
EXPRESSIVE AND ENFORCEABLE
INFORMATION SECURITY POLICIES

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Stephen Nathaniel Chong

August 2008

c© 2008 Stephen Nathaniel Chong

ALL RIGHTS RESERVED

EXPRESSIVE AND ENFORCEABLE INFORMATION SECURITY POLICIES

Stephen Nathaniel Chong, Ph.D.

Cornell University 2008

Declassification and erasure are both common, and often crucial, security

requirements. Declassification occurs when the confidentiality of information is

weakened; erasure occurs when the confidentiality of information is strength-

ened, perhaps to the point of completely removing the information from the

system.

This dissertation presents and explores a framework for declassification and

erasure information security policies, and it shows how these policies can help

in building trustworthy systems.

First, this dissertation demonstrates that the declassification and erasure poli-

cies can be provably enforced. It presents a type system that, in conjunction with

run-time mechanisms, can enforce the declassification and erasure policies on

information from the start of the program until its termination, regardless of how

the information propagates through the system, or where it enters and leaves.

The dissertation defines a novel, precise, end-to-end semantic security condi-

tion, noninterference according to policy, and proves that all well-typed programs

satisfy it. Thus, enforcement of declassification and erasure policies provides

well-defined security guarantees.

Second, this dissertation investigates declassification and erasure in the pres-

ence of mutual distrust: the principals with a security concern in the system do

not necessarily trust each other. Mutual distrust is pervasive. The dissertation

defines decentralized robustness, a semantic security condition that ensures that

each principal is convinced declassification and erasure occur only at appropri-

ate times, regardless of the actions of principals he distrusts. A type system to

enforce decentralized robustness is presented.

Finally, this dissertation demonstrates the practicality of declassification and

erasure policies. The enforcement mechanisms for the policies and decentralized

robustness are incorporated into the Jif programming language (an extension of

the Java programming language with information-flow control). The resulting

language is used to implement a secure remote voting system. The use of erasure

and declassification policies provides additional assurance that the voting system

implementation satisfies some of its security requirements.

BIOGRAPHICAL SKETCH

Stephen Nathaniel Chong was born at a young age in Palmerston North, New

Zealand. The first few years of his life involved little direct interaction with

computers. That changed when his brother won an Aquarius computer as a door

prize at a fair in Sydney, Australia. Stephen and his brother would painstakingly

type in BASIC programs from the manual (including comments), and, due to the

lack of permanent storage, beg their parents to leave the computer plugged in.

Stephen’s next encounter with computers was at Monrad Intermediate School.

There he was given the opportunity to administer the school computers: four

Poly computers, networked together. The Poly was a home and educational

computer, proudly developed in New Zealand in the early 1980s.

Computers got personal (and more mainstream) for Stephen when his mother

acquired an Apple IIc in 1989, ostensibly for work. It was on this machine that

Stephen learned how to program, in Applesoft BASIC. However, the pride and

joy of Stephen’s early adolescence was the first computer he owned: an Amiga

500, purchased in 1989 with carefully saved Bar Mitzvah money.

Since that time, Stephen has owned several personal computers that have

both helped and hindered him in his pursuit of higher education. He completed

a Bachelor of Arts from Victoria University of Wellington in 1996, and a Bachelor

of Science (Honours) from the same institution the following year. Several years

working as consultant drove Stephen back to university. Since August 2001, he

has been studying for a Ph.D. at Cornell University.

iii

To my family,

especially the newest part of it.

iv

ACKNOWLEDGMENTS

There are many people to thank and acknowledge for this existence of this

dissertation. First and foremost, my sincere thanks to my advisor, Andrew

Myers, who has always provided me with superb advice and guidance. I am

deeply indebted to him for his support and encouragement. I am continually

impressed by his insights, enthusiasm, and ability for research. Indeed, it was

his enthusiastic teaching of Advanced Programming Languages that led me to

this area of research. He has been, and will continue to be, a role model for me.

I am also grateful to the other members of my committee: Fred Schneider, Dex-

ter Kozen, and David Easley. They were an insightful and considered readership,

and I have learned much from their feedback.

During my time at Cornell, I have found the Computer Science Department

to be always a friendly, supportive, and creative environment to work (and play)

in. This is due to the excellent students, faculty, and staff.

The various members of the APL group, and the Programming Language

Discussion Group have had a huge influence on my development as a computer

scientist; several have been mentors to me during my time at grad school. I

am grateful to Riccardo Pucella, who has been a great mentor and friend to me,

and was always ready to discuss stupid questions, on any subject. I am also

grateful to Steve Zdancewic, Dan Grossman, and Andrei Sabelfeld, who have

given me much good advice. I look forward to continuing to learn from all of

these mentors.

I have been very fortunate to have had the chance to collaborate with many

others, on papers closely (and not-so-closely) related to my dissertation; each

paper has been an engaging and learning experience. My thanks to Hubie Chen,

v

Michael Clarkson, Jed Liu, Nate Nystrom, Kevin O’Neill, Riccardo Pucella, Xin

Qi, Radu Rugina, K. Vikram, Steve Zdancewic, Lantian Zheng, and Xin Zheng.

I’m also grateful to my office mates and others in the department, who, over

the years, have offered a wealth of advice and welcome distractions: Kamal

Aboul-Hosn, Eric Breck, Hubie Chen, James Cheney, Siggi Cherem, Michael

Clarkson, Amy Gale, Dan Grossman, Jeff Hartline, Bill Hogan, Prakash Linga,

Stephanie Meik, Alex Niculescu-Mizil, Nate Nystrom, Kevin O’Neill, Kelly

Patwell, Sabina Petride, Riccardo Pucella, Filip Radlinski, Ganesh Ramanara-

yanan, Matt Schultz, Alexa Sharp, Becky Stewart, Yanling Wang, Vicky Weissman,

and Tom Wexler. And the nth years of Upson 5154 (and neighbors) provided a

great support group for the final surge...

People make the place, and I am grateful to the many friends that have made

my years in Ithaca memorable, enjoyable, and illuminative. Without these people,

getting a Ph.D. would have harder and much less fun.

Finally, I would like to thank my family. To Mum and Dad: Thank you for

always being loving and supportive, and encouraging independence in your

offspring. To Lewis and Lissa: I am proud to have you as my siblings and my

friends. I wish we got to spend more time together in the same place. And to

Kiran: Thank you, for the last seven years and the many years to come.

vi

TABLE OF CONTENTS

Biographical Sketch . iii
Dedication . iv
Acknowledgments . v
Table of Contents . vii
List of Figures . ix

1 Introduction 1
1.1 End-to-end information security 2
1.2 Information security changes . 4
1.3 Declassification and erasure . 6
1.4 Mutual distrust . 8
1.5 Contributions and outline . 9

2 Erasure and declassification policies 11
2.1 Policies . 11
2.2 Semantics . 19

2.2.1 Notation . 20
2.2.2 Policy semantics . 21
2.2.3 Relabeling judgment . 24

2.3 Security properties . 30
2.3.1 Observational model . 30
2.3.2 Noninterference . 34
2.3.3 Noninterference according to policy 35

3 Enforcement of erasure and declassification 38
3.1 The IMPE language . 38

3.1.1 Syntax . 38
3.1.2 Operational semantics . 39
3.1.3 Type system . 43
3.1.4 Example . 48

3.2 Noninterference according to policy 49
3.2.1 Syntax and semantics of IMP2

E 50
3.2.2 Adequacy of IMP2

E . 53
3.2.3 Type preservation of IMP2

E 55

4 Decentralized policies and robustness 71
4.1 Decentralized Label Model . 71

4.1.1 Confidentiality policies . 72
4.1.2 Integrity policies . 78
4.1.3 Labels . 81

4.2 Decentralized robustness . 82
4.2.1 Robustness . 83

vii

4.2.2 Example . 85
4.2.3 Robustness against all attackers 87
4.2.4 Constraints for checking robustness 89

4.3 Enforcing robustness . 95
4.3.1 Defining robustness in IMPE 97
4.3.2 Enforcing robustness in IMPE 100
4.3.3 Enforcing robustness against all attackers in IMPE 104

5 Declassification, erasure, and robustness in Jif 108
5.1 Syntax and semantics . 108

5.1.1 Decentralized label model 108
5.1.2 Declassification and erasure mechanisms 109
5.1.3 Interaction with Java and Jif features 110

5.2 Tracking information flow . 112
5.2.1 Condition satisfaction . 113
5.2.2 Robustness . 113

5.3 Translation . 115
5.4 Case study: Civitas . 117

6 Related work 121
6.1 Information-flow control . 121

6.1.1 Language-based information-flow control 122
6.1.2 Practical enforcement . 124

6.2 Declassification . 126
6.2.1 When . 127
6.2.2 Where . 129
6.2.3 Who . 131
6.2.4 What . 133
6.2.5 Multiple dimensions . 135

6.3 Information erasure . 137
6.3.1 Language-based erasure . 138
6.3.2 Uses of erasure policies . 140
6.3.3 System-based and hardware-based erasure 141

6.4 Expressive models and policies . 142

7 Conclusion 147
7.1 Declassification and erasure policies 148
7.2 Practical use of declassification and erasure policies 149
7.3 Future work . 149

Bibliography 152

viii

LIST OF FIGURES

2.1 Syntax of policies . 12
2.2 Declassification and erasure examples 14
2.3 Definition of reqErase(p, s) . 15
2.4 Semantics for policies [[p]]s . 21
2.5 Inference rules for c0, . . . , ck ` p ≤ q 24
2.6 Observation level obs(p) . 31

3.1 Syntax of IMPE . 39
3.2 Operational semantics of IMPE . 40
3.3 update(σ, x, v) and erasure(σ) . 40
3.4 Typing rules for IMPE . 44
3.5 Medical information website example 47
3.6 Syntax of IMP2

E . 51
3.7 Operational semantics of IMP2

E . 52
3.8 Typing rules for IMP2

E . 55
3.9 Inference rules for p ≤τ q . 56

4.1 Sealed-bid auction example. 86
4.2 Robust declassification in a confidentiality–integrity product lattice. 89
4.3 Syntax of IMPE with DLM labels 96
4.4 Definition of reqErase(L, s) . 96
4.5 Syntax of fair attacks . 98
4.6 Syntax of IMPE with holes . 98
4.7 Typing rules for robustness in IMPE 101
4.8 Definition of eraseConds(·) for labels and erased(·, ·) 103
4.9 Typing rules for robustness against all attackers in IMPE 105

5.1 Example of a dynamic label upper bound 114
5.2 Example translation source . 115
5.3 Example translation target . 116

ix

CHAPTER 1

INTRODUCTION

Many computer systems have detailed and complicated information secu-

rity requirements, perhaps derived from legislation, user requirements, or or-

ganizational policy. Broadly, information security requirements address the

confidentiality, integrity, and availability of data (Bishop, 2002).

It is important that information security requirements be satisfied in system

implementations. Violations of information security can have severe financial,

legal, or ethical implications (e.g., Bello 2008; Krebs 2008; British Broadcasting

Corporation 2007; Project on Government Oversite 2007; Wagner and Bishop

2007; Federal Trade Commission 2005a; Marlin 2005; Federal Trade Commission

2005b, 2002). Thus, to be trustworthy, a system should enforce information

security correctly.

Current methodologies for building systems provide little assurance that

information security requirements are satisfied because enforcement is not clearly

connected to requirements. Instead, the security of information is implicit in the

system implementation’s use and manipulation of the information. To reason

that an implementation correctly enforces a security requirement may require

reasoning about many pieces of the implementation, often in different modules.

Current implementation techniques do not facilitate this reasoning.

The goal of this work is to demonstrate how information security policies

can help to build trustworthy systems. Expressive, formal, information security

policies help bridge the gap between the information security requirements of

a system and the system implementation. Information security policies allow

the unambiguous specification of a system’s security requirements, and can be

provably enforced. Expressive and enforceable information security policies

1

can provide assurance that an implementation of a system satisfies the system’s

security requirements by providing stronger connections between a system’s

requirements and implementation.

This dissertation shows in two major steps how information security policies

can help to build trustworthy systems. First, it presents expressive policies that

can capture common information security requirements, and can be provably

enforced, with well-understood security guarantees. Second, it incorporates

these policies into a practical programming language, and uses the programming

language to implement a large system to validate the expressiveness and utility

of the policies.

1.1 End-to-end information security

Information security is an end-to-end requirement: the end-to-end behavior of a

system must respect the security requirements, regardless of the implementation

of the system.

Consider, for example, a medical information website that offers (among

other functionality) a diagnostic application, where a user enters symptoms, and

the application presents information about possible diseases consistent with the

symptoms. Suppose there is a confidentiality requirement that the system never

reveal a user’s symptoms to anyone other than the user. It is important to ensure

that the system never outputs the user’s symptoms (other than to the user), as

this would violate the confidentiality requirement.

It is important to protect not only sensitive information, but also data de-

rived from sensitive information. The medical information website should be

prevented not only from revealing a user’s symptoms, but also from revealing

the diagnoses, as the diagnoses may be used to infer the symptoms.

2

Conservatively, it may be necessary to treat all data derived from, or depen-

dent on, sensitive information, as also being sensitive, since derived data may

suffice to deduce some or all of the original information. End-to-end enforce-

ment of security requires protecting information, not just bits. Information can

be regarded as bits in context. For example, a sequence of bits may reveal very

little information by itself; however, knowing that the bit sequence is a UTF-8

encoding of symptoms entered by the user provides context, and reveals the

sensitive information.

End-to-end security cannot be enforced by the commonly used technique

of (discretionary) access control. Access control is able to enforce appropriate

security at the time of the access control check, but not before or after. Consider

using access control to enforce confidentiality. Access control can restrict the

release of information (i.e., can restrict who may read what information when)

but cannot restrict the subsequent propagation of the information. For example,

access control for a file system can prevent a program from reading a file, but

cannot prevent the program from distributing the file’s contents.

Cryptography can provide end-to-end information security in some settings.

For example, end-to-end security can be enforced in a communication network

by applying appropriate cryptographic operations at the endpoints (Saltzer et al.,

1984); this can protect both the confidentiality and integrity of information sent

over the network. However, for a computer system that must examine, ma-

nipulate, combine and compute information, it is infeasible to simply encrypt

information as it enters the system, and decrypt as it leaves. Homomorphic en-

cryption schemes permit only limited computation to be performed on encrypted

data. Similarly, current techniques for secure multiparty computation (Yao, 1982)

cannot perform arbitrary secure computation.

3

Information-flow control is an approach for achieving end-to-end enforcement.

Information-flow techniques enforce security by restricting the flow, or propaga-

tion, of information in a system.

Conceptually, information-flow control techniques label data with security-

relevant annotations (e.g., security classifications, security categories, or con-

fidentiality levels). As data are updated and created, the security labels are

also updated to reflect data dependencies. The security labels can be used, for

example, to prevent confidential data from being output on public channels, or

to prevent untrusted data from being used in trusted contexts. Different classes

of labels can be used to reason about information flow; Denning (1976) advocates

a lattice structure for the labels.

Dynamic information-flow control techniques restrict the flow of information

at runtime. Static information-flow control techniques (Sabelfeld and Myers,

2003), which restrict information flow prior to execution, do not incur the perfor-

mance overheads of representing security labels at runtime.

Noninterference (Goguen and Meseguer, 1982) is an end-to-end semantic

security condition that requires that high security inputs do not affect low secu-

rity outputs. Information-flow control can enforce noninterference. However,

noninterference is too strong a requirement for many systems.

1.2 Information security changes

In many systems, the security to enforce on information changes over time.

Often the change in security is key to the correct functionality of the system, and

the reasons for change are as varied as the systems themselves. The following

examples illustrate the variety in requirements for changing information security.

4

Example 1.1 (Decrease in confidentiality) In a round of poker, players are dealt

cards, and do not reveal their cards until the end of the round. Initially, and throughout

the round, information about who got dealt which cards is highly confidential; at the end

of the round, (some of) the cards are revealed, and the information about who has which

cards is no longer confidential.

Example 1.2 (Increase in confidentiality) A company may desire to share customers’

information (such as demographics, and email addresses) with business partners. Often

a customer has the opportunity to opt out of such information sharing schemes. When

a customer opts out, the company must increase the confidentiality of the customer’s

information, to prevent business partners from using that information.

Example 1.3 (Increase in integrity) To register on a website, a user supplies an email

address, and perhaps other information. The email address is initially treated as low-

integrity information by the website provider, as the provider does not know whether

the email address is valid. The provider sends a message to the user’s email address

requesting the user perform an action, for example, present a nonce to the website. After

the action has been performed, the email address is validated, and can now be treated as

higher integrity information.

Example 1.4 (Increase in availability) Consider a website with users primarily from

one geographic region. The website has high load between the hours of 7 a.m. to 11 p.m.

in that region, and much lower load outside of those hours. The information provided

by the website needs to be highly available during high-load hours. This can perhaps be

obtained by provisioning more web servers during those hours.

5

1.3 Declassification and erasure

Examples 1.1 and 1.2 above concern the decrease and increase, respectively, of

the confidentiality of information. Declassification occurs when the confidentiality

of information is decreased—that is, when the confidentiality of information is

changed to be less restrictive. We define erasure (Chong and Myers, 2005) to be

the opposite case, when the confidentiality of information is changed to be more

restrictive.

The semantic security condition of noninterference is too strong in the pres-

ence of declassification, which intentionally makes secret information public.

Noninterference cannot express erasure requirements, which make publicly

observable information less observable.

Declassification and erasure are both common and crucial information secu-

rity requirements of many applications. The examples below demonstrate the

pervasiveness and diversity of declassification and erasure requirements.

Example 1.5 (Mobile computing) A mobile device, such as a laptop computer, may

operate in several environments of varying sensitivity and vulnerability. When a mobile

device leaves a secure environment (where sensitive information is accessible) for a less

secure environment, it may be necessary to ensure that the mobile device does not contain

any sensitive information. There is an erasure requirement: the mobile device needs to

erase sensitive information before entering a less secure environment.

Example 1.6 (Public computers) Some computers are intended for use by members of

the public, for example, computers in public libraries or kiosks. Users of these computers

may enter and access sensitive information via these computers, such as email, user

names and passwords, or web sites they would prefer to remain confidential.

Each user’s session on a public computer should be independent of previous users’

sessions, to ensure both that a user is not able to learn sensitive information from a

6

previous user’s session, and that a user is not able influence a future user’s session, for

example, by directing a future user to a phishing web site.

Therefore, public computers have an erasure requirement: when a session has finished,

use of information from the session needs to be restrictive enough that it cannot influence

new sessions. Note that session information may be required to be removed completely

from the system, or to remain in the system but be inaccessible by new sessions (for

example, in audit logs).

Example 1.7 (Online transaction) Consider a consumer purchasing a product from

a merchant over a network. In order to complete the transaction, the consumer has to

provide a credit card number to the merchant. The merchant promises not to keep any

record of the credit card number after the transaction. However, once the consumer has

approved the purchase, the merchant must send the credit card number to the bank, which

will keep a record of the credit card number.

The merchant’s system has both a declassification requirement and an erasure require-

ment: the credit card number needs to be released by the merchant’s system and sent to

the bank, and needs to be removed from the system at the end of the transaction.

Example 1.8 (Medical information website) Consider the diagnostic application

on a medical information website, introduced above. A user enters information about

symptoms, and the application presents diseases consistent with the symptoms. Suppose

the website’s privacy policy states that symptoms the user enters are confidential, and no

record of them will be kept after the user has finished using the diagnostic application.

The website has an erasure requirement: when the user has finished using the

diagnostic application, the symptom data that the user has entered must be erased. Note

that the information the user has entered may need to persist over several user requests,

but also might need to be erased before the session has finished. Thus, the lifetime of

the information does not necessarily match that of any web server resource. Another

7

subtlety is that diagnoses the system has produced must also be erased, as they may

reveal information about the symptoms entered.

Example 1.9 (Sealed-bid auction) In a sealed-bid auction (also known as a closed

auction) participants bid for the auctioned item by submitting secret bids. (In a physical

setting, the secrecy of bids might be enforced by placing each bid in an envelope and

sealing the envelope.) Once all bids have been submitted, the bids are revealed, and the

winner (the participant with the highest bid) is determined.

Sealed-bid auctions have declassification requirements on the bids: each bid must be

secret until all bids have been submitted, whereupon it should be declassified, either to

the auctioneer or to all participants, depending on the auction scheme.

Example 1.10 (Poker) As described in Example 1.1, players in a round of poker are

not allowed to reveal their cards until the end of the round. At the end of the round, some

players may be required to reveal their cards, but all players are allowed to reveal their

cards. Thus, for at least some players, the revelation of their cards is optional.

A round of poker has declassification requirements on the cards: a player’s cards must

be secret until the end of the round, whereupon a player may declassify their cards to all

other players.

1.4 Mutual distrust

Many systems interact with multiple principals, entities with security concerns.

Often these principals are mutually distrusting, yet they must cooperate to

achieve a common goal or perform some combined computation. For example,

in sealed-bid auctions, described above in Example 1.9, mutually distrusting

participants cooperate to conduct the auction. In some settings, the auctioneer

8

may also be distrusted (Jones and Menezes, 1995) and distrusting, and yet the

auction must still occur.

In settings with mutually distrusting principals, security becomes relative.

Different principals may have different security requirements. Moreover, in the

presence of mutual distrust, different principals may have very different notions

of who are the potential attackers.

Mutually distrusting principals need tools to express and enforce their secu-

rity requirements, including declassification and erasure requirements. Moreover,

principals need assurance that their requirements are satisfied, regardless of the

actions of principals they distrust.

1.5 Contributions and outline

This dissertation presents and explores a framework for expressive and enforce-

able information security policies. A policy language for declassification and

erasure requirements is presented in Chapter 2, including defining semantics for

the policy language. The policy semantics are used to define a precise end-to-end

security condition, noninterference according to policy.

Chapter 3 demonstrates that the policies can be enforced in a simple im-

perative language, IMPE , using a type system for information-flow control, in

conjunction with run-time mechanisms. Information in IMPE is labeled with

declassification and erasure policies. Any well-typed IMPE program satisfies

noninterference according to policy.

The decentralized label model (Myers and Liskov, 2000) (DLM) allows mutu-

ally distrusting principals to specify information security requirements, and is

thus suitable for reasoning about security requirements in the presence of mutual

distrust. In Chapter 4 we extend the DLM with declassification and erasure

9

requirements. We also define decentralized robustness (Chong and Myers, 2006),

a security condition that uses the DLM to generalize robustness (Zdancewic

and Myers, 2001; Myers et al., 2004; Zdancewic, 2003). Decentralized robustness

requires that any change to information security is sufficiently trusted by the

principals affected by the change. We describe how decentralized robustness

restricts declassification and erasure. We also modify the language IMPE so that

information is labeled with labels from the DLM, and show that this language

enforces decentralized robustness.

