
Defensive Programming for Red Hat Enterprise Linux
(and What To Do If Something Goes Wrong)

Ulrich Drepper
Red Hat, Inc.

drepper@redhat.com

April 8, 2009

Abstract
Programming Language APIs and their libraries are often not designed with safety in mind.
The API of the C language and the Unix API (which is defined using C) are especially weak in
this respect. It is not necessarily the case that all programs developed using these programming
languages and APIs are unsafe. In this document we will describe possible problems, how to
prevent them, and how to discover them.

1 Introduction

The Internet used to be a nice place where “friendly” peo-
ple met. When the first Denial of Service (DoS) event
happened this was more a novelty than a problem. To-
day security is a major issues since the stakes are higher.
There is real money on the line and there are criminals
trying to get their hands on it. In addition, cracking ma-
chines is a “sport” for some degenerates that might result
indirectly to financial losses due to downtime and system
administrator overtime.

The programming environments developed for today’s
operating systems are not designed with security in mind.
The main focus of the C and Unix APIs was efficiency in
performance and memory-usage. This heritage has still
repercussions today since C is still one of the major pro-
gramming languages in use, and the Unix API still has to
be used even with other programming languages which
do not have the security-related disadvantages of C.

There is no reason, though, that programs developed with
these APIs have to be insecure. It just means that some
more effort is necessary to write code which can be se-
curely deployed. This paper covers several aspects of the
C and UNIX APIs that need attention and it covers the
aspects of a program that need to be handled to ensure
security. This paper does not completely cover the topic,
but it provides insight into the problems most often ex-
ploited in today’s programs.

The main aspects of security covered here are:

• Reducing1 bugs in programs;

1“Eliminating” is really too much to expect.

Copyright c© 2004, 2005 Ulrich Drepper
Copyright c© 2004, 2005 Red Hat, Inc.
All rights reserved. No redistribution allowed.

• Restricting the effects of bugs in programs;

• Restricting the effects of user errors;

• Proper coding practices– including recommenda-
tions on which functions to avoid.

Authentication and authorization are pretty much inde-
pendent from the first three points and authorization and
authentication are demanded by the program semantics.
Without this requirement, adding authentication and au-
thorization is not really useful since the semantics of the
program changes.

Problems are avoided and recognized in a number of phases:
during programming, compilation, runtime, and debug-
ging. We will describe the possibilities in all these phases.

2 Safe Programming

The main problem with programming in C, C++, and
similar languages is the memory handling. Memory for
most interfaces has to be allocated explicitly and this
means possibilities for bugs. These memory handling
problems are pervasive and in the last few years have be-
come the main reason for exploits. A large array of tech-
niques has been developed by the black hat groups to ex-
ploit memory handling bugs. These bugs mainly include
buffer overruns, double free() calls, and invalid pointer
value usage. In later sections we will discuss how to de-
tect these kind of bugs. Here we concentrate on ways to
avoid them altogether.

Other topics in this section include writing code that min-
imizes the effects that an exploit of a program bug can
have. Giving an intruder access to the whole system is
much worse than having the process die. Mitigating the
risks is important but unfortunately not often performed.
This will also help to some extent with problems which

file:drepper@redhat.com

happen due to bugs or incorrect program designs without
the influence of an intruder. The result could be that sys-
tem resources are exhausted and system performance is
negatively impacted.

2.1 Counter the C Memory Handling Problems

The C language has no support for memory allocation
in the language itself. The standard library contains the
malloc() family of functions but it has so many pos-
sibilities for incorrect use, that memory allocation is al-
ways a weak point. C++ shares the problems to some
extent, but the new operator and the standardization of
higher-level data structure helps to reduce the direct use
of the malloc() functions.

Direct use of malloc() and use of C has its advantages:
the programs have the possibility to be measurably more
efficient. But the required skill level to do it right and
efficiently is high and errors slip in easily. Therefore it
is desirable to eliminate explicit memory allocation. If
memory must be explicitly allocated, it is necessary to
keep track of the size of the allocated memory blocks
and make sure the boundaries are respected by all the
code touching the memory.

2.1.1 Respecting Memory Bounds

When writing into a memory block, the program (and
programmer) must at all times be aware of the size of the
memory block. If a function gets passed a reference to a
memory block, the size of the block needs to be known
to the function as well. This can happen implicitly: if
the reference is to a single object of a given type, pro-
viding only the reference with the correct type is enough.
Unless the types of memory blocks are not maintained
correctly, this is sufficient. It is necessary, though, to re-
member type conversions and, if they are necessary, do
them correctly. The compiler takes care of the rest by
enforcing correct use of the type.

There are a few traps. First, all too often a simple mistake
in the use of malloc() causes havoc:

struct example *ptr =
(struct example *) malloc(sizeof(ptr));

The allocated memory is in general not sufficient for an
object of the given type struct example since the pa-
rameter for malloc() should be sizeof(*ptr) instead.
A big difference. In this situation it might be useful to use
a macro like this:

#define alloc(type) \
(type) malloc(sizeof(*(type)))

This macro makes sure the dereference in the sizeof

operator is not forgotten and the compiler makes sure that
incorrect uses of the type are recognized. The type sys-
tem can be defeated, though, when pointer parameters or
variables are of type void *. For this reason it is al-
most vital to use void * only when really necessary. If
a variable or function parameter/return value needs to be
used for more than one pointer type, a union should be
used. The additional syntax needed to express the neces-
sary assignments do not translate into runtime costs so it
has no disadvantages.

If an array of objects is needed, the size of the array
should always be passed to a function which gets a ref-
erence to the array passed. This way the implementation
of the called function can always check whether the array
boundaries are violated or not. It is of advantage to use
the a GNU C compiler to express this:

int addvec(int n, int arr[n]);

This kind of parameter list allows the compiler to check
at the call site whether the passed array is big enough.
In the function definition the compiler could check ac-
cesses to the array. It should be noted that the GNU C
compiler does not currently check for this. Future ver-
sions of GNU C will hopefully change this; the more
code uses the annotation, the more the compiler will be
able to check when it becomes available. Note that ex-
isting interfaces can be converted to the extended syntax
even if the size parameter follows the array parameter.
The example above would need to be written as follows:

int addvec(int n; int arr[n], int n);

This is a rather strange syntax. The part before the semi-
colon in the parameter list is a forward declaration of the
parameters, which allows to use parameters later in the
list.

An unfortunate fact is that the standard runtime library
contains interfaces which violate these rules. Two exam-
ples are these:

char *gets(char *s);
char *getwd(char *buf);

These two functions should under no circumstances ever
be used. The gets() function reads input from stan-
dard input and stores it into the buffer pointed to by s.
The input can in theory be arbitrarily long and could
overflow the buffer. The problem with getwd() is sim-
ilar. The path of the current directory is stored in the

2 Version 1.3 Defensive Programming for RHEL

buffer pointed to by buf. The problem is that the maxi-
mum path name length is not necessarily known at com-
pile time, or runtime, or at all (i.e., it can be unlimited).
Therefore it is possible to overflow the provided buffer
and the getwd() implementation cannot prevent this.
Instead of these two functions programmers should al-
ways use fgets() and getcwd(). These alternative in-
terfaces have almost the same interface but the length of
the buffer is passed to the function as well.

The getcwd() interface shows the next step in the evo-
lution of interfaces or, at least, the way interfaces should
be implemented. As an extension of the GNU C library,
the buffer parameter passed to getcwd() can be NULL.
In this case the getcwd() implementation allocates a
buffer large enough to hold the return value as if it were
allocated with malloc(). This ensures the buffer is never
too small. The drawback is that there is a overhead at run-
time: the buffer has to be allocated and freed at runtime.
This overhead is usually not measurable. The malloc()
implementation in the GNU C library is fast enough for
this.

2.1.2 Implicit Memory Allocation

If interfaces are newly developed it is advisable to de-
sign them so that necessary buffers are allocated in the
interfaces themselves. There are several extensions to
standard interfaces and some new interfaces in the GNU
C library which take over the memory allocation. These
interfaces should be used whenever possible.

Other functions operating on file names as getcwd()

have been similarly extended. realpath() is one such
example. This function should be avoided, when possi-
ble, and instead the following interface should be used:

char *canonicalize_file_name(const char *)

The effect is the same as realpath()’s, but the result is
always returned in a newly allocated buffer.

The next interface in this group helps to avoid problems
with sprintf() and snprintf(). These interfaces
help creating strings using the sophisticated functional-
ity of the printf() function family. The problem is the
passed-in buffer must be sized appropriately. If no abso-
lute, never-exceeded limit is known, sprintf() must
never be used since it provides no support to prevent
buffer overflows. To use snprintf() in such a situa-
tion it is necessary to call snprintf() in a loop where
the function is called with ever larger buffers. The GNU
C library provides two more functions in this family:

int asprintf(char **strp, const char *fmt,
...);

int vasprintf(char **strp, const char *fmt,
va_list ap);

These interfaces work just like the rest of the sprintf()
functions but the buffer, which contains the result, is al-
located by the function and therefore is never too small.
The caller’s responsibility is only to free the buffer after it
is not needed anymore. Even though the memory alloca-
tion has to be performed at each call, the use of these in-
terfaces might in fact be faster since it is not necessary to
perform possibly complicated computations to determine
the buffer size in advance or call the snprintf() func-
tion more than once in a loop in case the buffer proved to
be too small.

There are some limits on how much can be done with
asprintf(), though. All the output has to be performed
using one format string and the set of parameters passed
to the function must be passed to the function at compile
time. It is not possible to dynamically construct the pa-
rameter list at runtime. For this reason the GNU C library
contains another new interface that allows the construc-
tion of arbitrarily complex strings:

FILE *open_memstream (char **strp,
size_t *sizep);

As the signature of the interface suggests, this function
creates a new FILE object which subsequently can be
used with all the functions which write to a stream. The
parameters passed to the interface are pointers to two
variables which will contain the address and the length
of the final string. The actual values will not be filled in
until the string is finalized by a call to fclose(). This
means the open memstream() call has no effect on the
content of these variables nor is it possible to track the
constructions of the string this way.

If an existing string, or parts thereof, simply has to be
duplicated it is not necessary to use any of the interfaces;
this would be overkill. Instead the GNU C library pro-
vides four interfaces which do just this job and nothing
else and are therefore more efficient; there is no possibil-
ity of computing the memory buffer size incorrectly:

char *strdup(const char *s);
char *strndup(const char *s, size_t n);
char *strdupa(const char *s);
char *strndupa(const char *s, size_t n);

strdup() is the simplest function of this group. The
string passed as the one parameter is duplicated entirely
in a newly allocated block of memory which is returned.
The caller is responsible for freeing the memory, which

Ulrich Drepper Version 1.3 3

means the lifetime of the string is not limited. strndup()
is similar, but it duplicates at most only as many bytes as
specified in the second parameter. The resulting string is
always NUL-terminated.

The strdupa() and strndupa() interfaces are simi-
lar to the already mentioned two interfaces. The only
difference is that the memory allocated using these lat-
ter two interfaces is allocated using alloca() and not
malloc() (which also implies that these two interface
are implemented as macros and not real functions). Mem-
ory allocation using alloca() is much faster but the
lifetime of the string is limited to the stack frame of the
function in which the allocation happened and it is not
possible to free the memory without leaving the frame. If
variable sized arrays are used in a function, using alloca()
as well causes problems since the compiler might not be
able to deallocate the memory for the variable sized array
even if control left the block it is defined in. The reason is
that the memory blocks returned by all alloca() calls
made after entering the block with the array would also
be freed. Often these limitations are no problem and then
using strdupa() and strndupa() has its advantages.

