a Catalan path of length 2n and

rank l, such that each step of type (j, 1− j), j = 1, 2, . . . l, is colored with a subset of

{1, 2, . . . , 2l − 1} of cardinality l − j and each step of type (1− j, j), j = 1, 2, . . . l, is
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Figure 2.11. A Catalan path of rank 2.

colored with a subset of {1, 2, . . . , 2l − 1} of cardinality l + j − 1. Then we say that

w is a colored Catalan path of rank l and length 2n.

Define c̃C
(l)

n (q) =
∑
qa(w), where the sum is over all colored Catalan paths w

of rank l and length 2n, with weight a(w) as for ordinary Catalan paths of rank l.

Reversed polynomials may be defined by

cC(l)
n (q) = q(l−1)n2+(n2)c̃C

(l)

n (q−1).

Adapting the bijection for Theorem 2.5.1 in the same manner as in Section 2.4,

we conclude the following.

Theorem 2.5.2.

lim
n→∞

cC(l)
n (q) = CΦ2l−1(q).
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J. Combin. 6 (1999) #R40.

34. E. Pergola, R. Pinzani, S. Rinaldi, and R. A. Sulanke, A bijective approach to the area of
generalized Motzkin paths, Adv. in Appl. Math. 28 (2002) 580–591.

35. T. Popoviciu, Studie si cercetari stiintifice, Acad. R. P. R., Filiala Cluj, 4 (1953), 8.
36. A. Postnikov, Intransitive trees, J. Combin. Theory Ser. A 77 (1997), 360–366.
37. J. Riordan, Combinatorial Identities, Wiley & Sons, New York, 1968.
38. N. J. A. Sloane, Encyclopedia of Integer Sequences,

http://www.research.att.com/~njas/sequences, 2007.
39. I. Schur, On Faber polynomials, Amer. J. Math. 67 (1945) 33–41.
40. P. Shor, A new proof of Cayley’s formula for counting labelled trees, J. Combin. Theory Series

A 71 (1995), 154–158.
41. R. Stanley, Enumerative Combinatorics, vol. 1, Wadsworth and Brooks/Cole, Pacific Grove,

CA, 1986; second printing, Cambridge University Press, Cambridge, 1996.
42. R. Stanley, Enumerative Combinatorics, Volume II, Cambridge University Press, 2001.
43. R. Stanley, “Generating Functions,” in G.C. Rota (ed.) Studies in Combinatorics, MAA Studies

in Mathematics, vol. 17, Mathematical Association of America (1978) pp. 100-141.
44. R. A. Sulanke, Bijective recurrences concerning Schröder paths, Electron. J. Combin. 5 (1998)
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