Chapters 2–4 introduce expressive policies that can capture common infor-

mation security requirements, and that can be provably enforced. In Chapter

5, we incorporate the DLM with declassification and erasure policies into the

Jif programming language (Myers, 1999; Myers et al., 2001–2008), a practical

programming language that extends Java with information-flow control. We also

adapt and incorporate into Jif the enforcement mechanisms for noninterference

according to policy and decentralized robustness. We use the resulting language,

JifE , to implement Civitas (Clarkson et al., 2008), a secure remote voting service,

and describe the benefits derived therefrom.

Related work is discussed in Chapter 6, and Chapter 7 summarizes and

considers future directions for this work.

The material in Chapters 2–5 is joint work with Andrew Myers, and is adapted

from Chong and Myers (2005, 2006, 2008). The remote voting system Civitas is

joint work with Michael Clarkson and Andrew Myers.

10

CHAPTER 2

ERASURE AND DECLASSIFICATION POLICIES

Formal, checkable, security policies can provide assurance that a computer

system satisfies its security requirements. Designers and developers can formally

express requirements using the policies, which can then be provably enforced

in the subsequent implementation. There are two main challenges: designing

policy languages that are rich enough to express the security requirements, yet

simple enough to enforce provably; and providing end-to-end enforcement of

the policies.

This chapter presents a policy language for two kinds of security require-

ments: erasure and declassification. The security policies describe how the

confidentiality of information changes over time. This chapter also considers

what semantic security guarantees hold when the security policies are enforced.

We consider the end-to-end enforcement of policies in Chapter 3.

2.1 Policies

We assume there is a lattice (L,v) of confidentiality levels that restrict the use of in-

formation and give a base vocabulary for expressing erasure and declassification

policies. Appropriate lattices include the two-point lattice {L,H}where L v H

and H 6v L, and the lattice of principals ordered by an acts-for relation (Myers

and Liskov, 2000). (In Chapter 4 we use the lattice of principals when extending

the decentralized label model (Myers and Liskov, 2000).) We assume there is a

clear notion of enforcement of confidentiality level ` ∈ L on information.

We also assume there is a language for specifying conditions, which indicate

when declassification and erasure occur. Many condition languages are possible;

Chapter 3 uses program expressions as conditions.

11

` ∈ L Lattice element
c, d Conditions
p, q ::= Policies

` Lattice policy
p↘c q Declassification policy
p c↗q Erasure policy

Figure 2.1: Syntax of policies

Security policies describe what confidentiality level is currently enforced on

information, and how this may and must change in the future. Figure 2.1 shows

the syntax of policies.

Lattice policy ` ∈ Lmeans that confidentiality level ` (or a more restrictive

confidentiality level) must be enforced on information now and at all times in

the future.

Declassification policy p↘c q means that policy p is currently enforced on

information, and when condition c is satisfied, information may be declassified,

after which policy q must be enforced (regardless of the subsequent satisfaction

or non-satisfaction of c).

Erasure policy p c↗q means that policy p is currently enforced on information,

and when condition c is satisfied, information must be made more restricted, by

enforcing both policies p and q on the information (regardless of the subsequent

satisfaction or non-satisfaction of c).

The satisfaction of conditions controls when declassification may occur, and

when erasure must occur. Condition satisfaction is specific to the condition lan-

guage used. We assume the condition satisfaction depends only on the current

system state s (which may include the history of the system), and write s � c

if condition c is satisfied in state s, and s 2 c if c is not satisfied in state s. To

instantiate the policy framework, sound decision procedures for the satisfaction

relation s � c and non-satisfaction relation s 2 c must be specified. For expres-

12

sive condition languages, the checking of condition satisfaction is likely to be

incomplete. The effect of incompleteness will be just to make security analysis

more conservative.

For example, if we are enforcing policy H↘cL on information, then we must

enforce the confidentiality level H on the information; however, when condition

c is satisfied, we are permitted to change the confidentiality level enforced on the

information to L. Figure 2.2(a) depicts this graphically. The lines indicate the flow

of information within a system. Initially the information may only flow within

parts of the system where confidentiality level H is enforced, but may flow to

other parts when the condition c is satisfied. Figure 2.2(b) shows what happens

if condition c is never satisfied: the information can never be declassified, and

must always have the policy H enforced on it.

If we are enforcing erasure policy L c↗H on information, then we must enforce

the confidentiality level L on the information, and if and when condition c is

satisfied, we must change the confidentiality level we are enforcing to be at

least as restrictive as both L and H—since L v H , it suffices to enforce the

confidentiality level H . Figure 2.2(c) shows this graphically. Information is

initially in parts of the system where confidentiality level L is enforced, but may

flow at any time to parts where the more restrictive confidentiality level H is

enforced. However, the information must have confidentiality level H enforced

on the information by the time c is satisfied. Figure 2.2(d) shows that when c is

never satisfied, the information never needs to be erased.

Consider enforcing policy (H↘cL) d↗H on information. Initially policy H↘cL

is enforced on information, meaning that the confidentiality level H must be

enforced, and if condition c is satisfied (before d is satisfied) then confidentiality

level L can be enforced on information. However, once condition d is satisfied,

13

time

H

L

c

H

L

time
(a) H↘cL (b) H↘cL when c never satisfied

H

L

time
c

H

L

time
(c) L c↗H (d) L c↗H when c never satisfied

time
c d

H

L

(e) (H↘cL) d↗H

Figure 2.2: Declassification and erasure examples

14

reqErase(p, s)
reqErase(p↘cp′, s)

reqErase(p, s)
reqErase(p c↗p′, s)

s � c
reqErase(p c↗p′, s)

Figure 2.3: Definition of reqErase(p, s)

we must enforce policy H on information, meaning that confidentiality level

H will be enforced then and at all times in the future. Figure 2.2(e) shows this

visually.

Condition satisfaction determines when policies mandate erasure. Policy p

requires information erasure in state s (or simply, requires erasure in state s), denoted

reqErase(p, s), if there is a currently enforced erasure policy whose condition is

satisfied. Figure 2.3 gives inference rules defining reqErase(p, s). Lattice policy `

never requires erasure. Declassification policy p↘c q requires erasure if subpolicy

p (the policy currently enforced) requires erasure. Erasure policy p c↗q requires

erasure if subpolicy p requires erasure, or c is satisfied.

To develop intuition for the erasure and declassification policies, and to show

the expressiveness of the policy framework, we show how declassification and

erasure security requirements presented in the examples of Section 1.3 can be

represented using our policy framework.

Example 2.1 (Mobile computing) When a mobile device moves from a secure envi-

ronment to a less secure environment, there may be a requirement to erase sensitive

information from the device.

For example, suppose a laptop is used both at corporate headquarters and on client

sites. At corporate headquarters, it is connected to the corporate LAN, and has access to

sensitive documents; at the client site, it may be possible for client personnel to use the

laptop.

When sensitive documents are downloaded onto the laptop at headquarters, a suitable

security policy for the documents is H leaveHQ↗>, where leaveHQ is satisfied when the

15

laptop has left the secure environment of corporate headquarters, H is a confidentiality

level for the sensitive documents, and > is a confidentiality level so high that the laptop

is not permitted to hold any data at that level. Thus, the sensitive documents must be

removed from the laptop at or before the time that the laptop is removed from corporate

headquarters. Rather than leave the enforcement of this policy to the laptop user, the

document management system on the laptop could automatically enforce this policy,

erasing sensitive documents whenever the laptop leaves corporate headquarters, perhaps

detected by disconnection from the corporate LAN. An efficient alternative to erasing the

actual documents would be to encrypt them and remove the key from the laptop.

Example 2.2 (Public computers) A user’s session on a public computer should be

independent of previous users’ sessions, to prevent a user’s sensitive information from

being learned by a later user.

One technique to enforce independence between sessions is to ensure that any in-

formation specific to a user session is erased before the start of the next user session.

Erasure policies can provide a suitable expression of this security requirement. Let U be

a confidentiality level corresponding to any information specific to a user’s session, such

as the time a session started, and which web sites were visited during the session. Let the

condition newSess be satisfied at some time before a new user’s session begins, and let >

be a confidentiality level so high that the public computer is not permitted to hold any

data at that level. Applying the security policy U newSess↗> to all information entered

or accessed in a user’s session ensures that information from one user’s session will be

erased before another user’s session begins.

However, it may be necessary to record information about each user’s session for

administrative purposes; for example, to gather statistics regarding how many people

use the public computer and for how long. Thus, completely removing all information

specific to a user’s session may not be possible. We can adapt the erasure policy for

16

user information to permit the recording of information for administrative purposes

while ensuring that each user’s session is independent of other users’ sessions. Let A

be a confidentiality level for administrative information, and assume that U v A and

A 6v U . Then the erasure policy U newSess↗A will allow information from users’ sessions

to be recorded for administrative purposes, but because A 6v U , information held for

administrative purposes cannot influence users’ sessions.

Example 2.3 (Online transaction) Consider a consumer who gives his credit card

number to a merchant, to make some purchase. The merchant should not keep any record

of the credit card number after the transaction, but the merchant must send the credit

card number to the bank, which will keep a record of it.

Let M be a confidentiality level corresponding to information stored by the merchant.

Let B be a confidentiality level corresponding to information stored by the bank. Then a

suitable policy for the credit card number is (M↘purB) end↗B, where pur is a condition

that is satisfied once the consumer has approved the purchase, and end is a condition

that is satisfied by the end of the transaction.

Note that policy (M↘purB) end↗B allows the merchant to release the credit card

details to the bank once the customer has approved the purchase, since (as will be made

precise in Section 2.2.3) information labeled with policy (M↘purB) end↗B is permitted

to be relabeled with the policy B, provided the condition pur is satisfied at the time of

relabeling. However, at the end of the transaction, the policy B should be enforced on

the credit card number, meaning that the bank is allowed to store the number, but the

merchant must have removed the number from his system.

Now suppose we extend the example so that the consumer can optionally allow the

merchant to store the credit card number. This may allow the merchant to maintain

a customer profile, and save the consumer from needing to re-enter the credit card

number for subsequent purchases. A suitable policy for the credit card number is now

17

((M↘purB) end↗B)↘pro (M↘purB), where pro is a condition that is satisfied when the

consumer has given permission for the merchant to maintain a customer profile. Note

that if the consumer gives permission, then the merchant may store the credit card

number with a policy M↘purB, allowing the merchant to send the credit card number to

the bank when the consumer makes a purchase; if the consumer does not give permission,

then the merchant is still required to erase the credit card number by the end of the

transaction.

Example 2.4 (Medical information website) A diagnostic application on a medical

information website takes symptoms entered by the user, and produces possible diagnoses

consistent with the symptoms. The website’s privacy policy states that no record of the

user’s symptoms will be kept after the user has finished using the application.

A suitable policy for symptoms entered by the user could be session appEnd↗>, where

session is a confidentiality level allowing only the session client and server to read

the information, > is a confidentiality level so restrictive that it prevents the server

from storing the information, and appEnd is a condition that is satisfied when the user

has finished using the diagnosis application. Thus, the data entered by the user will

initially have the confidentiality level session enforced on it. Once condition appEnd

is satisfied, the confidentiality level > must be enforced, implying that the data will

be removed completely from the system. End-to-end enforcement of the policies will

ensure that information derived from the user’s symptoms will have the same policy,

session appEnd↗> enforced on it, or something more restrictive. Thus, any diagnoses

derived from the user’s symptoms must also have the confidentiality level > enforced on

them once appEnd is satisfied.

Example 2.5 (Poker) A poker player’s cards should not be revealed until the end of the

round.

18

A suitable security policy for the cards of player Pi is Pi↘end⊥, where end is satisfied

at the end of the round, Pi is a confidentiality level that only player Pi can read, and ⊥ is

the least secret confidentiality level; we assume all players may observe information at

the confidentiality level ⊥. This policy allows player Pi to reveal his cards to the other

players at the end of the round.

The above examples demonstrate that policies can express a wide range

of application-specific declassification and erasure requirements. There are,

however, declassification and erasure requirements that cannot be expressed

using the policies. For example, consider data that has confidentiality level H

enforced on it, but may be declassified to exactly one of confidentiality levels L1

or L2, where L1 v H and L2 v H and L1 and L2 are incomparable. No policy

can capture this requirement. For example, assuming conditions c and d describe

when the data may be declassified to L1 and L2 respectively, policy (H↘cL1)↘dL2

allows the data to be declassified to first L1 and then L2. Due to their nested

structure, policies cannot restrict the declassification of data appropriately.

Although the policy syntax could be altered to be more expressive, we refrain

from doing so. The policies are sufficiently expressive to capture many useful

declassification and erasure requirements.

2.2 Semantics

Erasure and declassification policies describe how the confidentiality of infor-

mation changes over time. We formalize this intuition by defining a semantics

for policies, and exploring properties of the semantics. We also define a rela-

beling judgment that soundly approximates the semantics, but can be checked

syntactically.

19

2.2.1 Notation

We first introduce some concepts and notation for reasoning about the execution

of systems.

Let S be a system. Let ΣS denote the feasible states of S, that is, all states that

may occur in some execution of the system S.

For any two states s, s′ ∈ ΣS , we write s → s′ if and only if the system can

atomically transition from s to s′. The relation →∗ is the reflexive transitive

closure of→.

A trace τ = s0s1 . . . is a finite or infinite sequence of states such that si → si+1

for all i such that i ≥ 0 and i is less than the length of τ . We use |τ | to denote the

length of τ , defining |τ | = ∞ if τ is an infinite sequence. The ith element of τ

is denoted τ [i], that is, τ [i] = si. Thus, the last element of a finite sequence τ is

denoted τ [|τ | − 1].

Let τ = s0s1 . . . be a finite or infinite sequence of states. We use τ [..k] to denote

the sequence of states s0s1 . . . sk, where k < |τ |. For finite trace τ and trace τ ′

where τ [|τ | − 1] → τ ′[0] we write ττ ′ for the trace obtained by appending τ ′ to

τ . For notational convenience, if τ is a finite trace, we write reqErase(p, τ) as an

abbreviation for reqErase(p, τ [|τ | − 1]).

As mentioned in Section 2.1, we write s � c if condition c is satisfied when the

system state is s, and write s 2 c if condition c is not satisfied when the system

state is s.

We write [s, s′] 2 c, where s→∗ s′, to mean that condition c is not satisfied in

any state from s to s′ inclusive:

[s, s′] 2 c , ∀s′′. (s→∗ s′′ ∧ s′′ →∗ s′)⇒ s′′ 2 c.

20

[[`]]s = {(s′, `′) | s→∗ s′ and ` v `′}

[[p↘c q]]s = [[p]]s ∪
⋃
{[[q]]s′ | s→∗ s′ and s′ � c}

[[p c↗q]]s = [[p]]s ∩
(
{(s′, `) ∈ [[p]]s | [s, s′] 2 c} ∪⋃

{[[q]]s′′ | s→∗ s′′ and [s, s′′) 2 c and s′′ � c}
)

Figure 2.4: Semantics for policies [[p]]s

Similarly, we use [s, s′) 2 c, to mean that condition c is not satisfied in any state

from s up to but not including, state s′:

[s, s′) 2 c , ∀s′′. (s→∗ s′′ ∧ s′′ →∗ s′ ∧ s′′ 6= s′)⇒ s′′ 2 c.

2.2.2 Policy semantics

Suppose the current state of the system is s, and we have some information

on which we are enforcing the policy p. The semantics of policy p in state

s, denoted [[p]]s, describe what confidentiality levels may be enforced on the

information, as the system evolves from state s. Thus, the semantics describe

how the confidentiality of the information is allowed to change during the

execution of the system.

More formally, the semantics of policy p in state s is a set of pairs (s, `) of

system states s and confidentiality levels `. If policy p is enforced on information

in state s, and (s′, `′) ∈ [[p]]s, then the state s′ is reachable from the state s in zero

or more steps, and confidentiality level `′ may be enforced on the information in

state s′. Figure 2.4 defines the semantics [[p]]s.

The semantics for confidentiality level ` allow any confidentiality level at

least as restrictive as ` to be enforced at all times in the future. The semantics for

21

a lattice policy ` is thus all possible pairs (s′, `′) where the state s′ is reachable

from the state s, and ` v `′.

The semantics of declassification policy p↘c q is a superset of the semantics of

policy p. If p permits enforcing confidentiality ` in state s′, then p↘c q also permits

it, and in addition, permits policy q to be enforced on information, starting in

any state s′ such that s′ � c.

By contrast, the semantics of erasure policy p c↗q in state s is a subset of the

semantics of p in s. If erasure condition c has not been satisfied from state s to s′,

then confidentiality level ` may be enforced on information in state s′ provided

policy p permits it. However, if condition c has been satisfied, then ` may be

enforced in state s′ only if the semantics of p in s and q in s′′ permit it, for some

state s′′ where condition c is not satisfied between s and s′′. The intuition is that

the information will only be present in the system if the system started enforcing

both policies p and q in state s′′.

Properties of [[p]]s

The semantics of policies have several useful and interesting properties.

First, for any given policy p and states s and s′, the set of confidentiality levels

{` | (s′, `) ∈ [[p]]s} is closed upward.

Property 2.6 For all policies p, states s and s′ and confidentiality levels `, if (s′, `) ∈

[[p]]s, then for all `′ such that ` v `′ we have (s′, `′) ∈ [[p]]s.

Proof: Proof is by induction on the structure of p. Suppose for any subpolicy of

p the result holds. Let s and s′ be states and ` a confidentiality level such that

(s′, `) ∈ [[p]]s. Let `′ be a confidentiality level such that ` v `′. We need to show

(s′, `′) ∈ [[p]]s.

• p ≡ `′′. If (s′, `) ∈ [[`′′]]s, then (s′, `′) ∈ [[`′′]]s.

22

• p ≡ q↘d q′. If (s′, `) ∈ [[p]]s then either (s′, `) ∈ [[q]]s or (s′, `) ∈ [[q′]]s′′ for some

s′′. Either way, by the inductive hypothesis, the result holds.

• p ≡ q d↗q′. If (s′, `) ∈ [[p]]s then either (s′, `) ∈ [[q]]s ∩ [[q′]]s′′ , for some s′′, or

(s′, `) ∈ [[q]]s. Either way, by the inductive hypothesis the result holds.

For all policies p, we observe that as time goes on, as long as the information

does not require erasure, the set of possible confidentiality levels that may be

enforced on information decreases.

Property 2.7 Let p be a policy and s and s′ be states such that s→∗ s′. If for all states

s′′ such that s→∗ s′′ →∗ s′ and s′ 6= s′′ we have ¬reqErase(p, s′′), then [[p]]s′ ⊆ [[p]]s.

Proof: Proof is by induction on the structure of p. Suppose for any subpolicy

of p the result holds. Let s and s′ be states such that s→∗ s′ and for all states s′′

such that s→∗ s′′ →∗ s′ and s′ 6= s′′ we have ¬reqErase(p, s′′). We need to show

[[p]]s′ ⊆ [[p]]s.

• p ≡ `. Trivial.

• p ≡ q↘d q′. If (t, `) ∈ [[p]]s′ then either (t, `) ∈ [[q]]s′ or (t, `) ∈ [[q′]]t′ , for

some t′ such that s′ →∗ t′ and t′ � d. If the former, then since for all s′′,

reqErase(p, s′′) if and only if reqErase(q, s′′), by the inductive hypothesis

we have [[q]]s′ ⊆ [[q]]s. If the latter, then s →∗ t′, so [[q′]]s′ ⊆ [[p]]s. Thus,

[[p]]s′ ⊆ [[p]]s.

• p ≡ q d↗q′. If (t, `) ∈ [[p]]s′ then either (t, `) ∈ [[q]]s′ or (t, `) ∈ [[q]]s′ ∩ [[q′]]t′ , for

some t′ such that s′ →∗ t′ and [s′, t) 2 d. If the former, then since for all s′′,

¬reqErase(p, s′′) implies ¬reqErase(q, s′′), by the inductive hypothesis we

have [[q]]s′ ⊆ [[q]]s. If the later, then s→∗ t′ and [s, t) 2 d, so [[q]]s′∩ [[q′]]t′ ⊆ [[p]]s.

Thus, [[p]]s′ ⊆ [[p]]s.

23

RL-LATTICE

` v `′

c0, . . . , ck ` ` ≤ `′

RL-TRANS
c0, . . . , ck ` p ≤ p′

c0, . . . , ck ` p′ ≤ p′′

c0, . . . , ck ` p ≤ p′′

RL-DECL

c ∈ {c0, . . . , ck}
c0, . . . , ck ` p↘cp′ ≤ p′

RL-DECL-I
c0, . . . , ck ` q ≤ p

c ` q ≤ p′

c0, . . . , ck ` q ≤ p↘cp′

RL-DECL-E

c0, . . . , ck ` p↘cp′ ≤ p

RL-DECL-DECL
c0, . . . , ck ` p ≤ q

c ` p′ ≤ q′

c0, . . . , ck ` p↘cp′ ≤ q↘c q′

RL-ERASE-I

c0, . . . , ck ` p ≤ p c↗p′

RL-ERASE-E
c0, . . . , ck ` p ≤ q
` p′ ≤ q

c0, . . . , ck ` p c↗p′ ≤ q

RL-ERASE-ERASE
c0, . . . , ck ` p ≤ q
` p′ ≤ q′

c0, . . . , ck ` p c↗p′ ≤ q c↗q′)

Figure 2.5: Inference rules for c0, . . . , ck ` p ≤ q

2.2.3 Relabeling judgment

The policy semantics provides a formal meaning for policies, and allows us to

reason about the relative restrictiveness of policies. However, when considering

enforcement of policies in a language-based setting, it is useful to avoid reasoning

directly about the semantics, and instead use a sound syntactic approximation to

the semantics.

We define the relabeling judgment c0, . . . , ck ` p ≤ q over policies such that if

c0, . . . , ck ` p ≤ q then, assuming conditions c0, . . . , ck are all satisfied, informa-

tion labeled with policy p can safely be relabeled with policy q. That is, in any

state s that satisfies all conditions c0, . . . , ck, enforcing q on the information in

that state is consistent with policy p.

24

Intuitively, for the relabeling judgment c0, . . . , ck ` p ≤ q to be sound, policy

q must be at least as restrictive as policy p. That is, anything that q permits to be

done to information, p permits as well. More formally, soundness requires that if

c0, . . . , ck ` p ≤ q then for any state s such that s � ci for all i ∈ 0..k, [[q]]s ⊆ [[p]]s.

Theorem 2.9 below proves the soundness of the relabeling judgment.

Figure 2.5 shows inference rules for the c0, . . . , ck ` p ≤ q judgment. The rule

RL-LATTICE states that information may be relabeled from lattice policy ` to

lattice policy `′ in any state, provided that ` v `′. The rule RL-TRANS makes the

judgment transitive on policies.