A last group of interfaces which operate on strings and
process possibly unlimited-length input are the scanf()
functions. Although these functions are rarely usable in
robust code (they are in the author’s opinion a complete
design failure) some programmers choose to use them
and consequently run into problems. The issues here are
the %s and %[format specifiers. These two specifiers al-
low the reading of strings which might come from uncon-
trolled sources and therefore have the potential of being
arbitrarily long. It is possible to use the precision nota-
tion to limit the number of bytes written to the string:

int num;
char buf[100];
scanf("%d %.*s", &num,

(int) sizeof(buf), buf);

It is even possible, as in this example, to dynamically de-
termine the buffer size and pass the information to the
scanf() function. But all this pre-computation of the
buffer size is just as error-prone as int the other cases.
This is why the GNU C library has another extension
which does away with these problems. The above exam-
ple can be rewritten as this:

int num;
char *str;
scanf("%d %as", &num, &str);

The ’a’ modifier in this format string indicates that the
scanf() function is supposed to allocate the memory

needed for the parsed string. A pointer to the newly allo-
cated memory is stored in the variable str. Once again,
the size of the allocated block is never too small and the
program is becoming simpler. So, if it is deemed neces-
sary to use the scanf() functions to parse input, using
the ’a’ modifier is advisable. Readers who know the
ISO C99 standard will notice that this standard defines
’a’ as a format (for parsing floating-point numbers in
hexa-decimal notation). The GNU C library supports this
as well. The implementation of these functions will try
to determine from the context in the format string what
the caller means.

More often than not, the formatted input using scanf()

is not desirable since these interfaces make gracious er-
ror handling hard. Often entire lines are first read into
memory and then processed with hand-crafted code. In
the previous section it was said that fgets() should be
used instead of gets(). This is true, but not the final
word. fgets() requires the caller to allocate the buffer.
The GNU C library contains interfaces, which implicitly
allocate memory:

ssize_t getdelim(char **lineptr, size_t *n,
int delim, FILE *stream);

ssize_t getline(char **lineptr, size_t *n,
FILE *stream);

getdelim() reads from the stream passed as the final
parameter until a character equal to delim is read. All
the resulting text is returned in the buffer pointed to by
*lineptr. This buffer is enlarged, if necessary; the
caller does not have to worry about it. The prerequisite
for using this interface is that *lineptr initially must
point to a buffer allocated with malloc() or must point
to a NULL pointer. The value pointed to by *n must be the
size of the buffer (zero in case of a NULL pointer). The
getline() function is implemented using getdelim()
function, with ’\n’ as the value for delim. It is not nec-
essary to allocate a new buffer for every new call. In-
stead, the code using this function usually looks like this:

char *line = NULL;
size_t linelen = 0;
while (!feof(fp)) {

ssize_t n = getline(&line, &linelen, fp);
if (n < 0)

break;
if (n > 0) {

... process line ...
}

}
free(line);

This code will never have problems with buffer overruns
due to overly long lines. The buffer is reused from one

4 Version 1.3 Defensive Programming for RHEL

getline() call to the other and thusly the performance
penalties resulting from the implicit memory allocation
is minimized. Additional advantages over the fgets()

function are that both functions can handle NUL bytes
in the input and that getdelim() can use any record
separator, not just newline.

2.2 Defeating Filesystem-Based Attacks

Completely unrelated to memory handling problems, a
second big group of security problems in programs is re-
lated to the interaction with filesystems. Making sure that
a program only modifies the files it is supposed to mod-
ify can be hard. The problems described in this section
are not limited to code written in C. On the contrary, all
programming languages use the same set of interfaces in
their bindings for the operating system and therefore all
that is said in this section is valid for all programming
languages. A problem could be that not all language run-
times provide access to all the functions mentioned here.

The Unix semantics of a file distinguishes between the
content of the file itself and the binding of the content
to one or more names in filesystems. The content of
a file can exist even if no name is bound to it; this re-
quires an open file descriptor. When the file descriptor is
closed, the content of the file is removed. These seman-
tics proved to be powerful and extremely useful. The
problem is that programmers must at all times be aware
of these semantics and be aware that at any time the rela-
tionship between file names and file content can change.
All that is needed is write access to the filesystem.

2.2.1 Identification When Opening

Robust programs will not simply trust file names. They
will try to identify files before they are used. Identifica-
tion is, for instance, possible by comparing file owner-
ship, creation time, or even location of the data on the
storage media. This information is available through the
stat() system calls. Somebody might therefore write
code like this:

stat(filename, &st);
if (S_ISREG(st.st_mode)

&& st.st_ino == ino
&& st.st_dev == dev) {

fd = open(filename, O_RDWR);
// Use the file
...
close(fd);

}

The information stored by stat() in st is used in the if
statement to identify the file. Only when these tests are
successful is the file opened and used. This looks safe
but there are problems. There is no guarantee that the

name in filename refers to the same file in the stat()
and open() call. Somebody might have changed this.
This might seem unlikely, but an intruder will use ex-
actly these problems by maximizing the probability. As
a result the test performed before the open() call can
be invalidated by the time the kernel tries to open the
file. Correctly written, the above example would look
like this:

fd = open(filename, O_RDWR);
if (fd != -1 && fstat (fd, &st) != -1

&& st.st_ino == ino
&& st.st_dev == dev) {

...
}
close (fd);

In this revised code the decision whether to use the file
is made after opening the file. Opening it does not yet
mean making use of the file, so this is no semantical
change. The improvement in the code comes from the
use of fstat() instead of stat(). fstat() takes a file
descriptor as the parameter, not the file name. This way
we can be 100% sure that the data retrieved via fstat()
is for the same file we opened. If somebody removes or
replaces the filename between the open() and fstat()
call this has no effect since, as explained in the introduc-
tion to this section, the file content remains accessible as
long as there is a file descriptor. No operation can cause
the link between the file descriptor and the file content to
be broken.

The new code might performance-wise be a little bit at
a disadvantage. If the possibility of a mismatch is high,
the unconditional open()/close() pair has a measur-
able impact. If this is a problem, the program can still
use stat() as in the original code. In this case it is nec-
essary to repeat the test as in the second example with
fstat(). This way one gets the best of both worlds.

There are a number of other functions which have similar
problems. In all cases the one variant uses a filename for
identification, in the other case a file descriptor.

file name file descriptor
stat() fstat()

statfs() fstatfs()

statvfs() fstatvfs()

chown() fchown()

chmod() fchmod()

truncate() ftruncate()

utimes() futimes()

chdir() fchdir()

execve() fexecve()

setxattr() fsetxattr()

getxattr() fgetxattr()

listxattr() flistxattr()

getfilecon() fgetfilecon()

Ulrich Drepper Version 1.3 5

The first seven interfaces provide protection in basically
the same way we have seen in the previous example.
Whenever there is the possibility that the filesystem has
been modified and the file name might refer to a differ-
ent file, then the f*() variants of the functions should be
used.

The chdir() function is special since it operates on di-
rectories, not files. Directories cannot simply be removed.
They need to be empty to allow this. While it is a possible
attack angle, the main issue with chdir() is changing
the current working directory using relative paths. This
is a problem in the presence of symbolic links. Assume
the following directory hierarchy:

l1/
l1/l2a/
l1/l2a/l3/
l1/l2a/l3/l4/
l1/l2b -> l2a/l3/l4

The only noteworthy thing is the symbolic link named
l2b. A program, started in the directory l1, which then
executes chdir("l2b") followed by chdir("..") does
not arrive back in l1 as one might expect. Instead it finds
itself in l1/l2a/l3. If an attacker could create symbolic
links like l2b in the example, this might lead to possible
problems. They can be especially severe since symbolic
links can cross device boundaries. I.e., the symbolic link
might refer to filesystems anybody has full write access
to, like in general /tmp. There are basically two ways to
prevent this surprise:

1. By preventing the following of the symbolic link in
the first chdir() call. The semantics of the pro-
gram have to decide whether this is a valid option.
If it is, the chdir() call should be replaced with
the following sequence:

int safe_chdir(const char *name) {
int dfd = open(name,

O_RDONLY|O_DIRECTORY
|O_NOFOLLOW);

if (dfd == -1)
return -1;

int ret = fchdir(dfd);
close(dfd);
return ret;

}

This function can be used just like chdir() but
the operation will never follow a symbolic link,
thus avoiding the problem in the example.

2. By avoiding the relative path in the second chdir()
call. To make sure the program returns to the orig-
inal directory, the following additional steps could
be performed:

• before the first chdir() add a new function
call:

int dfd = open(".", O_RDONLY)

This descriptor has to be kept open.

• instead of the problematic chdir("..") call
one uses fchdir(dfd) to do the actual work
followed by close(dfd) where the param-
eter in both calls is the descriptor opened in
the first step.

This sequence guarantees that the program returns
to the original directory since the open() call is
guaranteed to provide a descriptor for the current
working directory in use at that time.

Note that using getcwd() to retrieve the name of
the current working directory and then later using
the absolute path will not help either. Somebody
might have changed a directory somewhere along
the path. Open file descriptors are the only reliable
way to switch back and forth between two directo-
ries.

There is one problem with using fchdir() on Linux.
If the user has only execution permission and no read or
write permission to the directory, the use of fchdir() is
not possible. Having directories with this permission is
not unreasonable: it allows hiding the directory structure
below the protected directory:

$ find secret -printf ’%m %p\n’
711 secret
775 secret/random
755 secret/random/binary

In this example secret is a directory which is readable
and writable only by the owner. Others still can execute
the binary in the subdirectory random but they have to
know the complete path. By using non-guessable names
for the directory here named random one can achieve
some level of security. The use of fchdir() to change
to the secret subdirectory would be impossible for any-
one other than the owner. This means the safe chdir()
replacement must be used with care.

If directories just have to be traversed the ntfw() func-
tion of the standard C library can be used. The third pa-
rameter this function expects is the number of file de-
scriptors the nftw() is allowed to use for internal pur-
poses. I.e., the function uses descriptors internally for
the directories it traverses and so it guarantees the op-
eration cannot be disturbed by changes to the directory
tree. One possible problem appears if the directory tree
is deeper than the number of descriptors allowed but this
is something the programmer can control.

6 Version 1.3 Defensive Programming for RHEL

As for the fexecve() interface, it might not be obvi-
ous when it is useful to use it. One plausible example
is code which needs to verify the binary has not been
tampered with. An executable itself or a global database
could contain checksums of known-to-be good executa-
bles and their names. When execution of a binary is re-
quested, the following steps can be performed:

1. check MD5 checksum of binary

2. if it matches, run the binary

As with the stat() example above, we would expose
ourselves to an attack if the checksumming and the ex-
ecution would be performed independently since there
would be no guarantee that the checksummed binary is
the same as the binary which gets executed. fexecve()
helps in the obvious way. The code which performs the
checksumming opens a file descriptor for the binary, then
gets the binary content to compute the checksum. If the
checksum matches, the file descriptor is not closed. In-
stead it is used in the fexecve() call to start the ex-
ecution. A safe variant of the execve() function that
automatically computes the checksums could be written.
The only drawback of such a userlevel implementation
is that the program needs read access in addition to ex-
ecution access to the file. Note there is no direct kernel
support for the fexecve() function. It is implemented
at userlevel using the /proc filesystem. If this filesystem
is not mounted, the fexecve() function will fail.

The getxattr(), setxattr(), and listxattr() func-
tions are the interface to the extended attribute handling
for filesystem objects. The issues with using them is
equivalent to that of stat(): information about a spe-
cific file might in fact set and get information about a dif-
ferent file if the file has been replaced. getfilecon()
is part of the SELinux improvements. It can be thought
of as more or less a wrapper around getxattr() and
therefore requires the same care when using it.

A few more words about the O NOFOLLOW flag mentioned
in the fchdir() description above. This flag is available
for all open() calls, not just for directories. It allows all
file open operations to avoid following symbolic links.
Symbolic links are very useful to help with filesystem
layout compatibility issues: a file is moved to a new lo-
cation and a symbolic link is left in the place of the old
location. Therefore it is not generally a good idea to use
this flag since it prevents this compatibility from work-
ing.

