Q. redhat




Security Risks

Today's program code is often not safe; Red Hat’s goal is to harden the OS

Problems:

private information is locally or even over the Internet readable by too many

people

communication is not safe due to missing encryption and/or protocol errors
authentication is not at all, not correctly, or not thoroughly performed
programs contain bugs

once exploited, the attacker often has complete access to the application and its
code, or even to the entire system




How to Mitigate the Risk

use file system access correctly (owner and group rights, ACL)
use encrypted communication channels
use safe authentication, maybe with central authority

deploy more strict access control mechanisms (rule based access control,
SELinux)

log machine activity
change system to make exploiting program bugs harder

create programs in a way to make exploiting them harder

Here we concentrate on the last two points




Buffer Overflow
Buggy code: Stack layout:

int match(const char *p)

et .
{
char tmp[MAXPASSWD]; w
if (gets(tmp)==NULL) tmp return
return 1; address
return strcmp(p, tmp);
}

Local variables much faster than
mal | oc()




Hardware Support

Processor manufacturers added to counter overflows:

Previously could not protect against execution of readable memory

Intel and AMD added NX support
In all 64-bit processors these days, in 32-bit Pentium4 since 2005Q1
Requires kernels with large memory support (PAE)
Also now available on PPC hardware

Memory regions like stack can be marked read or read/write only

Extends to kernel memory as well

Creates some compatibility problems

Solved via ExecShield mechanisms




Exec-Shield

Developed by Red Hat, shipped in RHEL4

Goals
mark as much memory as possible as not-executable
keep binary compatibility

do not limit address space

Implementation
kernel keeps track of highest address with real code

binaries are instrumented with information whether they need executable stacks
or not

kernel or C library make stack executable if necessary




Exec Shield (cont)

Avoid reproducible layout
fixed addresses problem since they provide jump targets
executable needs fixed address, but not DSOs

stack and heap do not need fixed addresses

Exec Shield randomizes
load addresses of DSO

stack address, heap address

Often used DSOs are loaded in ASCIlI-safe area
Information exposed in /proc limited

Needs coordination with prelinking




Position Independent Executables

Exec Shield cannot randomize load address of executables

Solution: new kind of executables
mixture between executable and DSO
not without cost, but not as expensive as DSOs
recommended for programs accessible through the network

completely compatible with all Linux versions
Use -fpie/-fPIE for compilation and -pie at link-time

First PIEs shipped in RHELS, extended to cover all network visible code in RHEL4

)




Stack Canaries

Automatically generated canary:

int match (const char *p)

{
char tmp[MAXPASSWD];

Canary checked before return value
used

Parameters copied to safety

Non-arrays before arrays

Original stack layout:

return address

tmp parameters

Stack layout after:

return address

p- parameters
tmp > canary

)




Heap Overflows

The heap is the second main source of dynamic memory:
Prone to the same overflow problems as the stack
Corrupt neighboring memory
Overwrite control data structures
Explicit freeing introduces additional problem (double-free)

Either problem used to allow intruder often to write arbitrary data at arbitrary
address

Much more robust implementation in glibc since RHELA4:
Detect most memory corruptions
Detect invalid pointers
Detect double free

Program is stopped before harm can be caused




Automatic Fortification

Starting with Fedora Core 4 C sources can be automatically fortified:

When compiled with FORTIFY_SOURCE, checks are added transparently
Goal is to be unintrusive, not to catch all memory handling problems
Almost no performance loss

Requires new gcc and glibc

Works by tracking size of memory blocks whenever possible
Local memory allocated on stack is known to compiler
Callsto mal | oc() etc is recognized

Special versions of functions writing to memory called with check boundaries
before writing

In RHELDS5, all programs will be compiled this way




ELF Data Hardening

Traditional layout of an ELF file:

i =
L — .data overflow

read-only/exec .data ELF Data .bss

ELF Data exposed
dynamic section
GOT and sometimes PLT

Data unnecessarily writable
const char *const msgs[] = {
“messagel”, “message2”

}




ELF Data Hardening (cont)

Layout after changes in the linker:

.bss overflow
.data overflow

read-only/exec ELF Data .data .bss

Enabled with -z relro linker option
ELF Data before program data
read-only section extended
non-PLT GOT always read-only

if -z now is additionally used entire GOT is read-only

For network accessible applications -z relro -z now advised




Questions?

Comments?

Contact:drepper@redhat.com
Papers: http://people.redhat.com/drepper/nonselsec.pdf
http://people.redhat.com/drepper/defprogramming.pdf

)


mailto:drepper@redhat.com
http://people.redhat.com/drepper/nonselsec.pdf
http://people.redhat.com/drepper/defprogramming.pdf