The declassification rule RL-DECL permits relabeling from a declassification

policy p↘cp′ to policy p′, provided that condition c is satisfied. This rule captures

the intuitive meaning of declassification policies: declassification may occur

when the appropriate condition is satisfied. Note that rule RL-DECL permits

relabeling from p↘cp′ to p′, and p′ may permit declassifications or require erasures

that p↘cp′ does not.

The declassification introduction rule RL-DECL-I describes when it is per-

missible to relabel information from some policy q to the policy p↘cp′. First, it

must be permitted to relabel information from q to p when c0, . . . , ck are satisfied;

second, in any state where condition c is satisfied, it must be permitted to relabel

information from q to p′.

The declassification elimination rule RL-DECL-E allows information to be

relabeled from a declassification policy p↘cp′ to the policy p. Intuitively, it is

acceptable to relabel information from p↘cp′ to p, since policy p is always more

restrictive than policy p↘cp′, which enforces everything that p does but also

permits declassification to p′.

The rule RL-DECL-DECL describes when information may be relabeled from

25

one declassification policy p↘cp′ to another, more restrictive declassification

policy q↘d q′. The intuition is that this is permitted if q is at least as restrictive as p

when c0, . . . , ck are satisfied, the policy q↘d q′ permits declassification only when

p↘cp′ does (that is, d = c), and, whenever declassification is permitted, q′ is at

least as restrictive as p′.

As can be seen by inspection of Figure 2.5, each of the relabeling rules for

erasure policies corresponds to a relabeling rule for declassification. For example,

erasure introduction RL-ERASE-I is analogous to RL-DECL-E: information may

be relabeled from p to p c↗p′, since p c↗p′ is always more restrictive than p. An

erasure policy p c↗p′ enforces everything that p does, and in addition requires the

information to be erased at certain times.

Erasure elimination RL-ERASE-E is analogous to the rule for declassification

introduction, allowing information to be relabeled from p c↗p′ to q provided that

p can be relabeled to q when conditions c0, . . . , ck are satisfied, and p′ can be

relabeled to q at all times. Intuitively, information may be relabeled to q since

information labeled q would not need to be erased when c is satisfied, as q is at

least as restrictive as both p and p′.

The rule RL-ERASE-ERASE compares two erasure policies, p c↗p′ and q d↗q′,

and is similar to RL-DECL-DECL. Information may be relabeled from p c↗p′ to

q d↗q′ provided that q is at least as restrictive as p when c0, . . . , ck are satisfied,

and whenever p c↗p′ requires information to be erased, so does q d↗q′ (that is,

d = c), and at all times, q′ is at least as restrictive as p′.

There is no erasure rule analogous to RL-DECL. This is because erasure poli-

cies specify information flows that must not happen, which is difficult to capture

with inference rules of this style. Instead, the onus of ensuring information is

erased at appropriate times falls upon the system that enforces the policies.

26

Properties of c0, . . . , ck ` p ≤ q

What properties does the relabeling judgment exhibit? It is easy to establish

that, given any conditions c0, . . . , ck, the relation over policies implied by the

judgment c0, . . . , ck ` p ≤ q is a pre-order: transitive and reflexive. However, it

does not form a partial order, as it is not anti-symmetric. For example, for any

condition c, and confidentiality ` ∈ L, we have both ` ` ≤ `↘c ` and ` `↘c ` ≤ `.

The top and bottom elements of the confidentiality lattice L, denoted >L

and ⊥L respectively, are greatest and least elements: for all policies p, we have

c0, . . . , ck ` p ≤ >L and c0, . . . , ck ` ⊥L ≤ p.

Property 2.8 For any conditions c0, . . . , ck, and all policies p and q, the relation≤c0,...,ck

over policies, where p ≤c0,...,ck q if c0, . . . , ck ` p ≤ q, is a pre-order. Moreover, for all

policies p, c0, . . . , ck ` p ≤ >L and c0, . . . , ck ` ⊥L ≤ p.

Proof: For any conditions c0, . . . , ck, the transitivity of ≤c0,...,ck follows imme-

diately from RL-TRANS. We prove reflexiveness by induction on policies p.

Assume that for all sub-policies p′ of p, we have c0, . . . , ck ` p′ ≤ p′.

Consider the form of p.

• p ≡ `: By RL-LATTICE and reflexiveness of the lattice ordering v, we can

conclude c0, . . . , ck ` ` ≤ `.

• p ≡ q↘d q′: By the inductive hypothesis, c0, . . . , ck ` q ≤ q and c0, . . . , ck `

q′ ≤ q′. It follows immediately by RL-DECL-DECL that c0, . . . , ck ` p ≤ p as

required.

• p ≡ q d↗q′: By the inductive hypothesis, c0, . . . , ck ` q ≤ q and c0, . . . , ck `

q′ ≤ q′. It follows immediately by RL-ERASE-ERASE that c0, . . . , ck ` p ≤ p

as required.

27

Thus, ≤c0,...,ck is a pre-order.

To show that c0, . . . , ck ` ⊥L ≤ p, and c0, . . . , ck ` p ≤ >L, we proceed by

induction on the structure of policies p.

Assume that for all sub-policies p′ of p we have c0, . . . , ck ` ⊥L ≤ p′, and

c0, . . . , ck ` p′ ≤ >L. Consider the form of p.

• p ≡ `: By the lattice properties of L, we have c0, . . . , ck ` ⊥L ≤ `, and

c0, . . . , ck ` ` ≤ >L.

• p ≡ q↘d q′: By the inductive hypothesis, we have c0, . . . , ck ` ⊥L ≤ q and

c0, . . . , ck ` ⊥L ≤ q′, so by RL-DECL-I we can conclude c0, . . . , ck ` ⊥L ≤ p.

Similarly, we have c0, . . . , ck ` q ≤ >L, so by RL-DECL-E we can conclude

c0, . . . , ck ` p ≤ >L.

• p ≡ q d↗q′: By the inductive hypothesis, we have c0, . . . , ck ` ⊥L ≤ q, so

by RL-ERASE-I we can conclude c0, . . . , ck ` ⊥L ≤ p. Similarly, we have

c0, . . . , ck ` q ≤ >L and c0, . . . , ck ` q′ ≤ >L, so by RL-ERASE-E we can

conclude c0, . . . , ck ` p ≤ >L.

The following theorem shows that the relabeling judgment c0, . . . , ck ` p ≤ q

is sound, in the sense that if information may be relabeled from p to q in some

state s in which conditions c0, . . . , ck are all satisfied, then [[p]]s ⊇ [[q]]s. That is,

if c0, . . . , ck ` p ≤ q, then q is at least as restrictive as p, in the sense that if it is

secure to enforcing confidentiality level ` on information labeled with policy q in

state s (for example, allowing some set of people to read the information), then it

would also be secure to enforce ` on information labeled p in state s.

Theorem 2.9 If c0, . . . , ck ` p ≤ q then for all states s, such that ∀i ∈ 0..k. s � ci, we

have [[p]]s ⊇ [[q]]s.

28

Proof: We proceed by induction on the proof of c0, . . . , ck ` p ≤ q. The inductive

hypothesis is that for any premise of the form c0, . . . , ck ` p′ ≤ q′, we have

[[p′]]s ⊇ [[q′]]s for any state s such that ∀i ∈ 0..k. s � ci.

• RL-LATTICE, RL-TRANS. Trivial.

• RL-DECL. Here p ≡ p′↘c q, and s � c. We have [[p′↘c q]]s = [[p′]]s ∪
⋃
{[[q]]s′ |

s→∗ s′ and s′ � c} ⊇ [[q]]s, since s � c.

• RL-DECL-I. Here q ≡ q′↘d q′′, and c0, . . . , ck ` p ≤ q′, and d ` p ≤ q′′. By

the inductive hypothesis, we have [[p]]s ⊇ [[q′]]s and [[p]]s′ ⊇ [[q′′]]s′ for any

state s′ such that s′ � d. Thus, [[p]]s ⊇ [[q]]s as required.

• RL-DECL-E. Here p ≡ q↘cp′, and [[q↘cp′]]s = [[q]]s ∪
⋃
{[[p′]]s′ | s →∗

s′ and s′ � c} ⊇ [[q]]s.

• RL-DECL-DECL. Here p ≡ p′↘cp′′ and q ≡ q′↘c q′′. By the inductive

hypothesis, we have [[p′]]s ⊇ [[q′]]s. Also, for any s′ such that s →∗ s′ and

s′ � c, we have c ` p′′ ≤ q′′, so by the inductive hypothesis, [[p′′]]s′ ⊇ [[q′′]]s′ .

So we have [[p′↘cp′′]]s ⊇ [[q′↘c q′′]]s.

• RL-ERASE-E. Here p ≡ p′ c↗p′′, and, by the inductive hypothesis, [[p′]]s ⊇

[[q]]s and [[p′′]]s′ ⊇ [[q]]s′ for any state s′. Suppose we have a pair (s′, `) ∈ [[q]]s.

Either (1) (s′, `) ∈ [[p′]]s and [s, s′] 2 c, or (2) (s′, `) ∈ [[p′]]s ∩ [[p′′]]s′′ for some

s′′ such that s→∗ s′′ and [s, s′′) 2 c. If case (1) then (s′, `) ∈ [[p]]s. If case (2)

then by assumption ` p′′ ≤ q, and by the inductive hypothesis, we have

[[p′′]]s′′ ⊇ [[q]]s′′ , so (s′, `) ∈ [[p]]s. Thus [[p]]s ⊇ [[q]]s as required.

• RL-ERASE-I. Here q ≡ p d↗q′. Clearly, [[p]]s ⊇ [[p d↗q′]]s = [[q]]s.

• RL-ERASE-ERASE. Here p ≡ p′ c↗p′′ and q ≡ q′ c↗q′′. By the inductive

hypothesis, we have [[p′]]s ⊇ [[q′]]s and for all s′, [[p′′]]s′ ⊇ [[q′′]]s′ . Suppose

we have a pair (s′, `) ∈ [[q′]]s. Either (1) (s′, `) ∈ [[q′]]s and [s, s′] 2 c, or (2)

29

(s′, `) ∈ [[q]]s ∩ [[q′′]]s′′ for some s′′ such that s →∗ s′′ and [s, s′′) 2 c. If case

(1) then (s′, `) ∈ [[p]]s. If case (2) then by assumption ` p′′ ≤ q′′, and by

the inductive hypothesis, we have [[p′′]]s′′ ⊇ [[q′′]]s′′ , so (s′, `) ∈ [[p]]s. Thus

[[p]]s ⊇ [[q]]s as required.

2.3 Security properties

Using the policy semantics, we define an end-to-end semantic security condition,

noninterference according to policy (Chong and Myers, 2005), a generalization of

noninterference (Goguen and Meseguer, 1982). We first present the observational

model used in the definitions of the semantic security conditions.

2.3.1 Observational model

Semantic security conditions based on noninterference (Goguen and Meseguer,

1982) require that high security inputs do not affect low security outputs. The

observational model, and the precise definitions of input, output, high and low

security, lead to slightly different definitions of noninterference (O’Neill et al.,

2006).

We define an observational model suitable for state-based systems. The model

is general, and we instantiate it for a simple imperative language in Chapter 3.

For system S, let O be the set of observables, the possible observations that can

be made on S. We assume that the result of an observation depends only on the

current system state, and for a state s ∈ ΣS and observable o ∈ O, we write s(o)

for the result of making observation o when the system is in state s. Observables

30

obs(`) , `

obs(p↘c q) , obs(p)

obs(p c↗q) , obs(p)

Figure 2.6: Observation level obs(p)

might include the contents of a memory location or register, the temperature of

the CPU, or the image currently displayed on a monitor. The intention is that

the set of observables O is general enough to model all observable aspects of a

system, such as user or network input and output. If the result of an observation

depends on the history of execution, then without loss of generality we can

assume that the system state maintains a history of the system’s execution, and

thus the result of any observation depends only on the current state of the system.

Attackers can observe some, but not necessarily all, of a system’s observables.

We assume that for every observable o ∈ O there is security policy associated

with o, denoted pol(o), and a given attacker’s ability to make observation o

depends only on the security policy pol(o). Intuitively, the security policy pol(o)

is the policy the system should enforce on the information that may be revealed

by making the observation. Our model assumes that each observable o has a

fixed policy for the duration of the execution; it is possible to model observables

with changing policies using collections of observables (cf. Hunt and Sands 2006).

We assume that the confidentiality lattice L can describe the observability of

information, and associate a confidentiality level with each policy p that describes

the policy observability, denoted obs(p). We assume that for a given attacker A,

there is some lattice element `A such that the attacker can make all and only

observations o such that obs(pol(o)) v `.

Figure 2.6 presents inference rules for the function obs(·). The observability of

a lattice policy ` is simply `, and the observability of declassification and erasure

31

policies is the observability of the left subpolicy. Intuitively, the left subpolicy is

the policy that is currently enforced; the right subpolicy indicates the policy that

may (for declassification) or must (for erasure) be enforced in the future. Thus,

observability is determined by the left subpolicy.

Using the policy observability function, we define the observational equivalence

relation ≈` on states, such that for any two states s, s′ ∈ ΣS , we have s ≈` s′ if

the two states are indistinguishable to the attacker; that is, if for all observables

o ∈ O, if the attacker can observe o, then s(o) = s′(o).

Definition 2.10 (Observational equivalence) For any confidentiality level ` ∈ L,

and states s, s′ ∈ ΣS , s and s′ are observationally equivalent at level `, denoted

s ≈` s′, if for all observables o ∈ O such that obs(pol(o)) v `, we have s(o) = s′(o).

We use correspondences (Banerjee et al., 2008) between traces to indicate which

states appear equivalent to an observer that sees first one trace, then the other. A

correspondenceR is a relation over the natural numbers. IfR is a correspondence

for traces τ and τ ′, and (i, j) ∈ R, we will use it to mean that τ [i] and τ ′[j] look

the same to a given observer.

Definition 2.11 (Correspondences) A correspondence R between traces τ and τ ′

is a subset of N× N such that

1. (Completeness) either {i | (i, j) ∈ R} = {i ∈ N | i < |τ |} or {j | (i, j) ∈ R} =

{j ∈ N | j < |τ ′|}; and

2. (Initial states) if |R| > 0 then (0, 0) ∈ R; and

3. (Monotonicity) for all (i, j) ∈ R and (i′, j′) ∈ R, if i < i′ then j ≤ j′; and,

symmetrically, if j < j′ then i ≤ i′.

32

For a correspondence R between traces τ and τ ′, and numbers i, j, if (i, j) ∈ R

then we say that state τ [i] corresponds to state τ ′[j], and vice versa.

This definition of correspondences ensures that a correspondence covers all

states in at least one of τ or τ ′, and if both traces are non-empty, then the initial

states of the traces correspond to each other. The monotonicity requirement

implies that the observer observes each trace as it executes, and time moves only

forward.

Correspondences are both timing and termination insensitive, implicitly as-

suming that an observer cannot directly observe atomic transitions, and cannot

detect if an execution has terminated. The definition can be refined to provide

timing or termination sensitivity. Termination sensitivity is achieved by strength-

ening completeness to require that the correspondence covers all states in both τ

and τ ′, and that no state in τ or τ ′ corresponds to an infinite set of states. Timing

sensitivity is achieved by strengthening the definition so that every state in τ

and τ ′ corresponds to exactly one other state. Note that a timing-sensitive corre-

spondence for two traces is also a termination-sensitive correspondence for those

traces: non-termination of a system can be seen as an extreme timing channel.

Definition 2.12 (Termination-sensitive correspondences) A termination-sensi-

tive correspondence R between traces τ and τ ′ is a correspondence between traces τ

and τ ′ such that

• (Finiteness) for all i < |τ | and j < |τ ′|, {k | (i, k) ∈ R} and {k | (k, j) ∈ R} are

finite and non-empty.

Definition 2.13 (Timing-sensitive correspondences) A timing-sensitive corre-

spondence R between traces τ and τ ′ is a correspondence between traces τ and τ ′ such

that

33

• (Uniqueness) for all i < |τ | and j < |τ ′|, {k | (i, k) ∈ R} and {k | (k, j) ∈ R}

are of size one.

Finally, we assume that a system has a set M of modifiables, elements of the

system that can be directly modified by users, attackers, or other entities. The set

of modifiables model the ways that entities can directly interact with the system.

Examples include input channels (such as network, keyboard, and mouse) and

the physical environment (for example, modifying the thermostat in the server

room). The set of modifiables M may intersect with the set of observables O,

depending on how the system is modeled. For example, if memory locations

can be both observed and altered (a common assumption in language-based

modeling), then each memory location may be present in both M and O.

We write s[m 7→ v] to indicate system state s with modifiable m set to value v.

Similar to observables, we assume that each modifiable m has a security policy

associated with it, denoted pol(m). The policy pol(m) is the security policy that

the system should enforce on information stored in m.

2.3.2 Noninterference

Noninterference (Goguen and Meseguer, 1982) is a semantic security condition

that requires that high security inputs do not affect low security outputs. We

assume that the system’s input is available in a single modifiable location m ∈M ,

and that the output of the system is the sequence of observations during the

subsequent execution of the system.

Noninterference at level ` requires that for any trace of the system with some

input v1, there is another trace of the system with input v2 that looks the same to

an observer at level `. This means that the input does not affect the observable

output.

34

Definition 2.14 (Noninterference) A system S is (termination-sensitive, timing-

sensitive) noninterfering at level ` for input m ∈M if for any two values v1 and v2,

and any state s such that both s0 = s[m 7→ v1] and s′0 = s[m 7→ v2] are feasible, if τ is a

trace of S such that τ [0] = s0, then there is a trace τ ′ such that τ ′[0] = s′0, and there is a

(termination-sensitive, timing-sensitive) correspondence R between τ and τ ′ such that

for all (i, j) ∈ R, τ [i] ≈` τ ′[j].

Noninterference is too strong in the presence of declassification, which inten-

tionally makes secret information public. Also noninterference cannot express

erasure requirements, which make publicly observable information less observ-

able. Both declassification and erasure change the permitted information flows;

noninterference is unable to reason about these changes. Motivated by these

shortcomings of noninterference, we define noninterference according to policy.

2.3.3 Noninterference according to policy

Noninterference according to policy (Chong and Myers, 2005) is a semantic security

condition that generalizes noninterference. It allows precise reasoning about the

observability of information that undergoes declassification and erasure.

Noninterference according to policy is defined in terms of the policy seman-

tics. The intuition behind the policy semantics is that if information in state s

has policy p enforced on it, then when the system enters state s′, the information

(or anything derived or influenced by it) should be observable at level ` only if

(s′, `) ∈ [[p]]s. Noninterference according to policy makes this intuition precise.

Definition 2.15 (Noninterference according to policy) A system is (termination-

sensitive, timing-sensitive) noninterfering according to policy for input m ∈M

if for any two values v1 and v2, and any state s such that both s0 = s[m 7→ v1] and

35

s′0 = s[m 7→ v2] are feasible, then for any trace τ such that τ [0] = s0 there is a trace

τ ′ such that τ ′[0] = s′0, and a (termination-sensitive, timing-sensitive) correspondence

R for τ and τ ′ such that for all confidentiality levels ` ∈ L, and all (i, j) ∈ R, if

(τ [i], `) /∈ [[pol(m)]]s0 or (τ ′[j], `) /∈ [[pol(m)]]s′0 , then τ [i] ≈` τ ′[j].

Like noninterference, noninterference according to policy places restrictions

on whether information input to the system is observable by an attacker during

the execution of the program. However, whereas noninterference required all

corresponding states to be observationally equivalent at a fixed level `, non-

interference according to policy is more precise, and requires corresponding

states to be observationally equivalent at confidentiality levels determined by the

semantics of the policy enforced on the input. Thus, noninterference according to

policy reflects how the observability of input may change during the execution

of the system, as declassifications and erasures occur.

Noninterference according to policy generalizes noninterference. In the ab-

sence of declassification or erasure of the input, noninterference according to

policy reduces to noninterference. More specifically, if the policy enforced on

input m indicates that information will never be observable at a confidentiality

level `, then noninterference according to policy for variable m implies noninter-

ference at level ` for variable m. For example, a program that is noninterfering

according to policy for input m, where pol(m) = H , will never declassify the in-

put to level L, and thus is noninterfering at level L for m. The following theorem

states this formally.

Theorem 2.16 If S is (termination-sensitive, timing-sensitive) noninterfering accord-

ing to policy for input m ∈ M , then for any confidentiality level ` ∈ L such that

` 6∈ {`′ | (s′, `′) ∈ [[pol(m)]]s, s ∈ ΣS}, S is (termination-sensitive, timing-sensitive)

noninterfering at level ` for input m.

36

Proof: Let m ∈ M be fixed. Let s ∈ ΣS , and let v1 and v2 be values such that

both s0 = s[m 7→ v1] and s′0 = s[m 7→ v2] are feasible. Let τ be a trace such that

τ [0] = s0.

Since S is (termination-sensitive, timing-sensitive) noninterfering according

to policy, there is a trace τ ′ such that τ ′[0] = s′0, and a (termination-sensitive,

timing-sensitive) correspondence R for τ and τ ′ such that for all confidentiality

levels `′ ∈ L, and all (i, j) ∈ R, if (τ [i], `′) /∈ [[p]]s0 or (τ ′[j], `′) /∈ [[p]]s′0 , then

τ [i] ≈`′ τ ′[j].

Since ` 6∈ {`′ | (s′, `′) ∈ [[pol(m)]]s0} and ` 6∈ {`′ | (s′, `′) ∈ [[pol(m)]]s′0}, we

must have for all (i, j) ∈ R, τ [i] ≈` τ ′[j]. Thus, S is (termination-sensitive,

timing-sensitive) noninterfering at level ` for input m.

37

38

CHAPTER 3

ENFORCEMENT OF ERASURE AND DECLASSIFICATION

The declassification and erasure policies of Chapter 2 can be enforced in a

simple imperative language using a security-type system and simple run-time

mechanisms. Any well-typed program in this language satisfies noninterference

according to policy.

3.1 The IMPE language

This section presents IMPE , a simple imperative language that incorporates

declassification and erasure policies. The language has run-time mechanisms for

erasure and declassification, and a type system to control the flow of information.

In Section 3.2, we show that these together suffice to enforce declassification and

erasure policies.

3.1.1 Syntax

Figure 3.1 presents the syntax of IMPE . We assume there is a countable set of

variables Vars . Language expressions include integer literals n ∈ Z, and variables

x ∈ Vars . The metavariable ⊕ ranges over total binary operations on integers.

In this chapter, we restrict the conditions of policies in IMPE to expressions.

A condition is satisfied when it evaluates to a non-zero value. For example, if

policy H↘x+3L is enforced on information, that information may be declassified

when expression x+ 3 is non-zero. The lattice of confidentiality levels remains

unspecified.