There are filesystem operations, though, where symbolic
links should never be followed. For instance, the actual
location of temporary files is not important. These are
also the files most vulnerable to symlink-attacks since
the directory for the temporary file (/tmp or /var/tmp)
is writable for every user. An attacker could therefore
create a symbolic link with a name which the attacked
program will open. As a symbolic link the name can

point to any file on the filesystem and thusly expose the
content of every file. All that is needed is the superuser,
or an SUID root binary trying to read the file through
the symlink. A programmer should therefore at all times
distinguish between files which have to be reused over a
long time and possible several revisions of the program,
and files which exist only briefly. In case of the latter
the use of O NOFOLLOW is almost always correct. For
the former class, judgment on part of the developer is
needed.

2.2.2 Safely Creating Files

Creating new files is another cause of problems. When
not done correctly, it is easy to overwrite files uninten-
tionally, erase previous content, make files available to
others unwillingly, etc. Creating new files is especially
important when creating temporary files.

For robust programs it is almost always best to not create
new files with the final name. By doing this, it is easier to
recover if the program is interrupted before finalizing the
initialization of the newly created file. After the restart
the program does not have to determine whether the file
is fully initialized or not. A requirement for this kind of
file creation and initialization is that the temporary file
created on the same device as the final file. Only then is
it possible to atomically move the temporary file in the
final position. Renaming and replacing is covered in the
next section.

The best general solution for creating temporary files is
to use mkstemp():

int mkstemp(char *template);

The parameter must be a writable buffer which is filled
with a file name whose last six characters are XXXXXX.
These six characters will be replaced by the mkstemp()
call with characters which make the filename unique. The
caller can use the buffer after the call to determine the file
name. The return value is a descriptor for the opened file.
This file is guaranteed to not have existed before and is
empty. The initial access permissions are 600, i.e., read
and write access are granted only for the owner. If the file
needs to have other permissions afterward, the program
should use fchmod() to change the permissions.

If the file is really temporary and need not be preserved,
the file can be unlinked right after creation. The file de-
scriptor remains usable until being closed. If the tem-
porary file can be created in /tmp instead of a direc-
tory determined by the program, an alternative to using
mkstemp() is the following interface:

FILE *tmpfile (void);

Ulrich Drepper Version 1.3 7

The file associated with the returned stream is not associ-
ated with any name in a filesystem, it is anonymous from
the start and cannot be linked with a name. The required
storage is allocated in the /tmp directory. If these con-
ditions are acceptable, using tmpfile() can have ad-
vantages. The biggest obstacle might be the use of /tmp
since the directory/device might have to be shared with
all the other users and therefore resources can be depleted
easily.

There are a couple of other interfaces which generate
names for new, non-existing files (mktemp(), tempnam(),
tmpnam()). They do not generate new files, just the
names. It is up to the program to create the file correctly
without destroying any data. The key is to use the O EXCL

flag with open(). This flag ensures that existing files are
not overwritten. If there is a file with the provided name,
the open() call fails. In this case the procedure needs
to be repeated, starting with the generation of a new file
name. Code using mktemp() could look like this:

static const char template[]
= "/some/dir/nameXXXXXX";

char buf[sizeof(template)];
int fd;
do {
strcpy(buf, template);
if (mktemp(buf) == NULL)

fail();
fd = open(buf, O_RDWR|O_CREAT|O_EXCL,

0600);
} while (fd == -1);

There are some situations when using the functions which
only generate names are useful. But these situations are
rare. The general advice to only use mkstemp() and
tmpfile() is good.

There is one more interface to discuss here. In some sit-
uations it is useful to create new directories in the same
way new files are created. This is mainly useful when
creating temporary directories.

char *mkdtemp(char *template);

The parameter is the same as it is in the case for mktemp()
and mkstemp(), a pointer to a buffer with a name end-
ing in XXXXXX. If possible, a uniquely named directory
is created and a pointer to the name is returned. Tempo-
rary directories are more difficult to handle, though. It
is not possible to unlink the directory after it has been
created and keep a descriptor open. It is not possible to
unlink non-empty directories and once a directory is un-
linked, it is not possible to create new files. This means
the cleanup of temporary directories can be tricky.

2.2.3 Correct Renaming, Replacing, and Removing

The standard runtime provides five interfaces for the im-
plementation of renaming, replacing, and removing op-
erations:

int unlink(const char *pathname);
int rmdir(const char *pathname);
int remove(const char *pathname);
int rename(const char *oldpath,

const char *newpath);
int link(const char *oldpath,

const char *newpath);

These interfaces are working well but care must be taken
to avoid destroying valuable data and handle race condi-
tions. One situation is the creation of a new, unique file
in a robust way, even when multiple processes could ex-
ecute the same code at the same time. A first attempt at
writing this code might look like this:

int fd = open(finalpath, O_RDWR);
if (fd == -1

|| fstat(fd, &st) == -1
|| extratests(fd, &st) != 0) {

fd = mkstemp(tmppath);
// initialize file FD
...
rename(tmppath, finalpath);

}

While this code would behave correctly when there is
only one copy of the program running, it can create prob-
lems when multiple copies are in use at the same time.
Since two processes could arrive at the fstat() call at
about the same time, both could decide to create tempo-
rary files and then create the final name for the file. The
problem is that the rename() function will mercilessly
replace any existing file with the target’s name. This
means two or more processes might think that they suc-
cessfully initialized the file and act accordingly. Worst of
all, the process whose file name got overwritten will not
update the surviving file. A more correct way to perform
the operation is as follows:

int fd;
while (1) {

fd = open(finalpath, O_RDWR);
if (fd != -1

&& fstat(fd, &st) != -1
&& extratests(fd, &st) == 0)

break;
if (fd != -1) {

// the file is not usable

8 Version 1.3 Defensive Programming for RHEL

char buf[40];
sprintf(buf, "/proc/self/fd/%d", fd);
unlink(buf);
close(fd);

}
fd = mkstemp(tmppath);
// initialize file FD
...
if (link(tmppath, finalpath) == 0) {
unlink(tmppath);
break;

}
close(fd);
unlink(tmppath);

}

This code looks much more complicated but this compli-
cation is necessary. For instance, after recognizing an in-
valid file, one cannot simply use unlink(finalpath)
since by the time this all is performed, the file with this
name might already be a different one than the one asso-
ciated with fd. This is why the /proc filesystem has to
be used this way. The actual creation of the file with the
final name is not performed using rename(); this would
be unreliable.

The problem of just reliably renaming a file is similarly
complicated. If a rename() call is not sufficient because
you have to guarantee that the file being renamed really is
the one intended, something more complicated is needed.
Once again you have the disconnect between file descrip-
tors (which allow identifying a file) and file names.

int frename(int fd, const char *newname)
{

char buf[40];
sprintf(buf, "/proc/self/fd/%d", fd);
size_t nbuf2 = 200;
char *buf2 = alloca(nbuf2);
int n;
while ((n = readlink(buf, buf2, nbuf2))

== nbuf2)
buf2 = alloca(nbuf2 *= 2);

buf2[n] = ’\0’;
static const char deleted[]
= " (deleted)";

if (n < sizeof(deleted)
|| memcmp(buf2 + n

- (sizeof(deleted) - 1),
deleted,
sizeof(deleted) - 1) != 0)

return rename(buf2, newname);
errno = ENOENT;
return -1;

}

This code relies, once again, in the /proc filesystem.
The files in /proc/self/fd are actually symbolic links
and if they refer to a file which has in the meantime been

deleted, this is indicated in the symbolic link content.
This code has one limitation: if the real file name ends
in " (deleted)", the function will always fail. In real-
ity this should not be too problematic since these names
can easily be avoided.

It is usually necessary to go to the extra length of creating
a temporary file and then rename it since otherwise there
is a point in time when there is no file with the name in
question. The rename() function is atomic and guaran-
tees that at all times an open() call will succeed.

2.3 Reducing the Risk

The next step after fixing immediate bugs and problems
in a program is to reduce the effects of an exploit of re-
maining bugs. The goal is to minimize the amount of
privileges a program has at any time. The privileges a
program has include:

• Memory access protection. Memory mapping can
be either no, read, write, or read/write access. In
addition there are usually execution permissions.
There are some problems with the latter on the IA-
32 architecture, but some techniques such as Red
Hat’s Exec-Shield [2] help to overcome the prob-
lem.

• File access permissions. Different permissions are
granted to user, group, and all others.

• Process user and group ID. Each process has an ef-
fective user and group ID which determine whether
certain operations are allowed or not.

• Filesystem user and group ID. The Linux kernel
provides separate permissions which allow control-
ling the filesystem operations a process is allowed
to do.

• File descriptor operations allowed. Each descrip-
tor is created with a mode which allows read, write,
or both operations.

• Resource allocation permissions. System resources
have limits which a process cannot exceed.

2.3.1 Memory Access

The most fundamental permissions are those controlled
by the processor. Modern processors and OSes allow
memory pages to have individual permissions for read,
write, and execution. The ideal situation is that pages
with program code have read and execution permission,
read-only data pages have only read permission, and data
pages and the stack have read/write permission. This way
neither program code nor read-only data can be modified,
and no data can be executed.

The compiler and linker try to arrange the program code
and data parts of the program as well as possible. The

Ulrich Drepper Version 1.3 9

stack’s permissions are controlled by the OS. Extensions
in Red Hat Enterprise Linux allow you to restrict the per-
missions for the stack so that whenever possible they do
not include execution permission. Refer to [2] for more
information. The programmer’s responsibility is to de-
fine as much data as possible as constant. [1] explains
this in detail (everything applies to executables as well).

What remains is to correctly allocate memory at runtime.
The malloc() interface is not an issue, the memory al-
located with it has the permissions determined by the OS.
In Red Hat Enterprise Linux the memory has only read
and write permission.

The important interfaces are mmap() and mprotect().
Memory allocated with mmap() can have any of the three
permissions set, individually selectable for each page.
mprotect() enables you to change the permissions af-
ter the initial mapping.

The rule of the least possible permissions requires that
pages that contain only code are not mapped with write
access, and that pages with changeable data do not have
executable permissions set. This has some consequences
for program design. For instance, it might be efficient to
map a DSO in a single piece with read, write, and exe-
cution permissions–only one mmap call is necessary and
everything is allowed. However, this is insecure. There-
fore, all files that are meant to be mapped into memory
should be segmented: for each part of the file, determine
whether it contains code, read-only data, or changeable
data. The parts of the file should be grouped according
to these criteria so that there are at most three segments.

Since protection can only be selected with page granu-
larity there are two ways to go ahead:

• align the segments in the file at page boundaries.
This is wasting on average half a page on disk.
This might be a problem if the page size one has to
account for is very big.

• do not use alignment in the file, but map the pages
at the boundaries of the segments twice, one time
as the last page of one segment, a second time as
the first page of another segment. The issues with
this are that on average one page of memory per
segment boundary is wasted, and that the file con-
struction is more complicated if there is a depen-
dency between the location of two segments.

This sounds all quite complicated but it is necessary. Al-
locating memory with too much permission is very dan-
gerous and should be avoided under all circumstances.

The programmer can do even better than this in some sit-
uations. Some parts of the files might have to be writable
at some time. If after an initialization phase the val-
ues are not modified anymore, the program should use
mprotect() to remove write access. In some special
circumstances it might even be useful to change the per-

mission to forbid writing even if the data has to be writ-
ten to again later. This requires that before every write
access the permission is changed. For high-risk data the
high performance cost of switching permissions back and
forth is justifiable.

Changing the permissions is also desired for anonymously
allocated memory (i.e., using MAP ANONYMOUS or map-
ping /dev/zero). The only difference is that no file for-
mat needs to be designed; it is all up to the program to
decide.

2.3.2 File Access Permissions

The user and group ID of the file should be selected to in-
clude the smallest number of users. If possible, permis-
sions for group or other users should be disabled com-
pletely or at least to only read-access. Programs should
not rely on the umask setting of the session. Explicitly
disabling access permissions in the open() call is the
much better alternative.

Instead of widening the permissions if the coarse user
and group permissions are not sufficient, it might be de-
sirable to use access control lists (ACLs). ACLs allow
to grant rights to arbitrary people on a file by file basis.
All that is needed is that it be supported in the operat-
ing system kernel and the filesystem. This is all given
in Red Hat Enterprise Linux. To take advantage, pro-
grams might have to be extended. The libacl package
provides the necessary APIs to set and remove ACL en-
tries for files or directories. It is necessary to set the per-
missions when a file is created. With the help of default
ACLs which can be defined for directories, explicit work
can be avoided if all new files are created in directories
which have such a default ACL defined.

ACLs are powerful but also quite complicated. Familiar-
ity with all aspects is needed to take advantage of them
correctly and not mess up the security. We will later dis-
cuss another way to restrict accesses (SELinux). ACLs
have the advantage that they are widely available and also
can work with NFS (and AFS?).

The requirement to set the best set of permissions also
applies to objects other than files which reside in the
filesystem. These other objects include devices, Unix
domain sockets, and FIFOs. The mknod() system call
enables you to specify the access mode as part of the pa-
rameter list. If Unix domain sockets are created using
bind(), a separate chmod() call is needed.

2.3.3 Process User and Group ID

The process user and group IDs have a number of differ-
ent uses, including controlling access to the filesystem,
setting permissions to send signals to other processes,
setting resources of another process, and other things. In
addition the special role of the superuser (ID 0) has to be
taken into account.

10 Version 1.3 Defensive Programming for RHEL

There are two general pieces of advice:

• use the superuser ID only when absolutely neces-
sary;

• share the user and group ID of a process with as
few other processes as possible.

The superuser ID is necessary for a process if the pro-
cess needs to perform operations which are not available
to other users. Operations which need these extra priv-
ileges include creation of sockets for port numbers less
than 1024, creation of raw sockets, changing file owner-
ship, and many other things. If a process needs to per-
form any of these operations there is no choice but to ex-
ecute that code with the superuser privileges at that time.
This does not mean the process has to run with the privi-
leges all the time. There are several options to avoid it:

• the root privileges can be installed only when needed.
The POSIX functionality of saved IDs helps doing
this. One can switch to an unprivileged ID for the
normal operation and back to root privileges when
needed. The requirement is that the process’ initial
privileges are those of the superuser.

This method does not provide full protection since
an intruder could insert code into the process which
switches the user or group ID to zero and then runs
code which uses the superuser privileges.

• restrict the privileges of the superuser. Internally
the Linux kernel does not check for user ID zero
when a privileged operation is requested. Instead
a bitset with bits for various classes of permissions
is tested. A process started with superuser privi-
leges has all the bits set. Such a process then can
select to remove individual privileges. The header
<linux/capability.h> contains the necessary
definitions. All privileges which are not needed
should be disabled.

The libcap package provides the necessary li-
brary to modify the capabilities of the process and
create arbitrary sets. The cap set proc() inter-
face installs the constructed bitset.

• the work the program performs can be split in two
parts: one process to perform the privileged work,
a second one to do the real work (this is called
privilege separation). These really need to be two
processes, not two threads. To have any effect on
security, the privileged process must run different
code which has the ability to perform the privi-
leged calls and the communicate with the unpriv-
ileged process, but nothing else. This small piece
of code can more easily be audited. This will make
an exploit harder and in case it still happens, using
the exploit is harder since little of the existing code
can be used for the exploitation.

The complicated piece of this framework is the
communication between the two processes. It must
be secure and not be prevented by the difference
in privilege levels. This automatically excludes
signals as a communication or notification mean.
There are a number of possibilities: pipes, mes-
sage queues, shared memory with futexes, and more.

All the other methods mentioned here can be im-
plemented for the privileged process; this way in-
creasing security even more.

Using separate processes has the additional advan-
tage that it works with SELinux. The state tran-
sition required to change the roles which govern
SELinux permissions require starting an exec call.

All this, together with the availability of fast inter-
process communication mechanisms and Linux’s
fast context switching, makes using separate pro-
cesses attractive.

2.3.4 Filesystem User and Group ID

The Linux kernel enables you to select user and group
IDs for filesystem accesses that differ from the process
user and group IDs. This allows the removal of the capa-
bility of accessing the filesystem while keeping superuser
privileges for other purposes.

int setfsuid(uid_t fsuid);
int setfsgid(uid_t fsgid);

A network daemon which needs superuser privileges to
create special sockets can create files as an ordinary user
and read/write only to files this ordinary user has access
to.

2.3.5 File Descriptor Mode

A file descriptor can be restricted in the operations that it
can perform. The primary restriction is allowing the use
of the descriptor for reading, writing, or both. A descrip-
tor for a file which needs only be read should not be open
for writing. This would only allow an intruder to wreak
havoc on the file. Note that this recommendation requires
the use of the optimal protection mode for mmap() calls
as well, in case the descriptor is used for mapping.

In general, if a file is written to, the content might also
have to be read. So the read/write mode is the most likely
mode if read-only is not an option.

In some situations it makes sense to have a file descriptor
open only for writing. This is useful, for instance, when
creating log files. Using only writing prevents informa-
tion leaks since, if permissions are set up appropriately,
the file can be prevented completely from being read.

Ulrich Drepper Version 1.3 11

In this last situation it is usually a good idea to specify
the O APPEND flag as well. This flag enforces that all
write accesses using the file descriptor always append to
the file. This is regardless of the current position of the
file offset for reading. The result is, obviously, that no
content of the file can be overwritten.

When using file descriptors, the programmer should chose
the least privileged mode. If a file descriptor is mostly
used for reading but occasionally also for writing, it might
be worth considering two different descriptors. The de-
scriptor for reading could be kept open all the time, and
a new descriptor which also allows writing, would be
opened on demand. It is not possible to change the mode
of a descriptor. Reopening a descriptor with a different
mode is quite easy. The following code can replace an
existing descriptor with a new one which allows writing
as well:

int reopen_rw(int fd) {
char buf[40];
sprintf(buf, "/proc/self/fd/%d", fd);
newfd = open(buf, O_RDWR);
dup2(newfd, fd);
close(newfd);
return fd;

}

It is of course also possible to just open an additional
descriptor, use it while write-access is required, and then
close it. This example shows that you can have a read-
only file descriptor open only when it is really necessary.
Note that the use of the /proc filesystem ensures that
both descriptors really use the same file.

2.3.6 Resource Allocation

An intruder can cause problem by negatively effecting
the operation of the other processes using the system.
If a process is allowed to exhaust resources shared with
other processes, the other processes are starved of those
resources. For instance, if the intruder can use up all
the RAM in the machine, all other processes would be
swapped out and their performance would degrade sig-
nificantly. This performance loss of an application might
even open a window for an attack if the process cannot
react quickly enough to prevent an attack.

For this reason, and application should be allowed the
resources to work perfectly, but limits should be set to
catch “runaway processes” that use too many resources.

The resources which can be easily restricted include mem-
ory usage, stack size, number of file descriptors, file locks,
POSIX message queues, and pending signals. The re-
source limits are set using the setrlimit() interface.

To determine a usable limit is not easy. It is possible to
track open(), socket(), and other such calls to deter-

mine the biggest descriptor used. With some knowledge
of the program it is then possible to select a limit. In
general, monitoring an application and its resource us-
age will be necessary. There is so far no tool for just this
purpose; maybe this will change in future.

2.4 Do Not Trust Anyone

Whenever possible, check whether the communications
a program receives really comes from a program which
is an expected communication partner. Secure commu-
nication protocols have this authentication build in. This
is not covered here (so far). There are some OS services
which provide some level of authentication which is in-
dependent of the communication protocol.

2.4.1 Authentication via Unix Domain Socket

If two processes (obviously on the same machine) com-
municate via Unix Domain sockets, it is possible for those
processes to authenticate each other by retrieving the pro-
cess, user, and group ID of the other process. This can
be achieved with a call to getsockopt() after the first
data has been received from the socket:

struct ucred caller;
socklen_t optlen = sizeof(caller);
getsockopt(fd, SOL_SOCKET, SO_PEERCRED,

&caller, &optlen);

If fd is the descriptor for a Unix domain socket, the
getsockopt() call will fill in the pid, uid, and gid

elements of the ucred structure. This information can
then be used for authentication. If the mere numbers are
insufficient, it is possible to look at the information in
proc/<pid>/ (where <pid> is the process ID received
in the getsockopt() call).

The information in the ucred structure is filled in by the
kernel. A process is able to set the user and group ID
values to whatever would be allowed for a setuid() or
setgid() call. This is done with code like this:

struct iovec iov[1];
iov[0].iov_base = "foo";
iov[0].iov_len = 4;
char b[CMSG_SPACE(sizeof(struct ucred))];
struct msghdr msg =
{ .msg_iov = iov, .msg_iovlen = 1,

.msg_control = b,

.msg_controllen = sizeof(b) };
struct cmsghdr *cmsg =CMSG_FIRSTHDR(&msg);
cmsg->cmsg_level = SOL_SOCKET;
cmsg->cmsg_type = SCM_CREDENTIALS;
cmsg->cmsg_len

= CMSG_LEN(sizeof (struct ucred));

12 Version 1.3 Defensive Programming for RHEL

struct ucred *uc
= (struct ucred *) CMSG_DATA(cmsg);

uc->pid = getpid();
uc->uid = someuid;
uc->gid = somegid;
msg.msg_controllen = cmsg->cmsg_len;
sendmsg(fd, &msg, 0);

Usually this should not be necessary. The default val-
ues returned by the kernel in the absence of a previous
sendmsg() call (like that above) are accurate for the two
participating processes.

2.4.2 Signal Origins

A process can receive a signal from another process and
act accordingly. If the signal handler executes the code
unconditionally this means the code can be initiated from
another process. In many cases the signal handler is only
meant to catch signals generated in the same process. For
instance, a signal handler to catch segmentation faults
should never be invoked by a signal sent from the outside.

The kernel performs checks before allowing a signal to
be sent. Only root and a process with the same current or
effective user ID as the target process is allowed to send
a signal. If such a process has been compromised, this is
of no help.

The traditional Unix signal handler model does not have
support for any checks. It is necessary to register signal
handlers which used the new siginfo interface. The
type for such a signal handler is this:

void (*siginfo_handler) (int, siginfo_t *,
void *);

The interesting part here is the second parameter. This
structure contains a number of fields, chief among them
si signo and si code. The si signo contains the sig-
nal number, the same value as the first parameter to the
signal handler. The <signal.h> header defines a num-
ber of values the si code can have. There are a number
of values which can be used with every signal. If the
si code does not have any of these values, the value
must be interpreted relative to the signal number. The
POSIX specification defines which values are defined for
which signal.

The independent values are the interesting ones here. They
have the prefix SI and help to distinguish explicitly gen-
erated signals from those created implicitly by, for in-
stance, a segmentation fault. The explicit generation codes
are:

SI USER Sent by kill(), raise().

SI QUEUE Sent by sigqueue().

SI TIMER Sent by timer expiration.

SI MESGQ Sent by message queues.

SI ASYNCIO Sent by AIO completion.

SI SIGIO Sent by SIGIO.

SI TKILL Sent by tkill().

A segmentation fault handler which checks whether the
signal was really raised by the kernel in response to an
invalid memory access could start like this:

void handler(int sig, siginfo_t *infop,
void *ctx) {

if (infop->si_code <= 0)
return;

...
}

This hardcodes the condition that all SI * values have a
value less or equal to zero. This is true for Linux. Alter-
natively this could be used:

void handler(int sig, siginfo_t *infop,
void *ctx) {

if (infop->si_code != SEGV_MAPERR
&& infop->si_code != SEGV_ACCERR)

return;
...

}

This hardcodes the (equally true) assumption that these
are to only two codes defined for SIGSEGV signals. If the
same signal handler would also be used for other signals,
a test for the value of sig or infop->si signo would
be needed, too.

2.4.3 Avoid Sharing

Some directories in the filesystem are shared, such as
/tmp, and programs (and the C library) use this directory
quite often. The problem is that everybody could create
a file which another user’s programs might use. This is
a problem in the program which reads these files created
by others, but it is a problem which can be avoided.