The commands are standard, with the exception of declassification. The

guarded declassification command x := declassify(e, pf to pt using e0, . . . , ek)

39

e ::= Expressions
n Integer literal
x Variable
e0 ⊕ e1 Binary operation

c ::= Commands
skip No-op
x := e Assignment
c0; c1 Sequence
if e then c0 else c1 Selection
while e do c Iteration
x := declassify(e, pf to pt using e0, . . . , ek)

Guarded declassification

Figure 3.1: Syntax of IMPE

evaluates expression e, and assigns the result to variable x, provided that ex-

pression ei evaluates to a non-zero value, for all 0 ≤ i ≤ k. If there is some ei

that evaluates to zero, then declassification fails. The type system will ensure

that policy pf is an upper bound on information that e may reveal, and that

information labeled pf can safely be relabeled pt provided all conditions ei are

satisfied.

3.1.2 Operational semantics

A memory σ is a map from variables to integers, and is thus a function from Vars

to Z. We write σ(e) for the result of evaluating expression e using memory σ, that

is, using σ(x) as the value of each variable x that occurs in e. We write σ[x 7→ v]

for the memory that maps variable x to integer v, and otherwise behaves exactly

as σ does.

A configuration is a pair of a command c and memory σ, written 〈c, σ〉. A

configuration fully describes the system state, and thus we take ΣIMPE , the set of

feasible states of IMPE , to be the set of all configurations. Since policy conditions

40

OS-SKIP

〈skip; c, σ〉 → 〈c, σ〉

OS-ASSIGN
σ′ = update(σ, x, σ(e))

〈x := e, σ〉 → 〈skip, σ′〉

OS-SEQUENCE

〈c0, σ〉 → 〈c′0, σ′〉
〈c0; c1, σ〉 → 〈c′0; c1, σ

′〉

OS-IF

i =

{
0 if σ(e) 6= 0

1 if σ(e) = 0

〈if e then c0 else c1, σ〉 → 〈ci, σ〉

OS-WHILE

〈while e do c, σ〉 → 〈if e then c; while e do c else skip, σ〉

OS-DECLASSIFY

v =

{
σ(e) if ∀i ∈ 0..k. σ(ei) 6= 0

0 if ∃i ∈ 0..k. σ(ei) = 0
σ′ = update(σ, x, v)

〈x := declassify(e, pf to pt using e0, . . . , ek), σ〉 → 〈skip, σ′〉

Figure 3.2: Operational semantics of IMPE

update(σ, x, v) =

{
erasure(σ) if reqErase(Γ(x), σ)

erasure(σ[x 7→ v]) otherwise

erasure(σ) =
⊔
i∈ω

σi

where σ0 = σ, and

σi+1 = λx ∈ Vars .

{
0 if reqErase(Γ(x), σi)

σi(x) otherwise

and
⊔
i∈ω σi denotes the least upper bound of the chain σ0σ1σ2 . . . under the

ordering v, where
σ′ v σ′′ , ∀x ∈ Vars . σ′(x) = σ′′(x) ∨ σ′′(x) = 0

Figure 3.3: update(σ, x, v) and erasure(σ)

41

are expressions, the satisfaction of a condition depends only on the memory of

the current configuration. For brevity, we thus write reqErase(p, σ) instead of

reqErase(p, 〈c, σ〉).

We assume there is a typing context that indicates what policy should be

enforced on information stored in each variable. A typing context Γ is a function

from Vars to policies, and Γ(x) is the policy that must be enforced on information

stored in variable x. The typing context does not change during execution: a

variable x always has the same policy Γ(x) enforced on it.

Figure 3.2 presents the operational semantics for IMPE , showing how config-

urations are updated as commands execute. The enforcement of policies relies

on two run-time mechanisms, embodied in the operational semantics. The first

is run-time overwriting of variables to enforce erasure; the second is run-time

checking of conditions for declassification. Except for these two mechanisms, the

operational semantics of the language are standard.

Overwriting variables. IMPE enforces erasure by setting the contents of a vari-

able to zero whenever the policy for the variable requires information erasure.

Policy p requires information erasure when reqErase(p, σ) holds, where σ is the

current memory. For example, policies L x≥0↗H and (L x=3↗H)↘yL both require

information erasure if σ(x) = 3. Since conditions are expressions, a condition

may become satisfied when the memory is updated. The operational semantics

for commands that update memory (assignment and declassification) use the

utility function update(σ, x, v) to overwrite variables, defined in Figure 3.3. The

function update(σ, x, v) takes memory σ, variable x, and integer v, and, provided

policy Γ(x) does not require erasure, returns erasure(σ[x 7→ v]). The utility func-

tion erasure(σ) checks for each variable y if policy Γ(y) requires erasure given

42

the memory σ; if so, it overwrites variable y with the value zero. Overwriting y

changes the memory, and thus may trigger the overwriting of other variables.

The function erasure(σ) is defined for all memories σ, and it provably over-

writes variables as required: if memory σ′ = erasure(σ) then for all variables x,

reqErase(Γ(x), σ′) implies σ′(x) = 0.

Theorem 3.1 For all memories σ, the memory σ′ = erasure(σ) is defined. Moreover,

for all variables x ∈ Vars , if reqErase(Γ(x), σ′) then σ′(x) = 0.

Proof: The chain σ0σ1 . . . is nondecreasing under the ordering v, and has the

least upper bound

σ′ = λx ∈ Vars .


0 if ∃i ∈ ω. reqErase(Γ(x), σi)

σ(x) otherwise.

If for some x ∈ Vars we have reqErase(Γ(x), σ′) then there is some finite set

X of variables that occur in conditions of policy Γ(x). Because the chain is

nondecreasing, and from the definition of v, there must be some i ∈ ω such that

for all j ≥ i, and all y ∈ X , σi(y) = σj(y) = σ′(y). Thus, reqErase(Γ(x), σi), and

so, since σ′ is the least upper bound of the chain, σ′(x) = 0.

Run-time mechanism for declassification. Declassification of information can

occur only when appropriate conditions are satisfied. For example, the declas-

sification policy H↘x>0L allows information to be declassified to L when the

expression x > 0 is non-zero, that is, when x is positive. The operational se-

mantics for a guarded declassification command, x := declassify(e, pf to pt

using e0, . . . , ek), evaluates e and assigns the result to variable x provided the

expressions e0, . . . , ek all evaluate to non-zero values. If one or more expressions

ei evaluate to zero, then declassification fails, and variable x is updated with the

43

constant value zero. (Other reasonable semantics include leaving the value of x

unchanged, or stopping execution.)

The use of run-time mechanisms to aid in the enforcement of declassification

and erasure policies allows simpler static enforcement mechanisms. The policies

can be enforced without these run-time mechanisms, but would require either

more complex static enforcement, or less expressive conditions. See Chapter 6

for more discussion on this trade-off.

3.1.3 Type system

The run-time mechanisms of IMPE ensure that declassification only occurs if

appropriate conditions are satisfied, and that variables are overwritten when

their policies require erasure. However, the run-time mechanisms alone are

not sufficient to ensure that erasure and declassification policies are enforced.

What prevents information with erasure policy L c↗H from being stored in a

variable x that has policy L enforced on it? Information in variable x has low

security enforced on it, and is not necessarily overwritten when condition c is

satisfied. Similarly, what prevents information with policy H from being stored

in a variable with policy H↘cL enforced on it, and subsequently (and incorrectly)

declassified?

The type system of IMPE restricts information flow within a program, en-

suring that appropriate policies are enforced on information at all times. The

type system restricts both explicit flows, where information flows from direct

assignments to variables, and implicit flows (Denning and Denning, 1977), where

information flows via the program’s control structure. The type system does not

restrict timing or termination channels.

44

T-SKIP

Γ ` pc pol

pc,Γ ` skip com

T-ASSIGN
Γ ` e : pe exp ` pc ≤ Γ(x)
` pe ≤ Γ(x) Γ ` pc pol

pc,Γ ` x := e com

T-SEQUENCE

pc,Γ ` c0 com pc,Γ ` c1 com

pc,Γ ` c0; c1 com

T-WHILE
Γ ` e : pe exp pc′,Γ ` c com

Γ ` pc pol ` pc ≤ pc′ ` pe ≤ pc′

pc,Γ ` while e do c com

T-IF
Γ ` e : pe exp pc′,Γ ` c0 com pc′,Γ ` c1 com

Γ ` pc pol ` pc ≤ pc′ ` pe ≤ pc′

pc,Γ ` if e then c0 else c1 com

T-DECLASSIFY
Γ ` e : pf exp ` pc ≤ Γ(x) ` pt ≤ Γ(x) Γ ` pc pol
∀i ∈ 0..k. Γ ` ei : Γ(x) exp e0, . . . , ek ` pf ≤ pt

pc,Γ ` x := declassify(e, pf to pt using e0, . . . , ek) com

T-VAL

Γ ` n : p exp

T-VAR

` Γ(x) ≤ p

Γ ` x : p exp

T-OP
Γ ` e0 : p0 exp Γ ` e1 : p1 exp

` p0 ≤ p ` p1 ≤ p

Γ ` e0 ⊕ e1 : p exp

T-POL
∀e ∈ eraseConds(p). Γ ` e : p exp

Γ ` p pol

eraseConds(`) , ∅
eraseConds(p↘c q) , eraseConds(p)

eraseConds(p c↗q) , {c} ∪ eraseConds(p)

Figure 3.4: Typing rules for IMPE

45

The typing judgment pc,Γ ` c com means that command c is well-typed

under typing context Γ and program counter policy pc. The program counter

policy is used to restrict implicit flows. It is an upper bound on the policies

of information that may have influenced the value of the program counter, so

it is an upper bound on the information that may be gained by knowing that

command c is executed. The typing judgment Γ ` e : p exp means that under

typing context Γ, policy p is an upper bound on the policies of information that

may be gained by evaluating expression e.

Figure 3.4 presents inference rules for these typing judgments. The rules

track and restrict the flow of information within a program. For example, the

rule T-ASSIGN for an assignment x := e ensures that information that may be

revealed by evaluating expression e is allowed to flow to variable x (pe ≤ Γ(x)),

and that information that may be revealed by learning the assignment is executed

is also allowed to flow to variable x (pc ≤ Γ(x)).

All the inference rules for the judgments pc,Γ ` c com and Γ ` e : p exp

are standard for information-flow security type systems, with the exception of

the rule for guarded declassification, T-DECLASSIFY. A guarded declassification

command x := declassify(e, pf to pt using e0, . . . , ek) declassifies information

with policy pf to policy pt . Rule T-DECLASSIFY requires that pf can be relabeled

pt for any memory σ in which all conditions e0, . . . , ek are satisfied (e0, . . . , ek `

pf ≤ pt). The typing rule also requires that the declassified information is

allowed to be stored in x (pt ≤ Γ(x)), that the information gained by knowing

the declassification occurred can flow to x (pc ≤ Γ(x)), and that the information

gained by evaluating e is bounded above by policy pf (Γ ` e : pf exp).

There is a flow of information from the conditions e0, . . . , ek to the variable x.

The operational semantics for a guarded declassification will assign the result of

46

evaluating e into x only if all conditions e0, . . . , ek evaluate to non-zero values.

Thus, the value of the variable x after the declassification command may reveal

information about the value of the conditions. The typing rule for declassification,

T-DECLASSIFY, tracks this information flow by requiring Γ(x) to be an upper

bound on the information that may be gained by knowing if condition ei was

satisfied (Γ ` ei : Γ(x) exp).

Well-formed contexts

A variable x is overwritten when Γ(x), the policy enforced on x, requires erasure.

Thus, if satisfaction of condition e can cause policy Γ(x) to require erasure, there

is information flow from e to x. For example, if Γ(x) = L y>0↗H , then the value

of variable y affects the value of variable x, and an observer who learns that x

is not erased learns information about y, to wit, that y ≤ 0. To track and control

this information flow, we restrict the typing contexts that may be used.

For all variables x, we require that policy Γ(x) is well-typed, written Γ `

Γ(x) pol. Any policy pc that is used as a program counter policy in the proof

of a typing judgment pc,Γ ` c com must also be well-typed. The inference

rule for well-typed policies, T-POL, is given in Figure 3.4. It requires that if

condition e may cause policy p to require erasure, then p is an upper bound on

the information that may be obtained by evaluating e, which is expressed by the

premise Γ ` e : p exp.

The recursively defined function eraseConds(p) returns the set of expressions

that may cause policy p to require erasure. That is, reqErase(p, σ) if and only

if there is some condition e ∈ eraseConds(p) such that σ(e) 6= 0. We define the

overwrite dependency relation ≺Γ over variables such that x ≺Γ y if changing the

47

1 if (userReqExit) then
2 appEnd = 1; exit()
3 else
4 // get user’s symptoms
5 symp := getUserSymptoms();
6 ...
7 // diagnosis
8 if (contains(symp, ‘fever’) &&
9 contains(symp, ‘malaise’) && ...) then
10 diag := ‘Influenza’
11 else if ...

Γ(symp) = session appEnd↗>
Γ(diag) = session appEnd↗>

Γ(appEnd) = session
Γ(userReqExit) = session

Figure 3.5: Medical information website example

value of x may cause policy Γ(y) to require erasure. More formally, x ≺Γ y if

there is an expression e such that e ∈ eraseConds(Γ(y)) and x appears in e.

To make it easier to track information flows that occur due to overwriting,

and to simplify security proofs, we require the overwrite dependency relation

to be well-founded. This prevents infinite chains of distinct variables x0, x1, . . . ,

such that the overwriting of variable xi depends on the value of variable xi+1.

Well-foundedness of the overwrite dependency relation also prevents recursively

defined policies. For example, if Γ(x) = L x=0↗H then x ∈ eraseConds(Γ(x))

and x ≺Γ x.

Well-formed contexts are exactly the typing contexts that have a well-founded

overwrite dependency relation and contain only well-typed policies.

Definition 3.2 (Well-formed typing context) Typing context Γ is well-formed if

the overwrite dependency relation≺Γ is well-founded and for all x ∈ Vars , Γ ` Γ(x) pol.

48

3.1.4 Example

Figure 3.5 shows a fragment of IMPE code that could be used to process a client

request to the medical information website described in Example 1.8, and elab-

orated in Example 2.4. For ease of presentation, we assume the existence of

functions and strings.

The code first checks if the user has requested to exit the diagnosis application,

and if so, sets variable appEnd and exits. Otherwise, the code gets the user’s

symptoms and uses them to produce a diagnosis, which would then be displayed

to the user. Modulo the use of strings and functions, the code is well-typed, and

the relevant parts of the typing context Γ are also shown in Figure 3.5.

The policy enforced on the user symptoms, Γ(symp), is session appEnd↗>. As

described in Example 2.4, session is a confidentiality level allowing only the

session client and server to read the information, and > is a confidentiality level

so restrictive that it prevents the server from storing the information. There is an

implicit flow of information from symp to diag, as symp is used in the conditional

test on lines 8–9, and diag is assigned to in the body of the conditional. By

typing rule T-IF, the program counter policy for the conditional’s body must be

at least as restrictive as Γ(symp). Similarly, by rule T-ASSIGN, Γ(diag) must be as

restrictive as that program counter policy. These constraints are satisfied by using

policy Γ(symp) as the program counter policy for the body of the conditional,

since Γ(symp) = Γ(diag).

The value of variable appEnd can cause policy session appEnd↗> to require

erasure. Indeed, when variable appEnd is set (line 2), variables symp and diag are

overwritten. There is thus information flow from appEnd to symp and diag. The

requirement for a well-formed typing context tracks this flow, and requires that

49

` Γ(appEnd) ≤ Γ(symp) and ` Γ(appEnd) ≤ Γ(diag), which are satisfied, as

Γ(appEnd) = session,

Γ(symp) = Γ(diag) = session appEnd↗>,

and

` session ≤ session appEnd↗>.

3.2 Noninterference according to policy

The central result of this chapter is that the type system and runtime mechanisms

of IMPE suffice to enforce erasure and declassification policies. Thus, any well-

typed IMPE program is noninterfering according to policy.

In order to state and prove this result, we first instantiate the observational

model (Section 2.3.1) and refine the general definition of noninterference accord-

ing to policy (Definition 2.15) for IMPE commands.

We assume that the input to the system is given in a variable, and an attacker

can observe some but not necessarily all memory locations. Thus, the set of

observables O and the set of modifiables M are equal to the set of variables Vars .

The policy enforced on a variable x is given by the typing context Γ, so pol(x) =

Γ(x). Thus, configurations 〈c, σ〉 and 〈c′, σ′〉 are observationally equivalent at

level ` if for all variables x ∈ Vars , if obs(Γ(x)) v ` then σ(x) = σ′(x).

Definition 3.3 (Noninterference according to policy) A command c is noninter-

fering according to policy for variable x if for all integers v1, v2 ∈ Z, all memories σ,

memories σ1 = update(σ, x, v1) and σ2 = update(σ, x, v2), and all traces τ1 and τ2 such

that τi[0] = 〈c, σi〉 for i ∈ {1, 2}, there exists a correspondence R for τ1 and τ2 such that

50

for all (i, j) ∈ R, for all ` ∈ L, if (τ1[i], `) 6∈ [[Γ(x)]]〈c, σ1〉 and (τ2[j], `) 6∈ [[Γ(x)]]〈c, σ2〉,

then τ1[i] ≈` τ2[j].

Theorem 3.4 For all typing contexts Γ and commands c, if Γ is well-formed, and

pc,Γ ` c com for some policy pc, then for all variables x ∈ Vars , c is noninterfering

according to policy for variable x.

The proof of Theorem 3.4 uses the technique of Pottier and Simonet (2002) for

showing noninterference in the ML programming language. The key concept of

their technique is to define a new language that can represent two executions

of a program with different inputs, and reduces the proof of noninterference to

demonstrating type-soundness of the new language. We present the syntax and

semantics of the language IMP2
E , show that it is adequate to represent evalua-

tion of two IMPE programs, and show that type preservation in IMP2
E implies

Theorem 3.4.

3.2.1 Syntax and semantics of IMP2
E

The language IMP2
E extends IMPE with pair constructs for commands L c1 | c2 M,

and integers L v1 | v2 M. The pair constructs represent different commands and

integers that may arise in two different executions of an IMPE program. This

allows a single execution of an IMP2
E program to represent the two different

executions of an IMPE program. A command pair cannot be nested inside

another command pair, but can otherwise appear nested at arbitrary depth.

Integer pairs are used to track how memories differ in different executions of a

program: memories in IMP2
E are functions from variables to integers and integer

pairs. Figure 3.6 shows the extended syntax of IMP2
E .

For an extended command c, let the projection functions bcc1 and bcc2 repre-

sent the two IMPE commands that c encodes. The projection functions satisfy

51

c ::= Commands
. . . IMPE commands
L c1 | c2 M Pair command

Figure 3.6: Syntax of IMP2
E

bL c1 | c2 Mci = ci, and are homomorphisms on other commands. Similarly for inte-

ger pairs, bL v1 | v2 Mci = vi. The projection functions are extended to memories,

so that

bσci(x) =


v if σ(x) = v

vi if σ(x) = L v1 | v2 M

The evaluation of expressions are also extended, so that binary operations ⊕

are homomorphic on integer pairs. Thus, the evaluation of an expression e in a

memory σ may be either an integer v or an integer pair L v1 | v2 M.

We extend configurations to triples 〈c, σ〉i for an index i ∈ {•, 1, 2}. The index

indicates if the command c and memory σ represent a pair of configurations (•),

or the left (1) or right (2) side of a pair of configurations. A configuration 〈c, σ〉i

is well formed if i ∈ {1, 2} implies that c does not contain any command pairs,

and the image of σ does not contain any integer pairs.

The operational semantics of IMP2
E are given in Figure 3.7, and extend the

operational semantics of IMPE . The rule OS-PAIR-LIFT allows the evaluation of

either element of a command pair L c1 | c2 M. The rule OS-PAIR-SKIP removes a

command pair when both elements of the pair have finished execution. The rule

OS-PAIR-IF is used when the conditional of an if command evaluates to different

values in the two executions, and as a result, a command pair is introduced,

representing the different commands that each execution will evaluate. Note

that this is the only way in which a command pair can be introduced into a

configuration. For succinctness, this rule uses a ternary expression, (vi 6= 0)?c0 :c1,

52

OS-PAIR-LIFT
〈ci, bσci〉i → 〈c′i, σ′i〉i

{i, j} = {1, 2} c′j = cj σ′j = bσcj

σ′ = λx.


0 if reqErase(Γ(x), bσc1) and

reqErase(Γ(x), bσc2)

Lσ′1(x) |σ′2(x) M if bσci(x) 6= σ′i(x)

σ(x) otherwise

〈L c1 | c2 M, σ〉• → 〈L c′1 | c′2 M, σ′〉•

OS-PAIR-SKIP

〈L skip | skip M, σ〉• → 〈skip, σ〉•

OS-PAIR-IF
σ(e) = L v1 | v2 M

c′i = (vi 6= 0) ? c0 : c1

〈if e then c0 else c1, σ〉• → 〈L c′1 | c′2 M, σ〉•

OS-PAIR-DECLASSIFY
σ(e0 × · · · × ek) = L v1 | v2 M
v′i = (vi 6= 0) ? bσ(e)ci : 0
σ′ = update2(σ, x, L v′1 | v′2 M)

〈x := declassify(e, Lf to Lt using e0, . . . , ek), σ〉• → 〈skip, σ′〉•

update2(σ, y, w) = λx.


0 if ∀i ∈ {1, 2}. reqErase(Γ(x), σ′i)

Lσ′1(x) |σ′2(x) M if ∃i ∈ {1, 2}. bσci(x) 6= σ′i(x)

and ∃i ∈ {1, 2}. ¬reqErase(Γ(x), σ′i)

σ(x) otherwise

where σ′i = update(bσci, y, bwci)

erasure2(σ) = λx.


0 if ∀i ∈ {1, 2}. reqErase(Γ(x), σ′i)

Lσ′1(x) |σ′2(x) M if ∃i ∈ {1, 2}. bσci(x) 6= σ′i(x)

and ∃i ∈ {1, 2}. ¬reqErase(Γ(x), σ′i)

σ(x) otherwise

where σ′i = erasure(bσci)

Figure 3.7: Operational semantics of IMP2
E

53

which is equal to c0 if the predicate vi 6= 0 is true, and to c1 otherwise. The rule OS-

PAIR-DECLASSIFY is used when the evaluation of conditions for a declassification

differ in the two executions. The rule uses the evaluation of the product of the

conditions, e0 × · · · × ek, since this product will be zero if and only if there is

some ei that evaluates to zero.