One possibility is to avoid using the actual /tmp direc-
tory, for instance. The Linux kernel allows processes and
their children to have separate filesystems mounted. Pro-
cesses can have their own filesystem namespace, together
with the “bind mounts”, the ability to mount parts of a
filesystem in another part of the filesystem. To provide a
separate /tmp for each user, the following code could be
used:

Ulrich Drepper Version 1.3 13

int f (void *arg) {
const char *home = getent("HOME");
char buf[strlen(home)

+ sizeof "/my-tmp"];
sprintf(buf, "%s/my-tmp", home);
mount(buf, "/tmp", 0, MS_BIND, 0);
int fd = creat("/tmp/foo", 0600);
...
exit(0);

}

int main(void) {
char st[50000];
pid_t p = clone(f, st + sizeof(st),

CLONE_NEWNS, 0);
exit(p == -1 ? 1 : 0);

}

This code would not appear in this form in any program;
it just shows the concept. The clone() call is basically a
fork() but the CLONE NEWNS flag introduces a separate
filesystem namespace for the child process. The child
process is executing function f() which then mounts the
directory my-tmp in the user’s home directory as /tmp.
From then on, any filesystem access to a file such as
/tmp/foo actually accesses my-tmp/foo in the home
directory. All programs work as before but the two users’
data in /tmp does not conflict. Since modifiable data
which is supposed to be shared between multiple pro-
cesses and users should be stored somewhere in the /var
hierarchy, using temporary directories like this is really
a good possibility. Another possibility is that an applica-
tion might chose to create a temporary directory for each
instance and then mount this directory in a certain fixed
place in the filesystem tree.

2.5 Truly Random

Programs need some randomness for various purposes.
Unique file names and identification numbers are needed
all the time. Communication protocols might require se-
quence numbers which, to reduce the possibility of at-
tacks, should be random. Programs are sometimes inher-
ently random (simulation, games) and need large amounts
of randomness.

For all these purposes people over time found numerous
thoroughly stupid ways to get “randomness”. For in-
stance, temporary file names were constructed using the
process ID. The fact that the process ID is not random
was of no concern. People tried to read random parts of
the address space and use the bytes found there. All this
is insufficient and even a security risk if the numbers are
used in any security algorithm.

The standard runtime has had support for random num-
ber generation from the beginning. The problem is that
there are several different interfaces and the interfaces

can, in most cases, be implemented differently on differ-
ent platforms. And there is always the problem of seed-
ing the pseudo random number generator (PRNG).

Some of the implementations of those PRNGs are horri-
ble. The POSIX specification, for instance, requires an
implementation of rand r():

int rand_r(unsigned int *seedp);

The whole state this PRNG can have is in the unsigned
int value the parameter points to. These are 32 bits on
Linux platforms which is a ridiculously small amount.
This function should never be used. A better interface is
the random() family:

long int random(void);
void srandom(unsigned int seed);
char *initstate(unsigned int seed,

char *state, size_t n);

On Linux, the random() function returns a 31-bit ran-
dom number. The period of the default PRNG used is
very high, it is a trinomial, not a simple linear one. The
state used can be changed with the initstate() in-
terface. The state of the PRNG can be increased up to
256 bytes. There are also reentrant versions of these in-
terfaces available. A critical part of the use of the in-
terface is to use a good seed, either for srandom() or
initstate(). More about this later.

The rand48 family of functions is another usable pos-
sibility. As the name suggests, the state of these func-
tions has 48 bits. There are two main benefits of these
interfaces: the implementation is the same on all Unix
systems (i.e., with the same seeds one gets the same re-
sults on different platforms). The second benefit is that
one cannot only get 31-bit integer random numbers. It
is also possible to get floating-point numbers and 32-bit
signed integer values. The drawbacks include the limited
state size and the fact that the algorithm is required to be
a simple linear one.

If PRNGs must be used, random() should be preferred.
It is possible to construct floating-point values from the
provided integer values. If this is too cumbersome or re-
producibility on other platforms is required, the rand48
functions are better.

If only small amounts of randomness is needed, mod-
ern systems provide another possibility. The kernel pro-
vides two special character devices /dev/random and
/dev/urandom. These are character devices which can
be read. There is a qualitative difference between the two
devices: /dev/random provides higher quality data, as
close to true random data as one can get without special

14 Version 1.3 Defensive Programming for RHEL

devices. The disadvantage is that reading numbers from
this device might block if there are not enough random
numbers left. The block can block for a long time if there
are no events which can be used to generate randomness.

Calls to read from /dev/urandom on the other hand will
never block. Cryptographic algorithms are used to gen-
erate data if the system runs out of true random data.
The numbers provided might therefor classify as pseudo-
random but are usually of a higher quality than the purely
algorithmic methods available in the standard runtime.

Retrieving large amount of randomness from these de-
vices is not advised. If many calls have to be made, re-
trieving the values is slow since each time a system call is
needed. More importantly, randomness in the kernel is a
shared resource. If the pool is exhausted, some read()
calls might block. This could in fact lead to denial of
service attacks.

There is no problem with reading a few bytes of high-
quality random bytes. If this is enough for the program,
fine. Otherwise it might be desirable to use these bytes
to seed the PRNGs in the standard runtime.

There is one more possibility which is becoming more
and more popular. The system itself might have devices
to generate random data. Some Intel chipsets can cre-
ate such data but it cannot be used directly. Instead,
a special device driver feeds the data into the pool for
/dev/random. Recent VIA processors (IA-32 compati-
ble) have a built-in true RNG. With just a simple instruc-
tion some random data can be retrieved. If it is OK to
write code for special processors, this is the way to go
for these processors.

2.6 Automatic Fortification

Starting with Red Hat Enterprise Linux 4, programs can
be compiled with the macro FORTIFY SOURCE defined.
As with all other * SOURCE macros, it should be used on
the command line of the compiler. When this macro is
defined, the C compilation environment is transparently
changed a bit. Various security checks are enabled which
have one thing in common: they have no or no significant
cost at runtime. The reasoning behind this is that these
tests can be enabled for all programs all the time.

The macro FORTIFY SOURCE must be defined as a nu-
meric value. Currently two setting are supported, 1 and
2. In mode 2 all tests of mode 1 are performed, and then
some more. The definition of the macro has limited effect
if optimization is not enabled. The reason is that some of
the information propagation inside the compiler does not
happen unless optimization is enabled.

The tests which are currently performed fall into two cat-
egories:

• functions operating on memory blocks are checked
if the size of the memory blocks is known.

• ignoring return values of functions for which this
should not happen is flagged.

Further tests will likely be developed in future and the
two existing test sets will be extended. For instance, not
all headers of the standard C runtime have so far been an-
notated to provide warnings about unused return values.

The return value tests are pretty simple: the GNU com-
piler allows adding an attribute to the function declara-
tion for just this purpose. It helps to identify incorrect
code like this:

if (req > len)
realloc(p, req);

memcpy(p, mem, len);

The code assumes that the enlarged buffer realloc()
makes available is at the same location the old buffer
was. This might even be true in many situation and the
programmer could run all the tests without noticing. In
general this is not the case and therefore the above code
will fail sooner or later. Other examples of problems de-
tected are possible security problems.

The memory checking tests are more elaborate. In sec-
tion 4.1 we will discuss various tools to debug memory
handling more thoroughly. All these tools have one thing
in common: they are expensive to use or even do not
integrate into the final program at all. The memory de-
bugging code enabled by FORTIFY SOURCE is cheap at
runtime.

Currently the memory checks are restricted to functions
of the standard C runtime. So far these functions are han-
dled:

bcopy() fgets() fgets unlocked()

fprintf() getcwd() gets()

getwd() memcpy() memmove()

mempcpy() memset() pread()

pread64() printf() read()

readlink() recv() recvfrom()

sprintf() stpcpy() strcat()

strcpy() strncat() strncpy()

vfprintf() vprintf() vsprintf()

Not all calls to these functions are checked. This is not
possible since in general there is no information about
the buffers available. There are some situations where
the compiler knows about the sizes:

• when the buffer is an automatic one, i.e., allocated
on the stack. Such a buffer is created by the com-
piler. This includes calls to alloca().

• when the buffer was allocated in the function. The
compiler knows that functions like malloc() are

Ulrich Drepper Version 1.3 15

used for memory allocation and it knows the pa-
rameter which specifies the size.

In gcc 3.3 this information is not used. The com-
piler lacks the infrastructure. gcc 4 has support to
propagate this information.

If the conditions of the known buffer size is met, it might
be possible that it can deduce that there will always be a
buffer overflow. For example, compiling this code

#include <string.h>
void foo(void) {

char buf[4];
strcpy(buf, "hello");

}

will produce the following warning:

In function ’foo’:
warning: call to __builtin___strcpy_chk
will always overflow destination buffer

In any case, the compiler will replace the call to strcpy()
with a call to builtin strcpy chk() if the target
buffer size is known. Similarly, the calls to the other
functions are replaced. The builtin * functions are
part of the GNU C library. A programmer need not know
about them. All this happens transparently and almost
without side effects. The functions are only immeasur-
ably slower than non-checking normal functions. The ef-
fects of the checking can be seen by compiling this code:

#include <string.h>
int main(int c, char *v[]) {

char buf[5];
strcpy(buf, v[1]);
return 0;

}

In this code the compiler cannot detect any overflow at
compile time. But it knows the size of the target buffer
and there is the potential for a buffer overflow, so it gen-
erates a call to the checking function. If this program is
started with parameter which is longer than 4 characters
the following message is printed and the program termi-
nates:

*** buffer overflow detected ***: prg terminated

Terminating the program is really the best option because
the program becomes unstable when memory is modified
in a way the program does not expect. Buffer overflows
are one of the main means for attackers to take control of
a system.

The difference between mode 1 and 2 of the fortifica-
tion code is that mode 2 makes more strict assumptions.
For instance, the return value checks are only enabled in
mode 2. Another difference is the handling of code like
this:

#include <string.h>
struct {

char a[10];
char b[10];

} f;
void foo(void) {

strcpy(f.a, "012345678901");
}

When compiled with fortification level 1 the compiler
does not produce any warning since this is silly, but, strictly
speaking, legal code according to ISO C. With level 2 the
usual overflow warning is printed. It is best to avoid such
code and therefore the recommendation is to compile all
code with -D FORTIFY SOURCE=2.

3 Good Practices in Compilation

The GNU C compiler has more capabilities than most
other compilers. Among them is that it integrates the
capability to analyze the code while compiling. Other
compilers do not have this ability and need a separate tool
called lint. The GNU compilers and linker also allow you
to annotate function declarations and definitions so that
their usage can be monitored.

In this section we will show several ways in which the
compiler and linker can help you write good code.

3.1 Respect Warnings

Probably the most important advice for using the com-
piler is to enable all generally accepted warnings and
eliminate them. The warnings concerning problems with
the source code are enabled by adding the compiler op-
tions

-Wall -Wextra

These options are available for all languages which the
GNU compilers can handle. There are additional warn-
ings which could be enabled but these are either useful
to determine inefficiencies (mostly to determine unused

16 Version 1.3 Defensive Programming for RHEL

variables and parameters) or controversial. The latter
would generate too many false positives if enabled with-
out close inspection of the source code.

For C++ code one should use

-Wall -Wextra -Weffc++

The additional warnings this new option enables are C++-
specific and are derived from the buidelines in the books
”Effective C++” and ”More Effective C++”, hence the
name. It is highly recommended to use -Weffc++ since
the problems the compiler warns about are in most cases
bugs.

When compiling many files using make or similar tools,
it is easy to miss a warning. Therefore it is useful to have
the compilation fail when a warning is printed. This is
when the option

-Werror

comes in. It causes the compilation to fail if a warning is
emitted. If existing code has to be converted to compile
with these three options, a lot of work might be necessary
at first since even good programmers have one problem
or another discovered by the compiler in their code. It
is best to start using the flags right from the start to not
accumulate problems.

There is a problem, though. Some code cannot easily be
changed to compile without warnings. This is especially
true for generated sources. For instance, code generated
by flex and bison often does not compile cleanly. The
Makefiles used in the project therefore should allow dis-
abling the -Werror option for individual files.