The rules for IMPE , given in Figure 3.2, are adapted by indexing each configu-

ration with i to become rules for IMP2
E . We write a premise of the form σ(e) 6= 0 to

mean there is an integer v (not an integer pair) such that σ(e) = v and v 6= 0. The

utility functions update(·, ·, ·) and erasure(·) are adapted for IMP2
E ; the new ver-

sions, update2(·, ·, ·) and erasure2(·), are presented in Figure 3.2. For the adapted

IMPE rules, the version of the function to use depends upon the configuration

index: the IMP2
E versions if the index is •; the IMPE versions otherwise.

3.2.2 Adequacy of IMP2
E

The language IMP2
E is adequate for reasoning about the execution of two IMPE

programs. We show that execution of a IMP2
E program is sound (a step taken by

a IMP2
E program corresponds to one or zero steps taken by its projections), and

complete (given two IMPE executions, there is a IMP2
E execution whose projection

agrees with at least one of them). We use→= to denote the reflexive closure of

the relation→.

Lemma 3.5 (Soundness) If 〈c, σ〉• → 〈c′, σ′〉•, then 〈bcci, bσci〉 →= 〈bc′ci, bσ′ci〉

for i ∈ {1, 2}.

Proof: By induction on the derivation 〈c, σ〉• → 〈c′, σ′〉•. The interesting cases

are the new rules introduced for IMP2
E : OS-PAIR-LIFT, OS-PAIR-SKIP, OS-PAIR-

IF, and OS-PAIR-DECLASSIFY. For a reduction using OS-PAIR-LIFT, only one of

54

the two projections takes a step, while the other projection remains unchanged.

For OS-PAIR-SKIP, both projections remain unchanged. For both OS-PAIR-IF,

and OS-PAIR-DECLASSIFY, both projections take a step.

Lemma 3.6 (Stuck configurations) If 〈c, σ〉• is stuck (i.e., cannot be reduced and

c 6= skip), then 〈bcci, bσci〉 is stuck for some i ∈ {1, 2}.

Proof: By structural induction on command c.

Lemma 3.7 (Completeness) If 〈bcci, bσci〉 →∗ 〈c′i, σ′i〉 for i ∈ {1, 2}, then there

exists a IMP2
E configuration 〈c′, σ′〉• such that 〈c, σ〉• →∗ 〈c′, σ′〉• and 〈bc′ci, bσ′ci〉 =

〈c′i, σ′i〉 for some i ∈ {1, 2}.

Proof: Let τi = 〈bcci, bσci〉 . . . 〈c′i, σ′i〉. Let ni be the length of τi. For a IMP2
E

trace τ = 〈c, σ〉• . . . 〈c′, σ′〉•, let fi(τ) be ni minus the number of reduction steps

in τ that reduce the ith projection. Note that fi(τ) is non-negative. Consider

g(τ) = min(f1(τ), f2(τ)). If g(τ) = 0, then τ is a trace that satisfies the conditions.

Suppose g(τ) > 0. Consider the function

h(τ) = (g(τ), |f1(τ)− f2(τ)|, numPairs(τ [|τ | − 1]))

where numPairs(〈c, σ〉•) returns the number of pair commands in c. Note that

all elements of the triple returned by h(τ) are non-negative. If we can extend

τ by one step to a trace τ ′ such that h(τ ′) < h(τ) under lexicographic ordering,

then, by repeated applications, eventually we will produce a trace τ ′′ such that

g(τ ′′) = 0.

We now show how to extend τ to a trace τ ′ such that h(τ ′) < h(τ). By

assumption, g(τ) > 0, so neither τ1 or τ2 is stuck. By Lemma 3.6, we can extend τ

by one more step, producing trace τ ′. By Lemma 3.5, either fi(τ ′) = fi(τ)− 1 for

55

T-PAIR
pc v pc′ protected(pc′, τ)

¬reqErase(pc′, bτc1) pc′,Γ ` c1 com
¬reqErase(pc′, bτc2) pc′,Γ ` c2 com

τ, pc,Γ ` L c1 | c2 M com

T-CONFIG
τ, pc,Γ ` c com

∀x ∈ Vars . (σ(x) = L v1 | v2 M)⇒ protected(Γ(x), τ)

τ, pc,Γ ` 〈c, σ〉• config

Figure 3.8: Typing rules for IMP2
E

some i ∈ {1, 2}, or fi(τ ′) = fi(τ) for all i ∈ {1, 2}. If the former, then h(τ ′) < h(τ).

If the latter, then the rule OS-PAIR-SKIP was used in the reduction, and the last

configuration of τ ′ has one fewer pair command than the last configuration of τ ,

so h(τ ′) < h(τ).

3.2.3 Type preservation of IMP2
E

We extend the type system of IMPE to type IMP2
E commands and configurations.

The extended type system will allow us to show that type preservation of an

IMP2
E program implies noninterference according to policy for an IMPE program.

The typing judgment for commands is now of the form τ, pc,Γ ` c com,

where τ is an execution trace. If τ, pc,Γ ` c com, then command c is well-typed

with typing context Γ and program counter policy pc at the program point when

trace τ has been produced. Typing rules for IMPE (given in Figure 3.4) are made

typing rules for IMP2
E by adding the additional typing parameter τ to each rule.

Similarly, the judgment τ, pc,Γ ` 〈c, σ〉• config means that configuration 〈c, σ〉• is

well-typed with typing context Γ and program counter policy pc at the program

point when trace τ has been produced.

56

p ≤〈c, σ〉 p

τ = τ ′〈c, σ〉 ¬reqErase(p′, τ ′)
p ≤τ ′ p′ [[p′]]σ ⊇ [[q]]σ

p ≤τ q

Figure 3.9: Inference rules for p ≤τ q

The two new typing rules, shown in Figure 3.8, make use of the predicate

protected(p, τ). Informally, if for policy p the predicate protected(p, τ) is true, then

the program input may have flowed through the program, and now be labeled

with the policy p. Thus, this predicate depends on the execution trace τ . Note

that the premises for the typing rule for pairs, T-PAIR, uses the typing judgments

for IMPE , i.e., without the trace τ . This is because well-formed commands do not

have nested command pairs.

To formalize how program input may be relabeled with different policies, we

use the extended relabeling relation p ≤τ q. For policies p and q and finite trace

τ , if p ≤τ q, then input in τ [0], the initial configuration of trace τ , labeled with

policy p can influence information labeled with policy q in final configuration of

τ . Inference rules for this relation are given in Figure 3.9.

More formally, we define protected(p, τ) as

protected(p, τ) , (¬reqErase(p, bτc1) ∨

¬reqErase(p, bτc2)) ∧

∀i ∈ {1, 2}. ¬reqErase(p, bτci)⇒

Γ(x) ≤bτci p

where x is the variable in which program input is placed.

The extended relabeling relation has a nice property with respect to the

semantics of policies. If τ = 〈c, σ〉 . . . 〈c′, σ′〉 and p ≤τ q then the semantics of

q in 〈c′, σ′〉 are a subset of the semantics of p in 〈c, σ〉. We prove this using the

following lemma.

57

Lemma 3.8 If 〈c, σ〉 → 〈c′, σ′〉 and ¬reqErase(p, σ) then [[p]]〈c′, σ′〉 ⊆ [[p]]〈c, σ〉.

Proof: By induction on the structure of p.

Property 3.9 If τ = 〈c, σ〉 . . . 〈c′, σ′〉 and p ≤τ q then [[q]]〈c′, σ′〉 ⊆ [[p]]〈c, σ〉.

Proof: By induction on the derivation of p ≤τ q, using Lemma 3.8.

A well-typed IMP2
E program tracks information flow from the initial input.

The execution of a IMP2
E program preserves typing. This key theorem will allow

us to prove that well-typed IMP2
E programs satisfy noninterference according to

policy.

Theorem 3.10 (Type preservation) Let Γ be a well-formed typing context, and c0 a

IMPE command, c, c′ IMP2
E commands, and σ0, σ, σ

′ IMP2
E memories such that σ0 =

erasure2(σ0) and 〈c0, σ0〉• →∗ 〈c, σ〉• → 〈c′, σ′〉•.

Let τ = 〈c0, σ0〉• . . . 〈c, σ〉•, and let τ ′ = τ〈c′, σ′〉•.

If τ,⊥,Γ ` 〈c, σ〉• config then τ ′,⊥,Γ ` 〈c′, σ′〉• config.

Before we prove Theorem 3.10, we first state and prove a series of useful

lemmas.

The first two lemmas relate to the program counter policy. If a program is

well-typed for some program counter policy pc, then it is also well-typed for any

weaker program counter policy, and also, any variable x that is updated in the

next step satisfies pc ≤ Γ(x).

Lemma 3.11 If pc ≤ pc′ and τ, pc′,Γ ` c com then τ, pc,Γ ` c com.

Proof: By induction on τ, pc′,Γ ` c com.

58

Lemma 3.12 Let Γ be a well-formed typing context, τ a trace, i ∈ {1, 2, •}, c, c′

commands, and σ, sigma′ memories such that 〈c, σ〉i → 〈c′, σ′〉i and τ, pc,Γ ` c com.

For all x ∈ Vars , if σ(x) 6= σ′(x) then pc ≤ Γ(x).

Moreover, if the execution step assigned some variable y, then for all x ∈ Vars , if

σ(x) 6= σ′(x) then Γ(y) ≤ Γ(x).

Proof: By induction on the derivation of 〈c, σ〉i → 〈c′, σ′〉i. The only way the

memory can change is by assigning some variable y the value (or pair value) v,

via the utility function update(σ, y, v).

If x = y, then the appropriate typing rule (OS-ASSIGN, OS-DECLASSIFY, or

OS-PAIR-DECLASSIFY) requires that pc ≤ Γ(y) = Γ(x). If x 6= y, then, considering

the definition of erasure(σ[y 7→ v]) there must be some k such that σ′(x) = σk(x) 6=

σ(x). By induction on k, we can show that for any variable z, if σk(z) 6= σ(z), then

pc ≤ Γ(y) ≤ Γ(z). The base case k = 0 follows from the typing rules requiring

pc ≤ Γ(y). The inductive case is that if ¬reqErase(z, σ) but reqErase(z, σk+1),

then there must be some variable z′ such that σ(z′) 6= σk(z
′) = σ′(z′), z′ appears

in an expression in eraseConds(Γ(z)). By the induction hypothesis, we have

pc ≤ Γ(y) ≤ Γ(z′). Since Γ is well-formed, we have Γ(z′) ≤ Γ(z), so pc ≤ Γ(y) ≤

Γ(z) as required.

To prove type preservation in IMP2
E , it is helpful to know that IMPE also

preserves types.

Lemma 3.13 (Type preservation for IMPE) Let Γ be a well-formed typing context,

and c a IMPE command, and σ a IMPE memory, and pc a policy such that pc,Γ ` c com.

For i ∈ {1, 2}, if 〈c, σ〉i → 〈c′, σ′〉i then pc,Γ ` c′ com.

Proof: By induction on 〈c, σ〉i → 〈c′, σ′〉i, using Lemma 3.11 applied to IMPE

type judgments.

59

The following series of lemmas are related to showing that nice properties

hold for the utility functions update2(·, ·, ·) and erasure2(·). Several of them are

concerned with memories σ that satisfy σ = erasure2(σ). We call such memories

consistent, as they are consistent with erasure requirements: ∀i ∈ {1, 2}. ∀x ∈

V ars. reqErase(Γ(x), bσci)⇒ bσ(x)ci = 0.

The IMP2
E utility functions update2(·, ·, ·) and erasure2(·) agree with their IMPE

versions.

Lemma 3.14 Let σ and σ′ be IMP2
E memories. If σ′ = update2(σ, x, L v1 | v2 M) for some

variable x and values v1 and v2, then for all i ∈ {1, 2}, bσ′ci = update(bσci, x, vi).

Similarly, if σ′ = erasure2(σ), then for all i ∈ {1, 2}, bσ′ci = erasure(bσci)

Proof: Suppose σ′ = update2(σ, x, L v1 | v2 M) for some variable x and values v1

and v2. Let σ′i = update(bσci, x, vi). Let y be a variable. If reqErase(Γ(y), σ′1)

and reqErase(Γ(y), σ′2) then σ′i(y) = 0 = bσ′ci(y) as required. If σ′1(y) = bσc1(y)

and σ′2(y) = bσc2(y) then bσ′(y)ci = bσ(y)ci = σ′i(y) as required. Otherwise,

σ′(y) = Lσ′1(y) |σ′2(y) M, so bσ(y)ci = σ′i(y) as required.

Now suppose σ′ = erasure2(σ). Let σ′i = erasure(bσci). Let y be a variable. If

reqErase(Γ(y), σ′1) and reqErase(Γ(y), σ′2) then σ′i(y) = 0 = bσ′ci(y) as required.

If σ′1(y) = bσc1 and σ′2(y) = bσc2 then bσ′(y)ci = bσ(y)ci = σ′i(y) as required.

Otherwise, σ′(y) = Lσ′1(y) |σ′2(y) M, so bσ(y)ci = σ′i(y) as required.

The utility function update2(·, ·, ·) establishes a consistent memory.

Lemma 3.15 Let σ and σ′ be IMP2
E memories such that σ′ = update2(σ, x, w) for some

variable x and value w. Then σ′ = erasure2(σ′)

Proof: Note that for IMPE memories σ0 and σ′0 if σ′0 = update(σ0, x, v) for some

variable x and value v, then σ′0 = erasure(σ′0). This follows easily from the

definition of update(σ0, x, v) and the idempotency of erasure(·).

60

Let σ′i = erasure(bσ′ci). We have

σ′i = erasure(bσ′ci)

= erasure(bupdate2(σ, x, w)ci)

= erasure(update(bσci, x, bwci))

= update(bσci, x, bwci).

Let y be a variable. Consider erasure2(σ′)(y). If ∀i ∈ {1, 2}. reqErase(Γ(y), σ′i)

then from the definition of update2(σ, x, w) we have σ′(y) = 0 = erasure2(σ′)(y).

Similarly, if ∃i ∈ {1, 2}. ¬reqErase(Γ(y), σ′i) and ∃i ∈ {1, 2}. bσci(y) 6= σ′i(y),

then from the definition of update2(σ, x, w) we have σ′(y) = Lσ′1(y) |σ′2(y) M =

erasure2(σ′)(y). Finally, if we have both ∃i ∈ {1, 2}. ¬reqErase(Γ(y), σ′i) and

∀i ∈ {1, 2}. bσci(y) = σ′i(y), then from the definition of update2(σ, x, w) we have

σ′(y) = σ(y) = erasure2(σ′)(y).

The semantics of IMP2
E preserves consistent memories.

Lemma 3.16 Let Γ be a well-formed typing context, and c0 a IMPE command, c a IMP2
E

command, and σ0, σ IMP2
E memories such that σ0 = erasure2(σ0) and τ = 〈c0, σ0〉• →∗

〈c, σ〉•. Then σ = erasure2(σ).

Proof: By induction on→. When a step does not change the memory, this is

trivial. For OS-ASSIGN, OS-DECLASSIFY, and OS-PAIR-DECLASSIFY, the result

follows from the idempotency of erasure2(·). For OS-PAIR-LIFT, it follows from

the idempotency of erasure(·).

For consistent memories σ, a variable x will map to a pair value in a σ only

if the policy Γ(x) does not require erasure in at least one of the projections.

Equivalently, if Γ(x) requires erasure in both projections, then sigma(x) will not

be a pair value.

61

Lemma 3.17 For all IMP2
E memories σ, and all variables x ∈ Vars , if σ = erasure2(σ)

and σ(x) = L v1 | v2 M, then ¬reqErase(Γ(x), bσci) for some i ∈ {1, 2}.

Proof: Immediate from the definition of erasure2(σ).

For consistent memories σ, if there is a variable x that maps to a pair value,

then there is some variable y such that y also maps to a pair value, Γ(y) does

not require erasure in either projection, and information is allowed to flow from

y to x. The proof of this lemma uses the well-foundedness of the overwrite

dependency relation ≺Γ.

Lemma 3.18 For any IMP2
E memory σ, and variable x, if σ = erasure2(σ) and σ(x) =

L v1 | v2 M, then there is a variable y such that σ(y) = L v′1 | v′2 M and for all i ∈ {1, 2}

¬reqErase(Γ(y), bτci), and Γ(y) ≤ Γ(x)

Proof: If ¬reqErase(Γ(x), bσci) for all i ∈ {1, 2}, then we are done. If not, then by

Lemma 3.17, ¬reqErase(Γ(x), bσci) for some i ∈ {1, 2}. This means there is some

expression e ∈ eraseConds(Γ(x)) such that σ(e) is a pair value, so there is some

variable x0 that appears in e such that σ(x0) is a pair value. Since Γ is well-formed,

we have Γ(x0) ≤ Γ(x). Note that x0 ≺Γ x. If ¬reqErase(Γ(x0), bτci) for all

i ∈ {1, 2}, then we are done. Otherwise, we repeat the argument, forming a chain

x0, x1, . . . such that xk+1 ≺Γ xk and Γ(xk+1) ≤ Γ(xk). Since Γ is a well-formed

typing context, the relation ≺Γ is well-founded, and thus eventually a variable

xn will be found such that σ(xn) is a pair value and ¬reqErase(Γ(xn), bτci) for

all i ∈ {1, 2}.

The next two lemmas concern the preservation of predicates protected(p, τ)

and ¬reqErase(p, bτci) when the trace τ is extended. The first claims that if τ

is extended by one step to τ ′ but the memory is not changed in that step, then

protected(p, τ) implies protected(p, τ ′). The second lemma claims that if a IMP2
E

62

command c is well-typed for a trace τ , and trace τ ′ satisfies all protected(·, ·) and

¬reqErase(·, ·) predicates that τ does, then c is well-typed for τ ′.

Lemma 3.19 Let Γ be a well-formed typing context, and c0, c IMPE commands, and

σ0, σ IMP2
E memories such that σ0 = erasure2(σ0) and 〈c0, σ0〉• →∗ 〈c, σ〉•. Suppose

〈c, σ〉• → 〈c′, σ〉•. Let τ = 〈c0, σ0〉• . . . 〈c, σ〉•, and let τ ′ = τ〈c′, σ〉•. Then for all

policies p, if protected(p, τ) then protected(p, τ ′).

Proof: Suppose protected(p, τ). We need to show that either ¬reqErase(p, bτ ′c1)

or¬reqErase(p, bτ ′c2) and that for i ∈ {1, 2} if¬reqErase(p, bσci) then Γ(x) ≤bτ ′ci

p.

First note that the final memories of τ and τ ′ are identical, so we have

¬reqErase(p, bτci) if and only if ¬reqErase(p, bτ ′ci).

Since protected(p, τ), either ¬reqErase(p, bτc1) or ¬reqErase(p, bτc2), so ei-

ther ¬reqErase(p, bτ ′c1) or ¬reqErase(p, bτ ′c2).

Suppose for some i we have ¬reqErase(p, bτ ′ci). Then ¬reqErase(p, bτci),

and since protected(p, τ), Γ(x) ≤bτci p. By the inference rules for extended relabel-

ing, we can conclude protected(p, τ ′).

Lemma 3.20 Let τ and τ ′ be IMP2
E traces, Γ a well-formed context, pc a policy,

and c a IMP2
E command such that τ, pc,Γ ` c com. If for all policies p we have

protected(p, τ) ⇒ protected(p, τ ′) and ¬reqErase(p, bτci) ⇒ ¬reqErase(p, bτ ′ci),

then τ ′, pc,Γ ` c com.

Proof: By induction on the derivation of τ, pc,Γ ` c com, the only interesting

case being T-PAIR.

Pair commands are introduced into a configuration only when an if command

is executed, and the conditional expression evaluates to a pair value. This restricts

where pair commands may appear.

63

Lemma 3.21 Let Γ be a well-formed context, c a IMPE command, and σ a IMP2
E memory.

For any configuration 〈c′, σ′〉• such that 〈c, σ〉• →∗ 〈c′, σ′〉•, and any sequence d0; d1

that is a sub-command of c′, the command d1 does not contain any pair commands.

Proof: By induction on 〈c, σ〉• →∗ 〈c′, σ′〉•.

Using these lemmas, we can now prove that IMP2
E preserves typing.

Proof of Theorem 3.10: Proof is by induction on the judgment 〈d, σ〉• → 〈d′, σ′〉•.

Let τ = 〈c0, σ0〉• . . . 〈c, σ〉•, and let τ ′ = τ〈c′, σ′〉•. Note that by Lemma 3.16, we

have σ = erasure2(σ) and σ′ = erasure2(σ′).

• OS-SKIP. Here d = skip; d′. Since the memory is unchanged, by Lem-

mas 3.19 and 3.20 we have τ ′,⊥,Γ ` d′ com.

• OS-ASSIGN. Here d = y := e and d′ = skip. By the typing rule

for skip, we have τ ′,⊥,Γ ` d′ com. We need to show that ∀z ∈

Vars . (σ′(z) = L v1 | v2 M)⇒ protected(Γ(z), τ ′). Let z be a variable such that

σ′(z) = L v1 | v2 M. By Lemma 3.17, we either have ¬reqErase(Γ(z), bτ ′c1)

or ¬reqErase(Γ(z), bτ ′c2). We now just need to show that for i ∈ {1, 2}, if

¬reqErase(Γ(z), bτ ′ci) then Γ(x) ≤bτ ′ci Γ(z), where x is the input variable.

Assume that we have ¬reqErase(Γ(z), bτ ′ci).

First, suppose σ(z) = σ′(z). If ¬reqErase(Γ(z), bτci), then, by the inference

rules for the extended relabeling relation, we can conclude that Γ(x) ≤bτ ′ci

Γ(z), and we are done. Otherwise reqErase(Γ(z), bτci), so by Lemma 3.17

and Lemma 3.18, there is a variable w such that σ(w) is a pair value and

¬reqErase(Γ(w), bτci) and Γ(w) ≤ Γ(z). Since τ, pc,Γ ` 〈c, σ〉• config, we

have protected(Γ(w), τ), so Γ(x) ≤bτci Γ(w), and thus, by the inference rules

for the extended relabeling relation, Γ(x) ≤bτ ′ci Γ(z) as required.

64

Otherwise, σ(z) 6= σ′(z) so either z = y, or z was updated by the utility

function erasure(·).

If z = y, then σ(e) is a pair value, since σ′(z) is a pair value. Thus there must

be a variable w that appears in e such that σ(w) is a pair, and Γ(w) ≤ Γ(z)

(by the typing rule for assignment). By Lemma 3.18, there is a variable

w′ such that σ(w′) is a pair value and ¬reqErase(Γ(w′), bτci) and Γ(w′) ≤

Γ(w) ≤ Γ(z). Since τ, pc,Γ ` 〈c, σ〉• config, we have protected(Γ(w′), τ), so

Γ(x) ≤bτci Γ(w′), and thus, by the inference rules for the extended relabeling

relation, Γ(x) ≤bτ ′ci Γ(z) as required.

Finally, if σ(z) 6= σ′(z) and z 6= y, then z was updated by the utility function

erasure(·). Note that this means Γ(z) requires erasure on at least one of

the two projections. By Lemma 3.18, there is a variable w such that σ(w)

is a pair value and ¬reqErase(Γ(w), bτc1) and ¬reqErase(Γ(w), bτc2) and

Γ(w) ≤ Γ(z). Since Γ(w) does not require erasure in either projection, w

was not updated by the utility function erasure(·). Thus, by the previous

cases, we have Γ(x) ≤bτ ′ci Γ(w), and thus Γ(x) ≤bτ ′ci Γ(z) as required.

• OS-SEQUENCE. Here d = d1; d2 and d′ = d′1; d2. By the inductive hypothesis,

we have τ ′,⊥,Γ ` d′1 com, and that ∀x ∈ Vars . (σ′(x) = L v1 | v2 M) ⇒

protected(Γ(x), τ ′). We need to show that τ ′,⊥,Γ ` d2 com. We do this by

an easy induction on the derivation of τ,⊥,Γ ` d2 com which relies on the

fact that, by Lemma 3.21, the command d2 cannot contain a command pair

L d3 | d4 M. Thus we have τ ′,⊥,Γ ` 〈d′1; d2, σ
′〉• config as required.

• OS-IF. Here d = if e then d0 else d1 and d′ = di for some i ∈ {0, 1}.

By the typing rule for if, and Lemma 3.11, we have τ,⊥,Γ ` d′ com.

Since the memory is unchanged, by Lemma 3.19 and Lemma 3.20 we have

τ ′,⊥,Γ ` d′ com.

65

• OS-WHILE. Here d = while e do d1 and d′ = if e then (d1; while e do d1)

else skip. Since τ,⊥,Γ ` d com, we have Γ ` e : pe exp, and there exists

some policy pc′ such that ⊥ ≤ pc′, and pe ≤ pc′, and τ, pc′,Γ ` d1 com.

From this we can derive τ, pc′,Γ ` while e do d1 com, and thus τ, pc′,Γ `

d′ com, so by Lemma 3.11, we have τ,⊥,Γ ` d′ com. Since the memory is

unchanged, by Lemma 3.19 and Lemma 3.20 we have τ ′,⊥,Γ ` d′ com.

• OS-DECLASSIFY. Here d = y := declassify(e, pf to pt using e0, . . . , ek)

and d′ = skip. By the typing rule for skip, we have τ ′,⊥,Γ ` d′ com.

We need to show that ∀z ∈ Vars . (σ′(z) = L v1 | v2 M) ⇒ protected(Γ(z), τ ′).

Let z be a variable such that σ′(z) = L v1 | v2 M. By Lemma 3.17, either

¬reqErase(Γ(z), bτ ′c1) or ¬reqErase(Γ(z), bτ ′c2). We now just need to

show that for i ∈ {1, 2}, if ¬reqErase(Γ(z), bτ ′ci) then Γ(x) ≤bτ ′ci Γ(z).

Suppose ¬reqErase(Γ(z), bτ ′ci).

First, suppose σ(z) = σ′(z). The reasoning is exactly the same as the

analogous subcase in OS-ASSIGN.

Otherwise, σ(z) 6= σ′(z) so either z = y, or z was updated by the utility

function erasure(·).

If z = y, then σ(e) is a pair value, since σ′(z) is a pair value. (This implies

that all conditions ei were satisfied, as otherwise, z is updated with the

non-pair value 0.) The reasoning in this case is exactly the same as the

analogous subcase in OS-ASSIGN.

Finally, if σ(z) 6= σ′(z) and z 6= y, then z was updated by the utility function

erasure(·). The reasoning here is exactly the same as the analogous subcase

in OS-ASSIGN.

• OS-PAIR-SKIP. Immediate by typing rule for skip.

66

• OS-PAIR-LIFT. Here d = L d1 | d2 M and d′ = L d′1 | d′2 M. If σ′ = σ, then by

Lemma 3.19, we have τ ′,⊥,Γ ` d′ com. So suppose σ′ 6= σ.

Since τ,⊥,Γ ` d com, there is a policy pc′ such that we have protected(pc′, τ),

¬reqErase(pc′, τ), and pc′,Γ ` di com for i ∈ {1, 2}. By Lemma 3.13, we

have pc′,Γ ` d′i com, for i ∈ {1, 2}.

Without loss of generality, assume that it is the left execution that makes

progress, and thus d2 = d′2. Note that since the left projection made

progress, the right projection was unchanged, so bσ′c2 = bσc2, so we have

¬reqErase(pc′, bσ′c2).

If ¬reqErase(pc′, bσ′c1), then we can easily show that protected(pc′, τ ′), so

we have τ ′,⊥,Γ ` d′ com, as required.

Otherwise, suppose reqErase(pc′, bσ′c1). Since σ′ 6= σ, there must have

been either an assignment or a declassification, updating some variable

y. By the definition of update(·, ·, ·), this means that ¬reqErase(Γ(y), bτc1),

and by the well-formedness of Γ, ¬reqErase(Γ(y), bτ ′c1) (since whether

Γ(y) requires erasure cannot depend on y). By Lemma 3.12, pc′ ≤

Γ(y). Since ¬reqErase(pc′, bσc1) but reqErase(pc′, bσ′c1), there is a vari-

able y′ such that bσ′c1(y′) 6= bσc1(y′), and there is an expression e ∈

eraseConds(pc′) such that y′ appears in e, and either y = y′ or y can affect

whether Γ(y′) requires erasure, that is (y, y′) is in the transitive closure of

the overwrite dependency relation ≺Γ. From the well-formedness of Γ, we

have Γ(y) ≤ Γ(y′), and since Γ ` pc′ pol, Γ(y′) ≤ pc′, and thus Γ(y) ≤ pc′.

Since σ′(y) is a pair value, by Lemma 3.18, there is a variable

w such that σ′(w) is a pair value and ¬reqErase(Γ(w), bτ ′c1) and

¬reqErase(Γ(w), bτ ′c2) and Γ(w) ≤ Γ(y). If Γ(y) ≤ Γ(w), then pc′ ≤

Γ(w), so Γ(x) ≤bτ ′ci Γ(w), so protected(Γ(w), τ ′). If Γ(y) 6v Γ(w),

67

then by Lemma 3.12, σ(w) = σ′(w), and so ¬reqErase(Γ(w), bτc1)

and ¬reqErase(Γ(w), bτc2). Because τ, pc,Γ ` 〈c, σ〉• config, we have

protected(Γ(w), τ), and using the inference rules for the extended relabeling

relation, we can show that protected(Γ(w), τ ′). Moreover, by Lemma 3.11,

we have τ,Γ(w),Γ ` d′1 com and τ,Γ(w),Γ ` d′2 com. Thus, τ ′,⊥,Γ `

d′ com.

We also need to show that for any variable z ∈ Vars , if σ′(z) = L v1 | v2 M then

protected(Γ(z), τ ′). Let z be a variable such that σ′(z) is a pair value. By

Lemma 3.17, either ¬reqErase(Γ(z), bτ ′c1) or ¬reqErase(Γ(z), bτ ′c2). We

now just need to show that for i ∈ {1, 2}, if ¬reqErase(Γ(z), bτ ′ci) then

Γ(x) ≤bτ ′ci Γ(z). Suppose ¬reqErase(Γ(z), bτ ′ci).

Suppose σ(z) = σ′(z). If ¬reqErase(Γ(z), bτci) we are done. Otherwise

reqErase(Γ(z), bτci), so by Lemma 3.17 and Lemma 3.18, there is a variable

w such that σ(w) is a pair value and ¬reqErase(Γ(w), bτci) and Γ(w) ≤

Γ(z). Since τ, pc,Γ ` 〈c, σ〉• config, we have Γ(x) ≤bτci Γ(w), and thus

Γ(x) ≤bτ ′ci Γ(z) as required.

Otherwise, σ(z) 6= σ′(z) so bσc1(z) 6= bσ′c1(z), and since τ, pc′,Γ ` d1 com,

by Lemma 3.12 we have pc′ ≤ Γ(z). Thus Γ(x) ≤bτ ′c1 Γ(z) as required.

• OS-PAIR-IF. Here d = if e then d0 else d1 and d′ = L d′1 | d′2 M. Since σ(e) =

L v1 | v2 M, there is at least one variable y that appears in e such that σ(y) is

a pair value. By Lemma 3.18, there is a variable w such that σ(w) is a pair

value and ¬reqErase(Γ(w), bτc1) and ¬reqErase(Γ(w), bτc2) and Γ(w) ≤

Γ(y) ≤ pe. Therefore, by Lemma 3.11, we have Γ(w),Γ ` d′1 com and

Γ(w),Γ ` d′2 com. Since τ, pc,Γ ` 〈c, σ〉• config, we have protected(Γ(w), τ),

and by Lemma 3.19, protected(Γ(w), τ ′) and ¬reqErase(Γ(w), bσ′c1) and

¬reqErase(Γ(w), bσ′c2). Thus, τ ′,⊥,Γ ` d′ com.

68

• OS-PAIR-DECLASSIFY. This case is similar to OS-ASSIGN. Here d =

y := declassify(e, pf to pt using e0, . . . , ek) and d′ = skip. By the

typing rule for skip, we have τ ′,⊥,Γ ` d′ com. We need to show

that ∀z ∈ Vars . (σ′(z) = L v1 | v2 M) ⇒ protected(Γ(z), τ ′). Let z be

a variable such that σ′(z) is a pair value. By Lemma 3.17, either

¬reqErase(Γ(z), bτ ′c1) or ¬reqErase(Γ(z), bτ ′c2). We now just need to

show that for i ∈ {1, 2}, if ¬reqErase(Γ(z), bτ ′ci) then Γ(x) ≤bτ ′ci Γ(z).

Suppose ¬reqErase(Γ(z), bτ ′ci).

Suppose σ(z) = σ′(z). If ¬reqErase(Γ(z), bτci) we are done. Other-

wise reqErase(Γ(z), bτci), so by Lemma 3.17 and Lemma 3.18, there is

a variable w such that σ(w) is a pair value and ¬reqErase(Γ(w), bτc1) and

¬reqErase(Γ(w), bτc2) and Γ(w) ≤ Γ(z). Since τ, pc,Γ ` 〈c, σ〉• config, we

have Γ(x) ≤bτci Γ(w), and thus Γ(x) ≤bτ ′ci Γ(z) as required.

Otherwise, σ(z) 6= σ′(z) so either z = y, or z was updated by the utility

function erasure(·).

Suppose z = y. Since σ(e0 × · · · × ek) is a pair value, there must be

a variable w that appears in e0 × · · · × ek such that σ(w) is a pair, and

Γ(w) ≤ Γ(z) (by the typing rule for declassification). By Lemma 3.18, there

is a variable w′ such that σ(w′) is a pair value and ¬reqErase(Γ(w′), bτc1)

and ¬reqErase(Γ(w′), bτc2) and Γ(w′) ≤ Γ(w) ≤ Γ(z). Since τ, pc,Γ `

〈c, σ〉• config, we have Γ(x) ≤bτci Γ(w′), and thus Γ(x) ≤bτ ′ci Γ(z) as re-

quired.

Finally, if σ(z) 6= σ′(z) and z 6= y, then z was updated by the utility function

erasure(·). Note that this means Γ(z) requires erasure on at least one of

the two projections. By Lemma 3.18, there is a variable w such that σ(w)

is a pair value and ¬reqErase(Γ(w), bτc1) and ¬reqErase(Γ(w), bτc2) and

69

Γ(w) ≤ Γ(z). Since Γ(w) does not require erasure on either projection, w

was not updated by the utility function erasure(·). Thus, by the previous

cases, we have Γ(x) ≤bτci Γ(w), and thus Γ(x) ≤bτ ′ci Γ(z) as required.

Using the type preservation property of IMP2
E , we are now ready to prove

Theorem 3.4: well-typed IMPE programs satisfy noninterference according to

policy.

Proof of Theorem 3.4: Let v1, v2 ∈ Z, let σ be a IMPE memory. Let σ0 =

update2(σ, x, L v1 | v2 M). By Lemma 3.16, σ0 = erasure2(σ0). Let τ1 and τ2 be traces

such that τi[0] = 〈c, bσ0ci〉.

By Lemma 3.7 and Lemma 3.5, there is a IMP2
E trace τ such that bτci is a prefix

of τi for all i ∈ {1, 2}, and for some i ∈ {1, 2}, bτci = τi.

We construct a correspondence R for τ1 and τ2 such that R is the smallest set

such that for all k ∈ 1..|τ |, (f1(τ [..k]), f2(τ [..k])) ∈ R, where fi(τ ′) is the number

of reduction steps of the IMP2
E execution τ ′ that reduce the ith projection. Thus, if

(i, j) ∈ R, then there is some k such that bτ [k]c1 = τ1[i] and bτ [k]c2 = τ2[j].

Let ` ∈ L, and let (i, j) ∈ R. There is some k such that bτ [k]c1 = τ1[i]

and bτ [k]c2 = τ2[j]. Let τ [k] = 〈ck, σk〉•. Note that τ1[i] = 〈bckc1, bσkc1〉 and

τ2[j] = 〈bckc2, bσkc2〉.

Suppose for some variable y, bσkc1(y) 6= bσkc2(y). Then σk(y) = L v1 | v2 M.

By Theorem 3.10, we have τ [..k],⊥,Γ ` 〈ck, σk〉• config. Therefore, we have

protected(Γ(y), τ [..k]). Thus, either Γ(x) ≤τ1[..i] Γ(y) or Γ(x) ≤τ2[..j] Γ(y). By

Property 3.9 and Lemma 3.14, either (τ1[i],obs(Γ(y))) ∈ [[Γ(x)]]update(σ,x,v1) or

(τ2[j],obs(Γ(y))) ∈ [[Γ(x)]]update(σ,x,v2). Therefore, if (τ1[i], `) 6∈ [[Γ(x)]]update(σ,x,v1)

and (τ2[j], `) 6∈ [[Γ(x)]]update(σ,x,v2), then τ1[i] ≈` τ2[j], so c is noninterfering accord-

ing to policy for variable x.

70

We have shown that well-typed IMPE programs enforce declassification and

erasure policies, in that they satisfy noninterference according to policy. We

established this result by presenting a language, IMP2
E , that can represent in a

single execution, the execution of two IMPE programs. The type-system of IMP2
E

is designed so that type-preservation of IMP2
E implies noninterference according

to policy for IMPE programs.

71

72

CHAPTER 4

DECENTRALIZED POLICIES AND ROBUSTNESS

The decentralized label model (DLM), introduced by Myers and Liskov (2000),

allows mutually distrusting principals to express security requirements. Princi-

pals can declare, and retain ownership of, information security policies. Different

principals can have different security policies for the same information.

In this chapter we extend the decentralized label model to include declas-

sification and erasure policies, increasing the expressiveness of the security

requirements the DLM can capture. We also extend the DLM to allow both

confidentiality and integrity policies in a single label, and extend the structure

of labels from a semi-lattice to a lattice (Chong and Myers, 2006). We then

present the security property of decentralized robustness (Chong and Myers,

2006), a generalization of robustness (Zdancewic and Myers, 2001; Myers et al.,

2004; Zdancewic, 2003) that accounts for mutually distrusting principals, and

show how to enforce decentralized robustness in a language with erasure and

declassification.

The DLM is used to specify security policies in the Jif programming language.

In Chapter 5 we will extend Jif with declassification and erasure policies using

the extended DLM presented here.

4.1 Decentralized Label Model

The DLM allows mutually distrusting principals to express information security

policies. A principal is any entity with security concerns, such as a user, a process,

a machine, or a collection of users. The set of principals is denoted Principals . A

principal may delegate its authority to other principals: if principal a delegates

its authority to principal b, then b is said to act for a, written b � a. The acts-for

73

relation is reflexive and transitive; it is similar to the speaks-for relation (Lampson

et al., 1991), and can be used to encode groups and roles.

A conjunctive principal a ∧ b represents the joint authority of both a and b. The

conjunctive principal a ∧ b has the authority of both a and b, and can act for each

of them: a ∧ b � a and a ∧ b � b. Similarly, a disjunctive principal a ∨ b represents

the disjoint authority of a and b. It can be regarded as a group consisting of

the principals a and b. Both a and b are able to act for the disjunctive principal

a ∨ b: a � a ∨ b and b � a ∨ b. For historical reasons, a disjunction of principals

a0 ∨ · · · ∨ ak is sometimes written using commas: a0, . . . , ak.

Principals express their security concerns with labels. A label is a pair of a

confidentiality policy and an integrity policy. Labels are associated with infor-

mation, and a system that enforces labels ensures that the policies of a label are

enforced on the appropriate information. Confidentiality policies are formed

from conjunctions and disjunctions of owned reader policies, and integrity policies

are formed from conjunctions and disjunctions of owned writer policies. Each

owned reader policy and owned writer policy has an owning principal; a policy

owned by a principal a is a statement of a’s beliefs or requirements about the

security of information.

4.1.1 Confidentiality policies

An owned reader policy allows the owner of the policy to specify which principals

the owner permits to read a given piece of information. As originally presented,

the DLM permitted owned reader policies to be of the form o→ r, where the

principal o is the owner of the policy, and the principal r (which may be a

conjunctive or disjunctive principal) is the specified reader.

74

We extend the DLM to include erasure and declassification policies as reader

policies. The lattice of confidentiality levels with which we instantiate the policy

framework of Chapter 2 is the lattice of conjunctive and disjunctive principals,

ordered by the acts-for relation �. Any language for specifying conditions can be

used, including the program expressions seen in Chapter 3.

Owned reader policies are thus of the form o→p, where p is either a principal

r, an erasure policy p0
c↗p1, or a declassification policy p0↘cp1.

An owned reader policy o→p means that o requires that the confidentiality

enforced on information conforms to the policy p. Principal o permits a principal

b to read information only if policy p permits b to observe the information (b �

obs(p)) and that declassification (allowing more principals to read) and erasure

(allowing fewer principals to read) of the information must conform to the reader

policy p.

Example 4.1 Suppose the owned reader policy Alice→(Bob↘condBob ∨ Chuck) is en-

forced on some information. Alice requires that the declassification policy Bob↘condBob∨

Chuck is enforced on the information. This means that Alice permits only Bob (and

principals that can act for Bob) to read the information. When the condition cond is

satisfied, the information may be declassified, and after declassification any principal that

can act for the disjunctive principal Bob ∨ Chuck may read the information.

As a formal semantics for owned reader policies, we define the function

readerpol(a, o→ p) to be the policy that principal a believes should be enforced

on information according to owned reader policy o→p:

readerpol(a, o→p) ,


p if o � a

⊥ otherwise

A principal a believes that a reader policy o→p should restrict the readers of

information only if the owner of the policy o can act for a. The parameterization

75

on principal a is important in the presence of mutual distrust, because it allows

the significance of the policy to be expressed for every principal independently.

If principal o owns a policy that restricts the readers of information, it does not

necessarily mean that another principal a also believes those restrictions should

apply. Thus, if o does not act for a, then readerpol(a, o→p) is the most permissive

reader policy, the bottom principal⊥, a principal that all other principals are able

to act for; in other words, a does not credit the policy with any significance.

Example 4.2 For the owned reader policy Alice → (Bob↘condBob ∨ Chuck), Alice,

and any principal that Alice acts for, require the declassification policy Bob↘condBob ∨

Chuck to be enforced. Assuming that Alice can act for Edith, but not Frank, we have

readerpol(Alice,Alice→(Bob↘condBob ∨ Chuck)) = Bob↘condBob ∨ Chuck

readerpol(Edith,Alice→(Bob↘condBob ∨ Chuck)) = Bob↘condBob ∨ Chuck

readerpol(Frank ,Alice→(Bob↘condBob ∨ Chuck)) = ⊥

We can also define a useful function of owned reader policies readers(a, κ),

that for a given principal a describes the set of principals that a believes can read

information labeled with owned reader policy κ. The definition of readers(a, κ)

makes use of the obs(·) function, defined in Chapter 2, that describes the obser-

vation level of policies.

readers(a, o→p) ,


{b ∈ Principals | b � obs(p)} if o � a

{b ∈ Principals | b � ⊥} otherwise

If o, the owner of the policy, can act for a, then a believes that a reader policy

o→p restricts the readers of information to the set of principals that can act for

obs(p). If o does not act for a, then readers(a, o→ p) is the set of all principals,

since a does not believe the policy restricts who may read the information at all.

76

Example 4.3 Considering again the owned reader policy Alice → (Bob↘condBob ∨

Chuck), and assuming that Alice can act for Edith, but not Frank, we have

readers(Alice,Alice→(Bob↘condBob ∨ Chuck)) = {b ∈ Principals | b � Bob}

readers(Edith,Alice→(Bob↘condBob ∨ Chuck)) = {b ∈ Principals | b � Bob}

readers(Frank ,Alice→(Bob↘condBob ∨ Chuck)) = {b ∈ Principals | b � ⊥}

= Principals .

Conjunction and disjunction.

Greater expressiveness can be achieved by taking conjunctions and disjunctions

of owned reader policies. We define confidentiality policies to be the smallest set

containing all owned reader policies and closed under the binary operators t

and u: if κ and κ′ are confidentiality policies, then both κ u κ′ and κ t κ′ are too.

The operator t is conjunction for confidentiality policies: κ t κ′ is the policy

that enforces both κ and κ′. The policy κ t κ′ permits a principal to read infor-

mation only if both κ and κ′ allow it; declassification to another confidentiality

policy can only occur if both κ and κ′ permit the relabeling; and erasure of the

information must occur if either κ or κ′ require erasure.

The operator u is disjunction for confidentiality policies: κ u κ′ enforces only

the restrictions that both κ and κ′ require. Thus, the confidentiality policy κ u κ′

allows a principal to read information if either κ or κ′ allows it; declassification

to another reader policy can occur if either κ or κ′ permit the relabeling; and

erasure of the information must occur only if both κ and κ′ require erasure. The

confidentiality policy κ u κ′ is no more restrictive than either κ or κ′.