3.2 Avoiding Interfaces

The standard C library contains a number of functions
which are unfortunately required by standards but should
not be used. We have seen two examples earlier: gets()
and getwd(). The compiler and linker will warn about
using these interfaces when the GNU C library and the
GNU linker are used. The tools do not recognize these
function names. The technique to mark these functions
can be used for every interface. Library authors should
use these techniques to mark all deprecated or dangerous
interfaces.

In header files the deprecated attribute should be used.
As in:

extern int foo(int)
__attribute((__deprecated__));

This attribute will not do anything if the declaration is
just parsed. Only when the function is used will a warn-
ing be emitted.

In addition a linker warning is useful. If the object file is
distributed and used at a different time, the compilation
warning is obviously never seen. Therefore the object
file must contain the warning information. The extra in-
formation has to be generated at the time the object file is
generated and added to the file. Continuing the example
above, one would add the following after the definition
of the function:

__asm(".section .gnu.warning.foo\n\t"
".previous");

static const char foo_deprecated[]
__attribute((unused,

section(".gnu.warning.foo")))
= "Don’t use foo";

This might be a bit hard to understand if one is not ac-
customed to ELF, sections, and the syntax used. The
asm statement (a GNU compiler extension) simply intro-
duced the section named .gnu.warning.foo. The fol-
lowing definition of the variable foo deprecated places
the variable in this special section. This is achieved us-
ing the attribute. The section is not defined to be allo-
cated in the output file. That means, even if the functions
and variables in the file are included in the resulting ex-
ecutable, the warning string is not. The warning is in-
cluded when creating a DSO, since otherwise one cannot
get a warning when linking with the DSO.

We have not explained how the warning is actually emit-
ted. The magic is the section name. For all sections start-
ing with .gnu.warning. followed by the name of a
function, the linker prints the content of the entire section
as a warning. If there would be a reference to foo(),
the linker would find the section .gnu.warning.foo

and the content of this section is the string "Don’t use

foo".

3.3 Unused Return Values

All C interfaces and many C++ interfaces provide error
status in the return value of the function. This makes it
all too comfortable to not check the return value. Adding
many ifs takes effort and if the programmer thinks the
function will never fail, this might lead to deliberate omis-
sions of the check. The result will be a lot of problems
of many kinds.

Security problems can arise if, for instance, the return
value of setuid() is ignored. Semantic problems are
ignoring the return value of realloc(); somebody might
assume that the buffer is enlarged in place, and that the
new buffer has the same location as the old one.

Since it is unreasonable to expect all return values to be

Ulrich Drepper Version 1.3 17

checked, a library author should mark those interfaces,
for which the omission is critical. The declaration should
be marked as follows:

extern int foo(int arg)
__attribute((__warn_unused_result__));

If a call to foo() is performed after seeing this decla-
ration and the return value is not used, the compiler will
issue a warning. Note that casting the result to void does
not help; the warning is still issued.

3.4 Null Pointer Parameters

Manys function, which have parameters of a pointer type,
expect the pointer values passed in a call to not be NULL.
Examples are the string functions like strcpy() which
will mercilessly crash the process if any of the parame-
ters is not a valid pointer. The GNU C compiler provides
a way to detect NULL values to the function. The anno-
tated prototype for strcpy() looks like this:

extern char *strcpy(char *dst,
const char *src)

__attribute((__nonnull__(1, 2)));

The nonnull attribute has a parameter list with numbers
representing parameter position to which the attribute ap-
plies. In this case parameter 1 and 2 are required to be
non-NULL.

The checking applies only to cases the compiler can de-
cide at compile time. The warning is only printed if the
expression passed as the pointer parameter is evaluated
to zero. If the value passed is variable, no warning is
printed and nothing special happens at runtime if a NULL
pointer value is actually passed. The called function will
use the NULL pointer and fail.

Marking functions with pointer parameters with this at-
tribute will not necessarily catch many bugs since the
values passed in the parameters of the annotated func-
tions are more likely be variables. But it is nevertheless a
useful annotation because experience shows it can detect
problems. Sometime parameters are transposed, function
names are misspelled or similar names are used.

4 Debugging Techniques

Unfortunately debugging is a large part of a program-
mer’s life. Fortunately several tools have been developed
to support debugging. The following section describes
some of the available tools.

4.1 Memory Handling Debugging

Memory handling bugs are still very common. These
bugs are also hard to be reproduce and find. Several tools
are available for various debugging stages.

4.1.1 Runtime Tests

The malloc() implementation in the GNU C library
has always been very sensitive when it comes to mem-
ory handling bugs. Buffer overruns often crash applica-
tions. In the most recent versions, a number of additional
tests have been added so that bugs are discovered earlier.
Programs which have run nicely before now might stop
working. This is due to bugs in the memory handling.
The messages GNU C library emits are of this form:

*** glibc detected ***: prg: double free or
corruption: 0x000000000079d4e0

followed by information about the program state (if avail-
able). There are a number of different reasons, the text
after the second *** explains them. Finding the actual
reason for the problem is another matter. There are basi-
cally three problems:

• invalid pointer passed to free(). This can mean
pointers to an object on the stack, in static mem-
ory (data sections), or in memory allocated with
mmap(). It can also mean a pointer in the middle
of a block allocated with malloc().

• free() called more than once for a pointer. This
might also happen implicitly, e.g., when calling
fclose() twice on the same stream.

• buffer overruns.

The message printed should give a hint as to what the
malloc() implementation thinks the problem is. Invalid
pointers should be easy to detect. The mtrace handling
described below helps to trace allocations and then de-
tect invalid pointers. Similarly double free() calls are
detected this way.

The reasons for buffer overruns are much more difficult
to detect. The problems are usually detected after the
buffer overrun occurred, sometimes much later. If tools
like mudflap or valgrind cannot detect the problem,
one needs to do a lot of research. One possibility is
to compile code with the definitions from appendix A.
This will allow tracing back a memory place to the place
where it was allocated. This might not show where the
buffer overrun happens, but the allocation location and
the bytes written during the overrun often provide enough
clues.

18 Version 1.3 Defensive Programming for RHEL

For instance, a bug in rpmwas detected by the malloc()
implementation. The buffer meta data, which was used
in the detection, had the value 6663653916. This looks
like ASCII data. Investigating the memory before this
word shows this:

DSA/SHA1, 2004.....Key ID da84cbd430c9ecf8

This quickly lead to one specific place in the source where
the DSA/SHA1 was used. In this case, as in many oth-
ers, the bytes which have been written beyond the buffer
boundaries often helps locating instruction causing the
buffer overrun. The artificial buffer annotations can help
if the identification of the source is not that easy. Often
it is sufficient to look at the annotation of the previous
block in memory since modifying that block is usually
what caused the buffer overrun to happen.

4.1.2 Freeing Everything

The runtime tests and memory leak tests work their best
only if the program is freeing all the memory it allo-
cated. The free() function has quite a few of runtime
tests which recognize problems. Distinguishing memory
leaks from regular allocations which are used for the du-
ration of the program run is hard unless all memory is
freed. Declaring all non-freed memory an error makes
detecting memory leaks easier.

Always freeing all memory blocks is–for normal, non-
debugging program runs–a waste of time. It unnecessar-
ily slows down the termination of the process and there-
fore affects system performance. On the other hand it
is highly undesirable to have separate binaries, or even
sources, for debugging.

A solution is to include the code to free the memory
only when explicitly requested. This can be triggered by
an program option, environment variable, or “magically”
initiated by a memory testing tool (valgrind does this
for the memory allocated in the GNU C library).

It is a big hassle, though, to write all these functions to
free the memory in the various pieces of the program and
then call them without missing a function.

One solution for this problem is to determine the set of
functions which need to be called automatically. There
are several methods; one which has been proven useful
is to use ELF sections. When defining a cleanup function
we also define a pointer to this functions and store it in a
special section. Then, when we have to call all cleanup
functions we iterate over all the function pointers in this
special section and call the functions they point to one
after the other. A possible solution could then use the
following macro and definition:

asm (".section cleanup_fns, \"a\"");
#define cleanup_fn(name) \

static void name(void); \
static void (*const fn_##name)(void) \

__attribute((unused,
section("cleanup_fns"))) = &name; \

static void name(void)

The macro can then be used like this:

static const char *myname;

cleanup_fn(free_myname)
{

free(myname);
}

void set_myname(const char *s) {
free(myname);
myname = strdup(s);

}
const char *get_myname(void) {

return myname;
}

The function free myname() is statically defined and a
pointer to it is stored in the section .cleanup fns. The
name of the variable used to store the pointer is unimpor-
tant; it will never be used. Note that myname is defined
with file-local scope; it need not be visible outside the
file since the cleanup function is defined in the same file.
The name of the section it is defined in has no influence.

What remains is to specify how the cleanup functions
are called. For this we use a nice little feature of the
GNU linker. The GNU linker automatically generates
two symbols for a section if

a) the section name is a valid C identifier

b) the symbol is referenced

Looking back at the macro definition we see that the
name of the section for the function pointers is indeed
a valid C identifier. Now all we have to do is to reference
the magic symbols.

extern void (*const __start_cleanup_fns)
(void);

extern void (*const __stop_cleanup_fns)
(void);

Ulrich Drepper Version 1.3 19

void run_cleanup(void)
{

void (*const *f)(void)
= &__start_cleanup_fns;

while (f < &__stop_cleanup_fns)
(*f++)();

}

The names of the two “magic” symbols are constructed
by the linker by prepending start and stop re-
spectively to the section name. The two declarations at
the top of the code above declare these two variable. The
two variables define the start and end end of the section.
Since the section contains function pointers, all we have
to do is to iterate over the content of the section and call
the functions. The syntax in run cleanup() might be a
bit confusing, but it is really a trivial function.

There is one more thing which should be mentioned in
this context. It often happens that many of the cleanup
functions look like the free myname() function above
which consists of only a call to free(). If this is the
case it is worthwhile making this a special case: instead
of requiring a function to be defined we simply put the
pointer variable, which needs to be freed, in a special
section and iterate over this section.

asm (".section cleanup_ptrs, \"aw\"");
#define cleanup_ptr(name) name \
__attribute((section("cleanup_ptrs")))

The example to use the cleanup mechanism we saw above
can now be rewritten as follows:

static const char *cleanup_ptr(myname);

void set_myname(const char *s) {
free(myname);
myname = strdup(s);

}
const char *get_myname(void) {

return myname;
}

Note that even though we define myname as a special
case, it is used just like any other variable. It only is spe-
cial when it comes to cleanup. The complete definition
for the cleanup handler now has to look like this:

extern void (*const __start_cleanup_fns)
(void);

extern void (*const __stop_cleanup_fns)
(void);

extern void *const __start_cleanup_ptrs;
extern void *const __stop_cleanup_ptrs;

void run_cleanup(void)
{

void (*const *f)(void)
= &__start_cleanup_fns;

while (f < &__stop_cleanup_fns)
(*f++)();

void *const *p = &__start_cleanup_ptrs;
while (p < &__stop_cleanup_ptrs)

free(*p++);
}

The function is still trivial, there are now just two loops.
The second one calls free() for all the pointers in the
section. This will work even if the variable has not been
used in the program run since free(NULL) is a no-op.

With these kind of definitions it is trivial to free all mem-
ory. The programmer just has to remember to use the
cleanup ptr or cleanup fn macro and conditionally
call the run cleanup() function. There are no penal-
ties to be paid in terms of performance when the memory
need not be freed.

4.1.3 Uninitialized Memory

Another source of problems with memory handling is
uninitialized memory. Variables allocated by the com-
piler in the data sections are always initialized, but vari-
ables allocated on the stack or heap are not. Reading
those variables and using the value before the first write
operation leads to unpredictable results. Some people
like to explicitly initialize all memory after allocation but
this is a big waste of time when the program gets exe-
cuted. It is possible to avoid this waste and still avoid
using uninitialized memory.

In case memory is allocated dynamically and should have
an initial value of all zeros, one should use calloc() in-
stead of malloc(). Not only does this make sure that all
memory is initialized, not more and not less, the imple-
mentation can also avoid the actual initialization process
if it can determine the memory is already cleared.