We extend readerpol(a, κ) and readers(a, κ) for confidentiality policies. The

codomain of readerpol(·, ·) is the free lattice (Freese et al., 1995) over reader policies:

77

the set of reader policies closed under a meet operator u and a join operator t.

readerpol(a, κ t κ′) , readerpol(a, κ) t readerpol(a, κ′)

readerpol(a, κ u κ′) , readerpol(a, κ) u readerpol(a, κ′)

The codomain of readers(·, ·) continues to be sets of principals. Since the

confidentiality policy κ t κ′ imposes the restrictions of both κ and κ′, the set of

principals that a permits to read information labeled κ t κ′ is the intersection

of the readers of κ and κ′. Similarly, the reader set for κ u κ′ is the union of the

reader sets for κ and κ′.

readers(a, κ t κ′) , readers(a, κ) ∩ readers(a, κ′)

readers(a, κ u κ′) , readers(a, κ) ∪ readers(a, κ′)

Example 4.4 Let κ = Alice→ (Bob↘condBob ∨ Chuck) t Bob→Dave. Assuming

that Bob does not act for Alice, we have

readerpol(Alice, κ) = Bob↘condBob ∨ Chuck t ⊥

= Bob↘condBob ∨ Chuck

readers(Alice, κ) = {b ∈ Principals | b � Bob} ∩ Principals

= {b ∈ Principals | b � Bob}.

More interestingly, if both Alice and Bob act for Edith, then

readerpol(Edith, κ) = (Bob↘condBob ∨ Chuck) t Dave

readers(Edith, κ) = {b ∈ Principals | b � Bob} ∩

{b ∈ Principals | b � Dave}

= {b ∈ Principals | b � Bob and b � Dave}

= {b ∈ Principals | b � Bob ∧ Dave}.

78

Ordering confidentiality policies.

Using the readerpol(·, ·) function, we can define a relabeling judgment c0, . . . , ck `

κ vC κ′ on confidentiality policies. Similar to the relabeling judgment c0, . . . , ck `

p ≤ q on declassification and erasure policies, presented in Section 2.2.3, the

confidentiality judgment c0, . . . , ck ` κ vC κ′ describes when information labeled

with confidentiality policy κ can safely be relabeled with confidentiality policy

κ′. Indeed, the confidentiality judgment is defined using the policy relabeling

judgment.

c0, . . . , ck ` κ vC κ′ ,

∀a ∈ Principals . c0, . . . , ck ` readerpol(a, κ) ≤ readerpol(a, κ′)

where we extend the definition of c0, . . . , ck ` p ≤ q for the free lattice over

declassification and erasure policies as follows.

c0, . . . , ck ` p ≤ q
c0, . . . , ck ` p′ ≤ q

c0, . . . , ck ` p t p′ ≤ q

c0, . . . , ck ` p ≤ q

c0, . . . , ck ` p u p′ ≤ q

c0, . . . , ck ` p′ ≤ q

c0, . . . , ck ` p u p′ ≤ q

c0, . . . , ck ` p ≤ q

c0, . . . , ck ` p ≤ q t q′
c0, . . . , ck ` p ≤ q′

c0, . . . , ck ` p ≤ q t q′

c0, . . . , ck ` p ≤ q
c0, . . . , ck ` p ≤ q′

c0, . . . , ck ` p ≤ q u q′

If c0, . . . , ck ` κ vC κ′ then every principal a believes that, provided conditions

c0, . . . , ck are satisfied, κ′ is at least as restrictive as κ is, and so information labeled

κ can be used in at least as many places as information labeled κ′.

We define the confidentiality relabeling relation vC such that κ vC κ′ if

` κ vC κ′. The following key property, relating the confidentiality relabeling

relation to the readers(·, ·) function.

79

Property 4.5 For all confidentiality policies κ and κ′, all states s, and all principals a,

if κ vC κ′ then readers(a, κ) ⊇ readers(a, κ′).

Proof: By induction on the derivation of ` κ vC κ′. The only interesting case

is κ = p and κ′ = q, and we have a derivation for ` p ≤ q. In that case, we

proceed by induction on the derivation of ` p ≤ q, where it holds trivially for RL-

LATTICE, RL-ERASE-I, and RL-DECL-E, and follows simply from the inductive

hypothesis for all other cases.

The relation vC forms a pre-order over confidentiality policies, and the equiv-

alence classes form a lattice. The operators t and u are the join and meet

operators of this lattice. The least restrictive confidentiality policy is the reader

policy ⊥→⊥, where ⊥ is a principal that all principals can act for, since it means

all principals believe that information labeled ⊥→⊥ has the lowest possible

reader policy ⊥ enforced on it. The most restrictive expressible confidentiality

policy is >→>, where > is a principal that can act for all principals, and is the

most restrictive possible reader policy. Information labeled >→> is allowed to

be read only by principal >, all principals believe that it cannot be declassified,

and there is no more restrictive reader policy that it can be erased to.

Previous presentations of the DLM have considered only conjunctions of

confidentiality policies, resulting in a join semi-lattice structure. This work

adds disjunctions of confidentiality policies, producing a lattice structure that is

exploited in Section 4.2.4.

4.1.2 Integrity policies

Integrity and confidentiality are well-known duals, and we define integrity

policies dually to confidentiality policies. The set of integrity policies is formed by

80

closing owned writer policies under conjunction and disjunction.

Owned writer policies are of the form o←r, where r is a principal (Myers and

Liskov, 2000). Although it is possible to extend writer policies with declassifica-

tion policies or erasure policies, we refrain from doing so, focusing our attention

on how confidentiality changes over time.

An owned writer policy o←w allows the owner o to specify which principals

may have influenced (“written”) the value of a given piece of information. The

owned writer policy o←w means that according to the owner o, a principal b

could have influenced the value of information only if b can act for w. Owned

writer policies describe the integrity of information in terms of its provenance.

We define the function writers(a, ι) to be the set of principals that principal a

believes may have influenced information according to the owned writer policy

ι. Like owned reader policies, a principal a believes that the owned writer policy

o←w describes the writers of information only if o can act for a; if o does not act

for a, then a conservatively believes that any principal may have influenced the

information.

writers(a, o←w) ,


{b ∈ Principals | b � w} if o � a

{b ∈ Principals | b � ⊥} otherwise

Dual to confidentiality policies, we denote disjunction for integrity policies

with the operator t, and conjunction with u. The integrity policy ι u ι′ is the

conjunction of ι and ι′, meaning that a principal a could have influenced infor-

mation labeled ι u ι′ only if both ι and ι′ agree that a could have influenced it.

The writer sets for ι and ι′ are thus intersected to produce the writer set for ι u ι′.

The integrity policy ι t ι′ is the disjunction of ι and ι′; the writer set for ι t ι′ is

81

thus the union of the writer sets for ι and ι′.

writers(a, ι u ι′) , writers(a, ι) ∩ writers(a, ι′)

writers(a, ι t ι′) , writers(a, ι) ∪ writers(a, ι′)

Example 4.6 Let ι = Alice←Chuck t Bob←Chuck ∨ Dave. Assuming that Bob

does not act for Alice, we have

writers(Alice, ι) = {b ∈ Principals | b � Chuck} ∪ Principals

= Principals .

If both Alice and Bob act for Edith, then

writers(Edith, κ) = {b ∈ Principals | b � Chuck} ∪

{b ∈ Principals | b � Chuck ∨ Dave}

= {b ∈ Principals | b � Chuck ∨ Dave}.

We define a relabeling relation vI on integrity policies: for two integrity

policies ι and ι′, we have ι vI ι′ if and only if for all principals a, writers(a, ι) ⊆

writers(a, ι′). Intuitively, information with a smaller writer set has higher integrity

than information with a larger writer set, since fewer principals may have influ-

enced the value of the former; the higher the integrity of information, the fewer

restrictions on where that information may be used.

Unlike the relabeling judgment on confidentiality policies c0, . . . , ck ` κ vC κ′

which was defined in terms of the relabeling judgment c0, . . . , ck ` p ≤ q on

declassification and erasure policies, the relabeling relation for integrity policies

does not need to consider condition satisfaction, as owned writer policies are

restricted to being of the form o←w, for a principal w.

The relation vI forms a pre-order over integrity policies, and the equivalence

classes form a lattice, with join and meet operators t and u respectively. The

82

most restrictive integrity policy is ⊥←⊥, since it means all principals believe

that any principal may have influenced the information. The policy >←> is the

least restrictive expressible integrity policy, as it means that all principals believe

that only principal > (who can act for all other principals) has influenced the

information.

4.1.3 Labels

A label is a pair of a confidentiality policy and an integrity policy. We write

a label {κ; ι}, where κ is a confidentiality policy, and ι is an integrity policy.

The confidentiality projection of {κ; ι}, written C({κ; ι}), is κ, and the integrity

projection I({κ; ι}) is ι. We extend the readerpol(·, ·), readers(·, ·) and writers(·, ·)

functions appropriately:

readerpol(a, {κ; ι}) , readerpol(a, κ)

readers(a, {κ; ι}) , readers(a, κ)

writers(a, {κ; ι}) , writers(a, ι)

Example 4.7 Consider the following label.

{Alice→(Bob↘condBob ∨ Chuck) ; Alice←Chuck t Bob←Chuck ∨ Dave}

The confidentiality policy of this label is the owned reader policy Alice→(Bob↘condBob∨

Chuck), and the integrity policy is the disjunction of two owned writer policies: Alice←

Chuck and Bob←Chuck ∨ Dave.

Ordering labels

We define the relabeling judgment c0, . . . , ck ` L v L′ on labels using the judg-

ment c0, . . . , ck ` κ vC κ′ and the relation vI .

c0, . . . , ck ` {κ; ι} v {κ′; ι′} , c0, . . . , ck ` κ vC κ′ and ι vI ι′.

83

We again define the relation v over labels such that L v L′ if ` L v L′. The

relation v forms a pre-order, whose equivalence classes form a lattice. We use t

and u for the join and meet operations over this lattice,

L1 t L2 , {C(L1) t C(L2) ; I(L1) t I(L2)}

L1 u L2 , {C(L1) u C(L2) ; I(L1) u I(L2)}

4.2 Decentralized robustness

Robustness (Zdancewic and Myers, 2001; Myers et al., 2004; Zdancewic, 2003)

is a useful semantic security condition that requires that an attacker should not

be able to affect the security of information flow. A system is robust if an active

attacker (who can modify low-integrity aspects of the system and observe its

execution), is unable to learn more than a passive attacker (who can only observe

the system’s execution).

Previous work, by Myers, Sabelfeld, and Zdancewic (2004), defined robust-

ness with respect to a single attacker. However, in a decentralized setting, with

multiple, mutually distrusting principals, the identity and power of an attacker

depends on whose viewpoint is considered. The decentralized label model pro-

vides sufficient expressiveness for each principal to state their beliefs about the

abilities of other principals to read and influence information.

In this section we extend the semantic security condition of robustness to

decentralized robustness (Chong and Myers, 2006). In a system satisfying decentral-

ized robustness, every principal believes that the system is robust with respect to

attacks by any attacker. We consider the enforcement of decentralized robustness

in Section 4.3.

84

4.2.1 Robustness

We define robustness for a nondeterministic state-based system. As in Chapter 2,

we assume that for a system S, the set ΣS is the set of feasible states of S, and

that O is the set of observations that can be made on the system, and M is the set

of modifiable elements of the system. For an observable o ∈ O and state s ∈ ΣS ,

we write o(s) for the result of making observation o while the system is in state

s. For an modifiable m ∈ M , a value v and state s ∈ ΣS , we write s[m 7→ v]

for state s with m set to v. The function pol(·) is a function from observables

and modifiables to security labels, and describes the security policy enforced on

the information that may be revealed by making an observation. The transition

relation of S is denoted →, and traces of S are finite or infinite sequences of

feasible states s0 . . . sk such that si → si+1 for i ∈ 0..(k − 1).

For the purposes of defining robustness most generally, we do not assume

that labels are from the DLM. Instead, we require that a label L is a pair of a

confidentiality policy and an integrity policy, and there is an ordering v over

labels. We write C(L) for the confidentiality policy of L, and I(L) for the integrity

policy. For security labels L and L′, if L v L′, then L requires confidentiality

lower than (or equal to) that of L′, and higher (or equal) integrity.

The definition of robustness assumes that there is an attacker, an entity that

is able to modify the behavior of the system in limited ways. An attacker is

characterized by its power, its ability to modify and observe system behavior. The

power of an attacker A is a pair of security labels: 〈RA,WA〉. Security label RA is

an upper bound on the security label of observations that A can make, and WA is

a lower bound on the security label of modifiable elements that A can influence.

An attack by attacker A is a modification to some or all modifiable elements

with a security label bounded below by WA. That is, an attack by A can modify

85

any modifiable m ∈M whose associated security label pol(m) indicates that A is

able to influence it: WA v pol(m). An attack a applied to a state s is denoted s[a].

After attacking a system, the attacker observes the subsequent execution

of the system. The observational ability of the attacker is characterized by the

security label RA. We define two indistinguishability relations over states: weak

indistinguishability and strong indistinguishability.

A terminating trace τ is a finite trace such that the state τ [|τ | − 1] is a terminal

state of the system. Two states s0 and s′0 are weakly indistinguishable to A if for

every terminating trace τ = s0s1 . . . sm, there is a terminating trace τ ′ = s′0s
′
1 . . . s

′
n

such that there is a correlation R for τ and τ ′ such that for all (i, j) ∈ R and all

observables o, if pol(o) v RA then τ [i](o) = τ ′[j](o). States s0 and s′0 are strongly

indistinguishable to A if s0 and s′0 are weakly indistinguishable to A and all traces

τ = s0s1 . . . sm and τ ′ = s′0s
′
1 . . . s

′
n are terminating.

Having defined systems, attackers, and attacks, we can now present the

definition of robustness.

Definition 4.8 (Robustness) A system has robustness with respect to attacks by

attacker A with power 〈RA,WA〉 if for all states s and s′, and all attacks a and a′ by

attacker A, if s[a] and s′[a] are strongly indistinguishable to A, then s[a′] and s′[a′] are

weakly indistinguishable to A.

Robustness captures the idea that the observations of an attacker should be

independent of what attacks the attacker can make. In particular, an attacker

should be unable to force the system to declassify information, or to influence

what information is declassified by the system. (The latter is known as a launder-

ing attack.) In the context of erasure, an attacker should also be unable to prevent

the system from erasing information.

86

By requiring strong indistinguishability in the premise of the condition, the

robustness condition ignores inept attacks that cause a system to diverge and

thus to present the attacker with fewer observations. See Myers, Sabelfeld, and

Zdancewic (2004) for more discussion of this technical issue.

The definition of robustness assumes a single distinguished attacker A. How-

ever, in applications with multiple, mutually distrusting principals, there may

be many attackers, and moreover, the identity and power of an attacker may

depend on whose viewpoint is considered.

Using the DLM, the security condition of robustness can be generalized to

consider attacks launched by an arbitrary principal. To motivate this, we first

present an example of a simple system with mutually distrusting principals. We

then define robustness against all attackers, and derive label constraints that ensure

a declassification is robust against all attackers.

4.2.2 Example

Consider a simple sealed-bid auction, shown in Figure 4.1. There are two bidders,

Alice and Bob. There are ten consecutive auctions, indexed by the variable i,

each auction for a different item. In each auction, both bidders submit a secret

bid; after all bids for the ith auction have been submitted, the secret bids are

declassified, and the winner computed. We model each bidder as a principal, and

have an auctioneer principal au. We assume there are no acts-for relationships

between these principals. Every variable in the program is annotated with a

security label from the DLM (including the extensions for declassification and

erasure), which is enforced on information stored in the variable. We assume

there is a condition allBids that is satisfied only once all bids for the current

auction have been submitted.

87

1 int{⊥→⊥; Alice←au u Bob←au} winner[10];
2 int{⊥→⊥; Alice←au u Bob←au} i;
3 for (i = 1..10) {
4 int{Alice→(au↘allBids⊥); Alice←au u Bob←au} bidAlice
5 = getAliceBid(i);
6 int{Bob→(au↘allBids⊥); Alice←au u Bob←au} bidBob
7 = getBobBid(i);
8

9 // end of auction i
10 int{Alice→⊥; Alice←au u Bob←au} openAlice =
11 declassify(bidAlice
12 from {Alice→(au↘allBids⊥); Alice←au u Bob←au}
13 to {Alice→⊥; Alice←au u Bob←au}
14 using allBids);
15

16 int{Bob→⊥; Alice←au u Bob←au} openBob =
17 declassify(bidBob
18 from {Bob→(au↘allBids⊥); Alice←au u Bob←au}
19 to {Bob→⊥; Alice←au u Bob←au}
20 using allBids);
21

22 // compute winner
23 winner[i] = computeWinner(openAlice, openBob);
24

25 // process payment of winning bid
26 ...
27 }

Figure 4.1: Sealed-bid auction example.

88

Consider the auction program from Alice’s perspective. In each auction, Alice

submits a bid, stored in variable bidAlice, with the label

{Alice→(au↘allBids⊥); Alice←au u Bob←au}

enforced on it. Thus, Alice specifies that her bid should be readable only by the

auctioneer, but may be declassified when the condition allBids is true, and both

Alice and Bob are prepared to accept the bid as high integrity, influenced only

by the auctioneer (due to his ability to control when the ith auction commences).

After Bob has submitted his bid, Alice’s bid is declassified to {Alice→⊥; Alice←

au u Bob←au}, allowing the bid to be read by all principals, and to be stored in

openAlice.

Alice may be concerned with attempts by Bob to corrupt the auction. For

example, could Bob corrupt the control flow so that Alice’s bid is declassified

before Bob has submitted his bid, permitting Bob to always win with the minimal

winning bid? Or could Bob alter the value stored in bidAlice, and fool the

system into releasing sensitive information of Alice’s, such as her credit card

number, or her bid for auction i+ 1?

Alice would like assurance that the program is robust against attacks by Bob.

However, Bob also needs assurance that the program is robust against attacks

by Alice. And both principals may be concerned with the auctioneer’s ability

to corrupt the auction. Even in this simple example there are several potential

attackers, and it is necessary to reason about robustness against all possible

attackers.

4.2.3 Robustness against all attackers

The power of an attacker A is defined by the pair of labels 〈RA,WA〉, which

bounds the information that A can observe and influence. In the setting of Myers,

89

Sabelfeld, and Zdancewic (2004), there is no a priori relationship between A, RA,

and WA, making it difficult to characterize an arbitrary attacker’s power, and

therefore difficult to prove robustness against all possible attackers.

However, in the DLM the power of an attacker A can be expressed in terms

of the attacker’s identity, because all entities are represented by principals. More-

over, we can express the power of an attacker as perceived by a particular

principal: for principals a and b, the security labels Ra→b and Wa←b are bounds

on the labels of information that a believes b can read and write:

Definition 4.9 The label Ra→b is the least upper bound on labels of information that

principal a believes principal b can read:

L v Ra→b if and only if b ∈ readers(a, L)

The label Wa←b is the greatest lower bound on labels of information that principal a

believes principal b can influence:

Wa←b v L if and only if b ∈ writers(a, L)

The labels Ra→b and Wa←b cannot be expressed as conjunctions and disjunc-

tions of reader and writer policies. We can, however, characterize their reader

and writer sets.

readers(a′, Ra→b) , {b′ | b′ � b and a′ � a}

writers(a′, Ra→b) , {b′ | b′ � ⊥}

readers(a′,Wa←b) , {b′ | b′ � ⊥}

writers(a′,Wa←b) , {b′ | b′ � b and a � a′}

We extend the labels of the DLM to include the labels Ra→b and Wa←b for all

principals a and b. The definition of the label relationv is extended in the obvious

90

Figure 4.2: Robust declassification in a confidentiality–integrity product lattice.

way, using the definitions for Ra→b and Wa←b given above. The key property, that

v forms a pre-order whose equivalence classes are a lattice, continues to hold.

Figure 4.2 depicts the points Ra→b and Wa←b in the product lattice of confi-

dentiality and integrity. Their confidentiality and integrity components divide

the set of all labels into four subsets characterized by the power of the attacker to

either read or write information with those labels.

Having precisely described an arbitrary attacker’s power, we can now define

robustness against all attackers.

Definition 4.10 (Robustness against all attackers) A system has robustness

against all attackers if for all principals a and b, the system has robustness with

respect to attacker b with power 〈Ra→b,Wa←b〉.

If a system is robust against all attackers, then every principal a believes that

the system is robust against attacks by any principal b.

4.2.4 Constraints for checking robustness

As will be seen in Section 4.3, the key to enforcing robustness is to ensure that that

attacker A is unable to influence changes to the confidentiality of information.

91

For declassification, this means that if a declassification that reveals information

to attacker A, then A is unable to influence either the decision to declassify or the

data to be declassified. For erasure, if an erasure makes information no longer

readable by attacker A, then A should be unable to influence the satisfaction of

the conditions that control the erasure. These requirements have a very natural

expression in the DLM. We consider first declassification, then erasure.

Declassification

Suppose Lf is the label of the information to be declassified, Lt is the label of the

declassified information, and Ld is an upper bound on the labels of information

contributing to the decision to declassify, which may include, for example, the

information causing the program counter to reach the program point of declassi-

fication, and the information revealed by the satisfaction of conditions needed

for declassification. If, from the perspective of a principal a, the declassification

reveals information to a principal b, then b ∈ readers(a, Lt) − readers(a, Lf); if

this is the case, then we require that b cannot influence either the decision to

declassify (b 6∈ writers(a, Ld)), or the data to be declassified (b 6∈ writers(a, Lf)).

Figure 4.2 shows part of this requirement graphically: if the declassifica-

tion from Lf to Lt crosses the line defined by Ra→b (i.e., b ∈ readers(a, Lt) −

readers(a, Lf)) then Lf should not be above the line defined by Wa←b (i.e., b 6∈

writers(a, Lf)).

Since we would like this requirement to hold from every principal’s perspec-

tive, and for all principals that the declassification may reveal information to, the

following statement should hold at every declassification:

∀a ∈ Principals . ∀b ∈ readers(a, Lt). b ∈ readers(a, Lf) or

(b 6∈ writers(a, Ld) and b 6∈ writers(a, Lf))

(4.1)

92

Unfortunately, it is difficult to prove directly that this statement is true: mem-

bership of the sets writers(a, Ld) and writers(a, Lf) depends upon the acts-for rela-

tion �, and we may have only partial knowledge of the acts-for relation that will

be in effect at run time (Chen and Chong, 2004). Demonstrating that a principal

b is not a member of writers(a, Ld) or writers(a, Lf) is impossible.

However, the following two label constraints suffice to entail condition (4.1).

Lf v Lt t writersToReaders(Ld) (4.2)

Lf v Lt t writersToReaders(Lf) (4.3)

These label constraints can be verified syntactically, with only partial knowledge

of the acts-for relation (Myers and Liskov, 2000). The label constraints make use

of operator writersToReaders(L), which converts the writers of label L into readers

of label writersToReaders(L).

writersToReaders(L) , {wtr(I(L));>←>}

wtr(c t d) , wtr(c) u wtr(d)

wtr(c u d) , wtr(c) t wtr(d)

wtr(o←w) , o→w

We do not define writersToReaders(·) for the labels Ra→b or Wa←b. Although

suitable definitions could be given, we ensure that Ra→b and Wa←b never appear

in label constraints (4.2) or (4.3).