Detecting whether all memory is initialized is not easy.
The valgrind tool (see page 23) can help but it is slow.
The C library can help determining problems with dy-
namically allocated memory. If at runtime the environ-
ment variable MALLOC PERTURB has a numeric value,
or the function mallopt() is used to set the M PERTURB

option, all memory allocated with a function other than
calloc() is initialized with the given byte value. After
a call to free() the freed memory is overwritten with
another, derived byte value to make sure uses of the now
invalid memory can be detected.

20 Version 1.3 Defensive Programming for RHEL

There is no guarantee that using these options helps de-
tecting problems. Programs might graciously handle such
invalid input. More often than not, the result is that the
program behaves in strange ways or simply crashes. The
latter is often the case if the memory values are used as
pointers. It is therefore useful to use these options during
the QA phase since no correct program must be disturbed
in its operation by it.

These two options do not help at all with detecting prob-
lems with variables allocated on the stack. For detecting
these kind of problems the warnings the compiler emits
when it finds unallocated code, are the best source

4.1.4 Memory Allocation Hooks

The GNU C library contains two interfaces to help mem-
ory debugging. These interfaces use hooks available in
the malloc() implementation which can intercept the
memory handling function calls. This mechanism so far
does not work in multi-threaded application. If a single
thread is used, these functions are very useful.

The first is mtrace(). This function should be called as
the first thing in the main() function. The function by
default does nothing. It requires the environment vari-
able MALLOC TRACE to be set at runtime. The value must
name a file into which the output is written. After the
mtrace() call each memory allocation and deallocation
is logged into the output file. This output is not supposed
to be read by humans. The files can grow very large, de-
pending on the number of memory operation performed.
Once the program terminates (or the muntrace() func-
tion is called), the program can be processed using the
mtrace script.

As an example assume the following code:

int main(void) {
mtrace();
void *p = malloc(10);
malloc(20);
free(p);
return 0;

}

When started with MALLOC TRACE=mout in the environ-
ment, after the program terminates the file moutwill con-
tain the following:

= Start
@ ./m:[0x80483fb] + 0x811a378 0xa
@ ./m:[0x804840b] + 0x811a388 0x14
@ ./m:[0x8048419] - 0x811a378

This data can then be processed by executing the follow-
ing command: mtrace program mout. Doing this for

the example results in this:

Memory not freed:

Address Size Caller
0x0811a388 0x14 at 0x804840b

As can be seen, the memory leak in the code was de-
tected. This has been tested to work on big programs
with huge numbers of memory allocations with output
files of more than 2GB in size. Using the muntrace()

function is usually not needed since the entire program
run should be checked. If only a specific part of the
program should be checked, surround the code with an
mtrace()/muntrace() pair.

mtrace() has one problem, though: it cannot be used
reliably in multi-threaded applications.

The second interface for memory debugging is mcheck().
There are actually three separate interfaces:

int mcheck
(void (*afct)(enum mcheck_status));

int mcheck_pedantic
(void (*afct)(enum mcheck_status));

void mcheck_check_all(void);

The first two functions enable the checking mode. Af-
ter the call, all calls to the malloc() functions will per-
form sanity checks of the blocks involved. In case the
mcheck pedantic() function is used, all the blocks al-
located at that time are checked. As this can easily be
a very slow operation, it should be used with care. If
a memory handling error is detected, the function regis-
tered with the mcheck() or mcheck pedantic() call
is called with an appropriate error value.

If these hooks still do not provide a fine enough granular-
ity to determine when the memory allocation occurs, the
programmer can insert calls to mcheck check all()

at any time. This will cause all allocated blocks to be
checked. The result of all this is that the time of a mem-
ory corruption can be pinned down with some precision.

4.1.5 Memory Handling Debug Products

Red Hat Enterprise Linux comes with a number of pack-
ages which help debugging memory problems. The range
of functionality is wide.

dmalloc dmalloc is a library which contains alter-
native implementations of the standard malloc() func-
tions. If a program is linked with this library, additional
tests are performed at runtime and memory leaks can be

Ulrich Drepper Version 1.3 21

http://dmalloc.com/

detected. The library code will not detect problems when
they happen. Just as with the code we have seen in the
previous section, it detects problems after the fact. The
code is reliable and should not disturb the program at all.

Every source file should be include <dmalloc.h> as the
last header. The resulting binary, executable or DSO,
then has to be linked with libdmalloc or, in case of
an application which uses threads, with libdmallocth.

At runtime the DMALLOC OPTIONS environment variable
needs to be set. If the environment variable is not present,
the program is run without any additional checks. To de-
termine the value the environment variable needs to be
set to, the dmalloc program can be used. For instance,
to write the debug output into a file LOG, perform inter-
nal checks moderately often (every 100th call), and to
perform all possible checks, use the command

dmalloc -l LOG -i 100 high

The output is a shell script fragment which can be di-
rectly used or one can simply use the assignment in the
program start.

DMALLOC_OPTIONS=debug=0x4f4ed03,inter=100,\
log=LOG ./prg param1 param2

The output in the log file shows all kinds of information
from the amount of memory used, the number of calls
made, to the list of memory leaks. In case a memory
corruption is detected, the program stops right away with
a message.

ElectricFence A completely different approach is
taken by ElecticFence. It tries to detect memory ac-
cess problems as they happen. To do this, it always uses
mmap() to allocate memory. Since mmap() can only al-
locate memory with page granularity, a lot of space is
wasted. By default, the actual pointer returned is

ptr+roundup(size, pagesize)−roundup(size, alignment)

I.e., the return value is chosen so that the first byte2 be-
yond the requested buffer is on a different page. If the
environment variable EF PROTECT BELOW is defined in
the application’s environment, the returned pointer is to
the beginning of the mapped area, thus protecting against
memory accesses with negative offsets.

2Due to alignment constrains, there can actually be a few bytes
above the object which are not on the next page.

Now all the library has to do is to ensure that the memory
on the next or previous page can never be accessed. This
can be done by changing the access permissions with
mprotect() to PROT NONE. The address space follow-
ing the page with the data therefore has to be sacrificed
as well. On 32-bit platforms this can quickly lead to ex-
haustion of the available address space. The result is that
every access beyond the top end of the array will cause
the program to crash.

It is also possible to recognize uses of already freed mem-
ory. If the EF PROTECT FREE environment variable is set
to 1, address space is never returned to the system. A
free() call simply makes the memory inaccessible so
that future, invalid use of the memory causes a segmen-
tation fault. The drawback is that a program might very
fast run out of address space.

There are several limitation a user of this library has to
be aware of:

• access checks can only be performed in one direc-
tion: either below or above the allocated buffer.
The default is to check access violations above the
buffer since wrong accesses in the other direction
are much rarer but they still something which hap-
pens in the real world. A bit better protection can
be achieved by running the problem twice, once
with and once without EF PROTECT BELOW defined.

• if the address is only slightly wrong and the block
is aligned at the top of the page, some accesses
beyond the top of the object might go unnoticed if
object size and alignment require a few fill bytes.

• if the address is wrong by an amount greater than
one page size, the access might be beyond the guard
pages with PROT NONE access created by the li-
brary and consequently it might succeed.

• since at least one page is allocated for every mem-
ory allocation request, however small it is, the sys-
tem memory is exhausted much earlier than with
the real malloc() implementation. In addition,
on 32-bit systems the address space size might play
a factor. An allocation of 20 bytes would require
12kB of address space (and 4kB of physical mem-
ory) on an IA-32 machine.

To use ElecticFence there are two possibilities. A pro-
gram can be linked against libefence. Such an exe-
cutable should never be deployed since the memory al-
location is just too inefficient for production use. Alter-
natively the ef script can be used. Simply prepending
ef to command line of the application. All uses of the
malloc() functions are transparently replaced with the
ElecticFence functions by using LD PRELOAD. The pro-
gram runs normally and does not have specially prepared
for using ElecticFence in this mode. This makes ef
easy to use for testing when one suspects an existing pro-
gram has memory handling problems.

22 Version 1.3 Defensive Programming for RHEL

If ElectricFence works, it is good and relatively fast.
But if the limitations are hit, it becomes unusable. There
is no support to find memory leaks, this has to be dealt
with in other ways.

valgrind The most useful memory debugger of those
presented here is valgrind. It is of no use to try dupli-
cating the documentation here. The package comes with
the Red Hat Enterprise Linux and Fedora Core distribu-
tion and should be installed as part of the developer op-
tion. The package contains some documentation which
should be read by interested developers.

In short, valgrind allows you to debug an unmodified
program. It does that by executing the program not using
the processor hardware, but instead in a virtual machine.
valgrind knows about the memory allocation functions
in the C runtime and keeps at any one time a complete
picture of the memory blocks which are allocated and in-
formation whether the data has been initialized or not.
While executing the program, each instruction which ac-
cesses memory is checked and errors are detected. Not
only does valgrind detect invalid write accesses (e.g.,
buffer overflows), it also can detect reads of uninitialized
memory. This last feature is particularly useful since not
many other tools provide this functionality.

valgrind has some limitations, though:

• not all invalid memory accesses are detected, specif-
ically, valgrind does not know about object sizes.
For instance, assume two arrays which are allo-
cated in memory next to each other. If a write ac-
cess using a too-big index for the first array will
touch the memory of the second array, valgrind
cannot detect this. The memory written to is allo-
cated.

• to support debugging multi-threaded application,
valgrind has its own thread library implemen-
tation. This is a pure userlevel implementation
which is not meant to be fast. The problem is that
not only is it not fast, it also does not match 100%
the POSIX specification. Programs which might
work nicely when using the system’s libpthread
can have problems when run under valgrind.

• valgrind internally uses heuristics for most tests.
While this usually works out, there are false pos-
itive reports (and maybe also missing negative re-
ports). One must keep this always in mind: a clean
valgrind run does not mean the program has no
memory handling problems.

• so far valgrind is available in production quality
only for IA-32.

• emulation is slow, many times slower than native
execution (currently 25 to 50 times). This can make
it impractical to debug large programs this way.

The memory usage also increases by factors due
to all the information which needs be maintained
to decide whether a memory access is valid or not.

To use valgrind one simply has to prepend the program
name and the parameter list with valgrind and an op-
tion to select the wanted tool. Today valgrind supports
eight different tools. The most thorough memory test-
ing is performed with the memcheck tool. The complete
command line would therefore look like this:

valgrind --tool=memcheck ./prg param1 param2

By default only memory access errors are reported and a
summary about message use is printed. The program is
not terminated when an error is detected. The operation
is execution without consideration of the validity and the
program continues to run. If --leak-check=yes is also
passed to valgrind, it will also print information about
memory leaks. The memcheck is pretty slow since it has
to check every memory access. The addrcheck tool is
not as thorough, but is faster.

mudflap Yet another different approach is taken by
mudflap, a project which is part of the GNU compiler
and is ported to all architectures. It is available in the
gcc4 preview packages available in Red Hat Enterprise
Linux and Fedora Core. Programs have to be compiled
with a new option which adds instrumentation to the code
to detect memory handling problems. Assume the fol-
lowing code:

int a[10];
int b[10];

int main(void) {
return a[11];

}

When this code is compiled and run using valgrind, no
errors are detected. The GNU C compiler allocates mem-
ory for a and b consecutively and the access to a[11]

most likely will read the value of b[1]. This access will
not fail but the code is clearly not correct. If this code is
compiled with

gcc4 -o bug bug.c -g -fmudflap -lmudflap

and then executed, the program will fail by default and
the mudflap runtime prints warnings like this:

Ulrich Drepper Version 1.3 23

http://valgrind.kde.org/

mudflap violation 1 (check/read):

time=1102895136.630933 ptr=0x600e40 size=48
pc=0x2a95674c88 location=‘bug.c:5 (main)’

/usr/lib64/libmudflap.so.0(__mf_check+0x18)
[0x2a95674c88]

./bug(main+0x7a) [0x400992]
/usr/lib64/libmudflap.so.0(__wrap_main+0x52)

[0x2a956756c2]
Nearby object 1: checked region begins 0B into and
ends 8B after mudflap object 0x601370: name=‘bug.c:1 a’
bounds=[0x600e40,0x600e67] size=40 area=static

check=3r/0w liveness=3
alloc time=1102895136.630865 pc=0x2a95675618
number of nearby objects: 1

What this says is that the code in line 5 in bug.c per-
formed an incorrect read access. The variable in question
is a. There is a whole bunch of other information avail-
able which, with some training, allows a programmer to
find problems rather quickly.

There have been several attempts to extend the compiler
to perform memory checking. mudflap has the advan-
tage that its use does not change the ABI. The gener-
ated code can be mixed and matched with regularly com-
piled code. Specifically, it is possible to call functions
in libraries; these do not have to be provided in special
versions, usable by code compiled with mudflap. The
instrumentation has to be paid for in performance. The
bulk of the cost is in the mudflap runtime handling, the
checking whether accesses are valid or not.

The behavior in case an error is detected and several other
things can be controlled using the MUDFLAP OPTIONS

environment variable. To continue operation despite the
error -viol-nop can be used. It is also possible to auto-
matically start a debugger to attach to the program at the
point of the error. This is enabled by using -viol-gdb.
mudflap can print a list of leak memory blocks upon
process termination if the -print-leaks option is added.
There are a whole bunch of other option available, some
to control functionality, others to tweak the inner work-
ings of mudflap. Add the -help option to show the
whole list.

Compared to valgrind, mudflap misses functionality
to detect reads of uninitialized memory. Optimal results
can only be achieved if almost all the code is compiled
using -fmudflap. Otherwise one has to possibly sieve
through false positive messages resulting from alloca-
tions the mudflap runtime has not seen.

4.2 Use Debug Mode

The C++ runtime library for gcc (libstdc++) has a spe-
cial debug more in which case a lot of additional code is
generated which performs tests at runtime. These tests
will find a wide variety of problems which the C++ spec-
ification does not require to be noticed by default. The
following little program shows the benefits:

#include <vector>
int main() {

std::vector<int> v(10, 42);
return v[11];

}

The variable v is defined as a vector with ten elements.
The following instruction returns the 12th element, which
is out of range. Compiled normally the program runs and
returns a more or less random value. Compiled with the
macro GLIBCXX DEBUG defined (preferably on the com-
mand line of the compiler) the program will notice the
error, print a message, and abort the program:

/usr/lib/gcc/x86_64-redhat-linux/4.0.0/../../../../
include/c++/4.0.0/debug/vector:192:

error: attempt to subscript container with
out-of-bounds index 11, but
container only holds 10 elements.

Objects involved in the operation:
sequence "this" @ 0x0x7fffffb46fa0 {
type = N15__gnu_debug_def6vectorIiSaIiEEE;

}

The option causes a slightly different template definition
of the vector class to be seen by the compiler. The ad-
ditional tests are added to the program code itself. These
are not just calls to special functions in the C++ runtime
which perform the additional checks. This makes the de-
bug mode rather expensive and therefore it should not be
enabled in production code.

4.3 Automatic Backtraces

If something goes wrong in a program when it is in pro-
duction, the programmer needs to be able to find out in
which state the program was before the crash. Other-
wise the programmer would always have to reproduce
the problem which might not always be feasible. Often
the people running the code might not know how to de-
scribe the way to reproduce the program, it might take a
long time, or it might be a non-deterministic event which
caused the problem.

Therefore the goal should be to produce some output
when the program crashes which the program user then
can send along with the report of the incident to the pro-
grammer. This way the programmer can at least get a
first impression where the problem was. In some cases
this is already enough.

The easiest way to achieve this is to link the applica-
tion with a little library called libSegFault (i.e., add
-lSegFault to the command line when linking). This
library registers, upon startup, a number of signal han-
dlers for signals, which usually crash the application.
The signals thus covered are SIGSEGV, SIGILL, SIGBUS,

24 Version 1.3 Defensive Programming for RHEL

SIGSTKFLT, SIGABRT, and SIGFPE. If such a signal ar-
rives (and the program itself has not reset the signal han-
dler) the code in libSegFault prints out quite a bit of
information:

• a dump of the contents of the important registers

• a backtrace, which indicates the current code being
executed and the function calls made to arrive at
that position

• the map of all memory regions in use

After this information has been printed the program ter-
minates as it would do without the signal handlers in-
stalled. If a program is not linked with libSegFault it
still can benefit from it: all that is needed is that the pro-
gram is started using the script catchsegv which comes
with the GNU C library. This script adds the library to the
program at runtime so that it can register the signal han-
dlers and intercept fatal signals. The script does one more
thing: if debug information is available for the program,
it decodes the backtrace. Instead of addresses which the
programmer would have to decode, the script will print
file and function names, together with the exact line of
the source code corresponding to the fatal instruction.

Internally libSegFault uses the functions declared in
<execinfo.h>. The backtrace functions declared there
help with the very machine-specific task of determining
the call tree. Since the program can be in bad shape,
these functions avoid calling complex code like malloc.
Instead it is the programmer’s responsibility to provide
memory when it is needed. This can either be a statically
allocated buffer, or some memory on the stack. These
functions are usable by all programs, not just the code in
libSegFault. This enables you to write crash diagno-
sis functions, which might be better suited for a specific
program. The use is simple: the actual information is
gathered with a call to backtrace() which fills a buffer
provided by the caller.

The return value is the number of values filled into the
buffer. This value, along with the array pointer, is then
passed on to backtrace symbols() or alternatively to
backtrace symbols fd(). These functions try to pro-
vide as much information as possible about the addresses
in the backtrace and create textual output. The differ-
ence is that the first function allocates an array of strings
(the strings are also allocated) which contains the tex-
tual description. A pointer to the array is returned. This
function might be dangerous to use in case of a program
crash since the reason for the crash could very well be
corrupted data in the malloc() implementation.

The backtrace symbols fd() function has no such
problems. It writes the textual representation out to the
file associated with the file descriptor passed to the func-
tions as the third parameter.

Ulrich Drepper Version 1.3 25

A Locating Memory Allocations

The following definitions of macros which replace the allocator interfaces of the standard library help determining
where a specific memory block was allocated. This provides a mean of determining where the memory block or any
neighboring block. The code puts a string once before and once after the actually usable memory. The string consists
of the location where the string was allocated (file name and line number) and the size of the memory block. In a
debugger the place where the memory was allocated is thus visible.

#define malloc(sz) \
({ char __line[strlen(__FILE__) + 6 * sizeof(size_t) + 3]; \

size_t __sz = sz; \
int __n = sprintf(__line, "%c%s:%zu:%zu", \

’\0’, __FILE__, __LINE__, __sz) + 1; \
size_t __pre = roundup(__n, 2 * sizeof(size_t)); \
char *__p = malloc(__sz + __pre + __n); \
if (__p != NULL) \

{ \
memset(mempcpy(__p, __line, __n - 1), ’ ’, __pre - __n); \
__p[__pre - 1] = ’\0’; \
memcpy(__p + __pre + __sz, __line, __n); \

} \
(void *) (__p + __pre); })

#define calloc(szc, n) \
({ size_t __b = (szc) * (n); \

char *__p = malloc(__b); \
__p != NULL ? memset(__p, ’\0’, __b) : NULL; })

#define realloc(oldp, szr) \
({ char *__oldp = oldp; \

char *__cp = __oldp; \
while (*--__cp != ’:’); \
size_t __oldszr = atol(__cp + 1); \
size_t __szr = szr; \
char *__p = malloc(__szr); \
if (__p != NULL) \

{ \
memcpy(__p, __oldp, MIN(__oldszr, __szr)); \
free(__oldp); \

} \
(void *) __p; })

#define free(p) \
(void) ({ char *__p = (char *) (p) - 1; \

while (*--__p != ’\0’); \
free(__p); })

#define valloc(szv) \
({ void *__p; \

posix_memalign(&__p, getpagesize(), szv) ? NULL : __p; })

#define pvalloc(szp) \
({ void *__p; \

size_t __ps = getpagesize(); \
posix_memalign(&__p, __ps, roundup(szp, __ps)) ? NULL : __p; })

#define cfree(p) \
free(p)

26 Version 1.3 Defensive Programming for RHEL

#define posix_memalign(pp, al, szm) \
({ size_t __szm = szm; \

size_t __al = al; \
char __line[strlen(__FILE__) + 6 * sizeof(size_t) + 3]; \
int __n = sprintf(__line, "%c%s:%zu:%zu", \

’\0’, __FILE__, __LINE__, __szm) + 1; \
size_t __pre = roundup(__n, __al); \
void *__p; \
int __r = posix_memalign(&__p, __al, __pre + __szm + __n); \
if (__r == 0) \

{ \
memset(mempcpy(__p, __line, __n - 1), ’ ’, __pre - __n); \
__p[__pre - 1] = ’\0’; \
memcpy((char *) __p + __pre + __szm, __line, __n); \

*pp = (void *) ((char *) __p + __pre); \
} \

__r; })

#define memalign(al, sza) \
({ void *__p; \

posix_memalign(&__p, al, sza) == 0 ? __p : NULL; })

#define strdup(s) \
({ const char *__s = s; \

size_t __len = strlen(__s) + 1; \
void *__p = malloc(len); \
__p == NULL ? NULL : memcpy(__p, __s, __len); })

B References
[1] Ulrich Drepper, Red Hat, Inc., How To Write Shared Libraries, http://people.redhat.com/drepper/dsohowto.pdf,

2003.

[2] Ulrich Drepper, Red Hat, Inc., Security Enhancements in Red Hat Enterprise Linux,
http://people.redhat.com/drepper/nonselsec.pdf, 2004.

[3] Frank Ch. Eigler, Red Hat, Inc., Mudflap: Pointer Use Checking for C/C++,
http://gcc.fyxm.net/summit/2003/mudflap.pdf, 2003.

C Revision History
2004-12-12 First internal draft.

2005-2-19 Many fixes. Expand several sections.

2005-3-4 More language improvements. By Michael Behm.

2005-3-31 Yet more language improvements. By Michael Behm.

2005-4-12 And more. By Michael Behm.

2005-5-11 Some C++ stuff.

2009-3-30 Fix typo in getline example. By Martin Nagy.

Ulrich Drepper Version 1.3 27

http://people.redhat.com/drepper/dsohowto.pdf/
http://people.redhat.com/drepper/nonselsec.pdf/
http://gcc.fyxm.net/summit/2003/mudflap.pdf

	1 Introduction
	2 Safe Programming
	2.1 Counter the C Memory Handling Problems
	2.1.1 Respecting Memory Bounds
	2.1.2 Implicit Memory Allocation

	2.2 Defeating Filesystem-Based Attacks
	2.2.1 Identification When Opening
	2.2.2 Safely Creating Files
	2.2.3 Correct Renaming, Replacing, and Removing

	2.3 Reducing the Risk
	2.3.1 Memory Access
	2.3.2 File Access Permissions
	2.3.3 Process User and Group ID
	2.3.4 Filesystem User and Group ID
	2.3.5 File Descriptor Mode
	2.3.6 Resource Allocation

	2.4 Do Not Trust Anyone
	2.4.1 Authentication via Unix Domain Socket
	2.4.2 Signal Origins
	2.4.3 Avoid Sharing

	2.5 Truly Random
	2.6 Automatic Fortification

	3 Good Practices in Compilation
	3.1 Respect Warnings
	3.2 Avoiding Interfaces
	3.3 Unused Return Values
	3.4 Null Pointer Parameters

	4 Debugging Techniques
	4.1 Memory Handling Debugging
	4.1.1 Runtime Tests
	4.1.2 Freeing Everything
	4.1.3 Uninitialized Memory
	4.1.4 Memory Allocation Hooks
	4.1.5 Memory Handling Debug Products

	4.2 Use Debug Mode
	4.3 Automatic Backtraces

	A Locating Memory Allocations
	B References
	C Revision History