The key property of writersToReaders(·) is that if principal a believes b is a

writer of label L, then a believes b is a reader of writersToReaders(L):

Property 4.11 For all labels L, and all principals a and b, if b ∈ writers(a, L), then

b ∈ readers(a,writersToReaders(L)).

Proof: By induction on the structure of the integrity policy I(L), exploiting the

duality between confidentiality and integrity policies.

93

The following lemma shows that if constraints (4.2) and (4.3) hold, then

condition (4.1) holds; that is, every principal a believes that if the declassification

reveals information to principal b, then b could not have influenced the decision

to declassify or the information to be declassified.

Lemma 4.12 If Lf v Lt twritersToReaders(Ld) and Lf v Lt twritersToReaders(Lf)

then ∀a ∈ Principals . ∀b ∈ readers(a, Lt). b ∈ readers(a, Lf) or (b 6∈ writers(a, Ld)

and b 6∈ writers(a, Lf)).

Proof: Assume that

Lf v Lt t writersToReaders(Ld)

and

Lf v Lt t writersToReaders(Lf).

Let a be a principal, and let b ∈ readers(a, Lt). If b ∈ readers(a, Lf) then we

are done. Suppose b 6∈ readers(a, Lf). By Property 4.5 we have readers(a, Lf) ⊇

readers(a, Lt) ∩ readers(a,writersToReaders(Ld)). If b ∈ writers(a, Ld) then by Prop-

erty 4.11 we have q ∈ readers(a,writersToReaders(Ld)). But then b ∈ readers(a, Lt)

∩ readers(a,writersToReaders(Ld)), and so we have b ∈ readers(a, Lf), a contradic-

tion. So b 6∈ writers(a, Ld). By a similar argument, b 6∈ writers(a, Lf).

Consider the declassification of Alice’s bid in the auction example of Sec-

tion 4.2.2. The label of Alice’s bid is {Alice→ (au↘allBids⊥); Alice←au u Bob←

au}, and it is declassified to the label {Alice→⊥; Alice← au u Bob← au}. The

program counter at the declassification depends only on the variable i, and we

assume that the condition allBids reveals no more information that the program

counter, and so the Ld label is {⊥→⊥; Alice←auuBob←au}. Instantiating label

94

constraints (4.2) and (4.3) for these labels results in the following constraint:

{Alice→(au↘allBids⊥); Alice←au u Bob←au}

v {au→⊥ t Alice→au t Bob→au; Alice←au u Bob←au}

The integrity policies of both of these labels are identical, and the reader

policy of the left hand side (Alice→(au↘allBids⊥)) is less than the reader policy

Alice→au that is contained in a join on the right hand side, so the constraint is

satisfied. This implies that every principal believes that any principal who gains

the ability to read Alice’s bid is unable to influence either the value declassified

or the decision to declassify that value. Thus, Alice believes that if the auctioneer

is trusted, the declassification will never reveal anything other than Alice’s bid,

and it will not occur other than at the appropriate time.

Erasure

Like declassification, erasure changes the confidentiality of information, and

similar constraints can be used to check robustness.

Suppose Lf is the label of the information to be erased, Lt is the label of the

information after erasure, and Ld is an upper bound on the labels of information

contributing to the decision to erase, including the information revealed by the

satisfaction of conditions that cause erasure. If, from the perspective of a principal

a, the erasure removes information from principal b, then b ∈ readers(a, Lf) −

readers(a, Lt). If this is the case, we require that b cannot influence the decision

to erase (b 6∈ writers(a, Ld)), which means that b is unable to delay or prevent the

erasure of information.

Note that there is no requirement that b cannot influence the data to be

erased (b 6∈ writers(a, Lt)). For declassification this requirement helped prevent

laundering attacks, stopping the attacker from overwriting data to be declassified

95

with data of his choice. There is no equivalent attack for erasure, as it does not

matter if the attacker overwrites data to be erased with his own data: the act of

overwriting the data effectively erases it.

To ensure that erasure is regarded as robust from every principal’s perspective,

the following statement should hold at every declassification:

∀a ∈ Principals . ∀b ∈ readers(a, Lf). b ∈ readers(a, Lt) or b 6∈ writers(a, Ld) (4.4)

The following label constraint entails condition (4.4), and like constraints 4.2

and 4.3, can be verified syntactically.

Lt v Lf t writersToReaders(Ld) (4.5)

If constraint (4.5) holds, then condition (4.4) holds; that is, every principal a

believes that if the erasure removes information from principal b, then b could

not have influenced the decision to erase the information.

Lemma 4.13 If Lt v Lf t writersToReaders(Ld) then

∀a ∈ Principals . ∀b ∈ readers(a, Lf). b ∈ readers(a, Lt) or b 6∈ writers(a, Ld).

Proof: Assume Lt v Lf t writersToReaders(Ld). Let a be a principal, and let b ∈

readers(a, Lf). If b ∈ readers(a, Lt) then we are done. Suppose b 6∈ readers(a, Lt).

By Property 4.5 we have

readers(a, Lt) ⊇ readers(a, Lf) ∩ readers(a,writersToReaders(Ld)).

If b ∈ writers(a, Ld) then by Property 4.11 we have

q ∈ readers(a,writersToReaders(Ld)).

But then b ∈ readers(a, Lf) ∩ readers(a,writersToReaders(Ld)), and so we have

b ∈ readers(a, Lt), a contradiction. So b 6∈ writers(a, Ld).

96

4.3 Enforcing robustness

In this section, we consider enforcing robustness against all attackers in the

setting of a simple imperative language. Myers, Sabelfeld, and Zdancewic (2004)

present a type system for a simple imperative language to enforce robustness

with respect to a distinguished attacker A; their type system is parameterized

on the attacker A. To enforce robustness against all attackers, we could naively

require a program to be well-typed in their type system instantiated on every

possible attacker A. However, this approach does not work when the set of

possible attackers is unknown, or potentially infinite. Instead, we present a type

system that incorporates the label constraints of Section 4.2.4, and show that this

single type system enforces robustness against all attackers.

The language we consider is IMPE , from Chapter 3, with the exception that we

use labels from the DLM. Figure 4.3 presents the language grammar, including

the grammar for labels. The language is similar to that of Myers, Sabelfeld,

and Zdancewic (2004), but modifies the syntax for declassification. The syntax

of a declassification statement in Myers, Sabelfeld and Zdancewic does not

mention the label from which information is being declassified, and does not use

conditions for declassification.

The operational semantics for this language are mostly the same as presented

in Figure 3.2. Some changes to the semantics are required due to the use of DLM

labels. We ensure that a variable that has label L enforced on it is overwritten

whenever any erasure policy in L requires it. For example, if a location has

the label {Alice→ (Bob c↗Chuck) u Dave→ (Alice d↗>)} enforced on it, then the

location is overwritten whenever either c or d is satisfied. To accomplish this, we

extend the definition of reqErase(·, ·) to include DLM labels. The new definition

is given in Figure 4.4.

97

e ::= Expressions
n Integer literal
x Variable
e0 ⊕ e1 Binary operation

c ::= Commands
skip No-op
x := e Assignment
c0; c1 Sequence
if e then c0 else c1 Selection
while e do c Iteration
x := declassify(e, Lf to Lt using e0, . . . , ek)

Guarded declassification
L ::= Labels
{κ; ι} Decentralized label

κ ::= Confidentiality policies
κ t κ′ Join confidentiality policy
κ u κ′ Meet confidentiality policy
a→p Reader policy

a, b Principals
p, q ::= Policies

a Lattice policy
p↘c q Declassification policy
p c↗q Erasure policy

ι ::= Integrity policies
ι t ι′ Join integrity policy
ι u ι′ Meet integrity policy
a←b Writer policy

Figure 4.3: Syntax of IMPE with DLM labels

reqErase(κ, s)
reqErase({κ; ι}, s)

reqErase(p, κ) or reqErase(p, κ′)
reqErase(κ t κ′, s)

reqErase(p, κ) or reqErase(p, κ′)
reqErase(κ u κ′, s)

reqErase(p, s)
reqErase(o→p, s)

reqErase(p, s)
reqErase(p↘cp′, s)

reqErase(p, s)
reqErase(p c↗p′, s)

s � c
reqErase(p c↗p′, s)

Figure 4.4: Definition of reqErase(L, s)

98

The operational semantics differ from that of Myers, Sabelfeld, and Zdancewic

(2004) in two ways. First, the declassification command in this language may

evaluate to 0 if the conditions for declassification are not met. Second, all updates

to memory enforce erasure.

Typing contexts Γ map each variable to a label that is an upper bound (with

respect tov) on the security level of information that can be stored in the variable.

The range of Γ is restricted to labels of pairs of confidentiality and integrity

policies—Ra→b and Wa←b are not permitted as security levels of variables.

4.3.1 Defining robustness in IMPE

In order to give a meaningful definition of robustness (and robustness against all

attackers) in this language-based setting, we must first define what attacks can

be made by an attacker A with power 〈RA,WA〉. Following Myers, Sabelfeld and

Zdancewic, we define an attack by A to be a command a that will be inserted

into a program. The attack a is not arbitrary code, but is restricted to a subset

of the language, to model “fair” attacks. The allowed attacks are defined by the

grammar shown in Figure 4.5. For each variable x occurring in an assignment

x := e, or in an expression e of a fair attack, the attacker must be able to both

influence and read the variable,

WA v Γ(x) v RA.

The allowed attacks do not include declassifications, because if the attacker

can declassify confidential information directly, the game is already over.

Attacks may be inserted into the program at points where the attacker is able

to influence the execution of code. For example, in a distributed system, the

attacker may be able to insert attacks on a server that is under the attacker’s

99

a ::= Fair attacks
skip No-op
x := e Assignment
a0; a1 Sequence
if e then a0 else a1 Selection
while e do a Iteration

Figure 4.5: Syntax of fair attacks

control. Myers, Sabelfeld and Zdancewic assume that program points at which

an attacker may insert attacks are explicitly marked by code holes (•). There may

be multiple holes in a command, represented as a vector of holes ~•; the holes in

a program c[~•] will be replaced with a vector of attacks ~a to obtain a complete

(hole-free) program, written c[~a]. The syntax of commands with holes c[~•] is

shown in Figure 4.6. It extends the syntax of IMPE commands from Figure 4.3.

c ::= Commands
. . . IMPE commands
[•] Hole

Figure 4.6: Syntax of IMPE with holes

We can now refine Definition 4.8, the definition of robustness, for IMPE . A

configuration is a pair 〈c, σ〉 of command c and memory σ. A memory is a

function from variables to integers.

Definition 4.14 (Robustness) Command c[~•] has robustness with respect to attacks

by attacker A with power 〈RA,WA〉 if for all memories σ1 and σ2, and all attacks ~a and

~a′ by attacker A, if 〈c[~a], σ1〉 and 〈c[~a], σ2〉 are strongly indistinguishable to A, then

〈c[~a′], σ1〉 and 〈c[~a′], σ2〉 are weakly indistinguishable to A.

This refinement of robustness assumes that the code holes where attacker A

may insert code are explicitly given; however, in general, the location of code

100

holes depends upon which attacker we are considering. Since we are concerned

with the possibility of many attackers, we need to reason about the security of

code into which different attackers may insert code at different locations.

To indicate where code holes may be inserted for a given attacker A, we

assume the existence of a hole insertion relation CA. Let c0 CA c1[~•] denote that the

command with holes c1[~•] can be obtained by inserting code holes into command

c0 at program points where attacker A is able to insert code. The actual form of

the hole-insertion relation depends on the system. For example, in the context

of automatic program partitioning (Zheng et al., 2003) (in which a program is

automatically partitioned into code segments executed on different servers), an

attacker may be able to insert code into any segment that is placed on a server

controlled by the attacker.

For our purposes, we require only that the hole insertion relation CA does

not allow holes to be inserted into high-confidentiality contexts. That is, an

attacker may not insert code at a program point whose execution depends upon

information with a security label not bounded above by RA. In the context of

automatic program partitioning, program points in a high-confidentiality context

correspond to code segments whose very execution would insecurely reveal

sensitive information to the attacker; such code segments are never placed on

a server where the attacker could insert attacks. More formally, we define the

property of safe hole insertion as follows.

Definition 4.15 (Safe hole insertion) A hole insertion relation CA is safe if when-

ever c0 CA c1[~•], then for all holes in c1[~•], if the hole is a subcommand of a command

if e then c else c′ or a subcommand of a command while e do c, then for any variable

x occurring in e, we have Γ(x) v RA.

101

We can now refine Definition 4.10, the definition of robustness against all

attackers, for the specific language-based setting presented here.

Definition 4.16 (Robustness against all attackers) Command c has robustness

against all attackers if for all principals a and b, and all commands with holes c′[~•]

such that cCb c′[~•], command c′[~•] has robustness with respect to attacker b with power

〈Ra→b,Wa←b〉.

4.3.2 Enforcing robustness in IMPE

Myers, Sabelfeld and Zdancewic present a type system (referred to, for brevity, as

the MSZ type system) that is parameterized on a single attacker A and enforces

robustness against attacks by A in a simple imperative language. We can adapt

the MSZ type system in a straightforward way to account for the differences

between their language and IMPE .

Figure 4.7 presents the MSZ type system, adapted for our purposes. The

judgment pc,Γ À c indicates that command c is well typed under typing context

Γ and program counter label pc. The attacker A appears in the typing rules for

x := declassify(e, pf to pt using e0, . . . , ek) and command holes [•]. All other

typing rules are standard for an imperative security-typed language.

As in the type system to enforce noninterference according to policy in IMPE ,

in Chapter 3, we also require the typing context to be well-formed.

Definition 4.17 (Well-formed typing context for attacker A) Typing context Γ is

well-formed for attacker A if the overwrite dependency relation ≺Γ is well-founded

and for all x ∈ Vars , Γ À Γ(x) label.

Inference rules for the judgment Γ À L label are given in Figure 4.7. Well-

formedness for attacker A ensures two things. First, if the value of variable x

102

MSZ-SKIP

pc,Γ À skip

MSZ-ASSIGN
Γ ` e : L exp L t pc v Γ(x)

pc,Γ À x := e

MSZ-SEQUENCE
pc,Γ À c1 pc,Γ À c2

pc,Γ À c1; c2

MSZ-WHILE
Γ ` e : L exp L t pc,Γ À c

pc,Γ À while e do c

MSZ-IF
Γ ` e : L exp

L t pc,Γ À c1 L t pc,Γ À c2

pc,Γ À if e then c1 else c2

MSZ-PC
pc,Γ À c pc′ v pc

pc′,Γ À c

MSZ-HOLE
pc v RA

pc,Γ À [•]

MSZ-DECLASSIFY-TO-A
Γ ` e : Lf exp Lt t pc v Γ(x) I(Lf) v I(Lt)

∀i ∈ 0..k. Γ ` ei : Γ(x) exp
Lt v RA Lf 6v RA WA 6v pc WA 6v Lf

pc,Γ À x := declassify(e, Lf to Lt using e0, . . . , ek)

MSZ-DECLASSIFY
Γ ` e : Lf exp Lt t pc v Γ(x) I(Lf) v I(Lt)

∀i ∈ 0..k. Γ ` ei : Γ(x) exp
Lt 6v RA or Lf v RA

pc,Γ À x := declassify(e, Lf to Lt using e0, . . . , ek)

MSZ-LABEL-FROM-A
L v RA ∀e ∈ eraseConds(L). Γ ` e : L exp

∀e ∈ eraseConds(L). (erased(L, e) v RA or
(Γ ` e : Ld exp and WA 6v Ld))

Γ À L label

MSZ-LABEL
L 6v RA ∀e ∈ eraseConds(L). Γ ` e : L exp

Γ À L label

Figure 4.7: Typing rules for robustness in IMPE

103

may cause variable y to be overwritten, then information is permitted to flow

from x to y. Second, any erasure of information is robust; this is discussed below.

The key idea of enforcing robustness is to ensure that an attacker A is unable

to influence what information is available to A. This idea is expressed in the

typing rules for declassification, and in the judgment Γ À L label.

In the rule MSZ-DECLASSIFY-TO-A, the constraints WA 6v pc and WA 6v L′

ensure that both the decision to declassify and the information to be declassified

are high-integrity with respect to the attacker’s power. We have adapted the

MSZ type system by using two different typing rules for declassifications. The

first, MSZ-DECLASSIFY-TO-A, is for declassifications that reveal information to

the attacker A; that is, information is declassified from security level Lf (where A

cannot read information) to security level Lt (whereA can read information). The

rule MSZ-DECLASSIFY is for declassifications that do not reveal information to

attacker A, either because the attacker could already read information at level Lf ,

or because after declassification the attacker is still unable to read the information

at its new level Lt . Only the first rule needs to enforce the robustness conditions;

the original MSZ type system does not contain the second rule, requiring suitably

high integrity for all declassifications, even if they do not reveal information

to the attacker. We modify their declassification typing rule in anticipation of

enforcing robustness against all attackers.

The judgment Γ À L label ensures that the decision to erase information is

high-integrity with respect to the attacker’s power. Like declassification, there

are two rules. The rule MSZ-LABEL is for labels that the attacker cannot read,

and thus erasure does not remove any information from A’s observations. Rule

MSZ-LABEL-FROM-A is for labels L that the attacker is able to read (L v RA), but

which may be erased to a level that the attacker can no longer read. The function

104

eraseConds(`) , ∅
eraseConds(p↘c q) , eraseConds(p)

eraseConds(p c↗q) , {c} ∪ eraseConds(p)

eraseConds(o→p) , eraseConds(p)

eraseConds(κ t κ′) , eraseConds(κ) ∪ eraseConds(κ′)

eraseConds(κ u κ′) , eraseConds(κ) ∪ eraseConds(κ′)

eraseConds({κ; ι}) , eraseConds(κ)

erased(`, c) , `

erased(p↘d q, c) , erased(p, c)↘d q
erased(p d↗q, c) , erased(p, c) d↗q if d 6= c

erased(p d↗q, c) , erased(p, c) t erased(q, c) if d = c

erased(o→p, c) , o→erased(p, c)

erased(κ t κ′, c) , erased(κ, c) t erased(κ′, c)

erased(κ u κ′, c) , erased(κ, c) u erased(κ′, c)

erased({κ; ι}, c) , {erased(κ, c); ι}

Figure 4.8: Definition of eraseConds(·) for labels and erased(·, ·)

105

erased(L, c) indicates the security level that must be enforced on information

labeled L once condition c is satisfied. If for some condition e ∈ eraseConds(L),

we have erased(L, e) 6v RA, the attacker will not be able to read the information

once e is satisfied. In that case, the attacker should not be able to influence the

decision to erase the information. That is, the satisfaction of condition e should

be influenced by the attacker (Γ ` e : Ld exp and WA 6v Ld). Definitions of

eraseConds(L) and erased(L, e) are given in Figure 4.8.

The rule for command holes restricts holes from occurring in high-confiden-

tiality contexts, which ensures that an attacker is unable to observe sensitive

information through implicit flows (Denning and Denning, 1977).

Theorem 4.18 If pc,Γ À c and Γ is well-formed for attacker A, then command c has

robustness with respect to attacker A.

Proof: Similar to Myers, Sabelfeld and Zdancewic’s, adapted for the modi-

fied declassification typing rules, and the novel semantics of IMPE (run-time

mechanisms to enforce declassification and erasure).

4.3.3 Enforcing robustness against all attackers in IMPE

To enforce robustness against all attackers, we derive a type system using con-

straints (4.2), (4.3), and (4.5), given in Section 4.2.4. This type system ensures that

for all principals a and b, a well-typed program is robust against attacks by b

with power 〈Ra→b,Wa←b〉. We prove this by showing that a well-typed program

is also well-typed in the MSZ type system instantiated on the attacker b with

power 〈Ra→b,Wa←b〉.

The new typing judgments are Γ, pc ` c (command c is well-typed under

program counter label pc and variable context Γ) and Γ ` L label (label L is

106

TR-SKIP

Γ ` pc label

Γ, pc ` skip

TR-ASSIGN
Γ ` e : Le exp Le t pc v Γ(x)

Γ ` pc label

Γ, pc ` x := e

TR-SEQUENCE

Γ, pc ` c0 Γ, pc ` c1

Γ, pc ` c0; c1

TR-WHILE
Γ ` e : Le exp pc′,Γ ` c com

Γ ` pc label Le t pc v pc′

Γ, pc ` while e do c

TR-IF
Γ ` e : Le exp pc′,Γ ` c0 com pc′,Γ ` c1 com

Γ ` pc label Le t pc v pc′

Γ, pc ` if e then c0 else c1

TR-DECLASSIFY
Γ ` e : Lf exp Lt t pc v Γ(x) Γ ` pc label

∀i ∈ 0..k. Γ ` ei : Γ(x) exp e0, . . . , ek ` Lf v Lt

Lf v Lt t writersToReaders(pc) Lf v Lt t writersToReaders(Lf)

Γ, pc ` x := declassify(e, Lf to Lt using e0, . . . , ek)

TR-LABEL
∀e ∈ eraseConds(L). Γ ` e : L exp

∀e ∈ eraseConds(L). Γ ` e : Ld exp and
erased(L, e) v L t writersToReaders(Ld)

Γ ` L label

Figure 4.9: Typing rules for robustness against all attackers in IMPE

107

well-typed under variable context Γ). Figure 4.9 presents the inference rules for

the new judgments, which are based on the rules for enforcing noninterference

according to policy in IMPE (Figure 3.4). The rules are modified to use decen-

tralized labels instead of erasure and declassification policies. In addition, the

rule for declassification, TR-DECLASSIFY, incorporates constraints (4.2) and (4.3),

and the rule for labels, TR-LABEL incorporates constraint (4.5).

The judgment Γ ` L label is used to ensure that typing contexts are well-

formed.

Definition 4.19 (Well-formed typing context for robustness) Typing context Γ

is well-formed for robustness if the overwrite dependency relation ≺Γ is well-founded

and for all x ∈ Vars , Γ ` Γ(x) label.

The inference rules for the new typing judgments contain no negated label

ordering relations (6v), which is consistent with having only partial knowledge

of the acts-for relation in effect at run time.

Unlike the rules for enforcing robustness with respect to attacker A (Fig-

ure 4.7), there is no need for a rule for command holes, as we are only concerned

with complete programs; holes are introduced through hole insertion relations

CA.

Theorem 4.20 If Γ, pc ` c and Γ is well-formed for robustness then command c has

robustness against all attackers.

Proof: Let Γ, pc ` c, and Γ be well-formed for robustness. Let a and b be

principals, and let d[~•] be a command with holes such that cCb d[~•]. For attacker

A = b with power 〈Ra→b,Wa←b〉, we show that pc,Γ À d[~•], and Γ is well-formed

for attacker A, Thus by Theorem 4.18, d[~•] has robustness with respect to attacker

b with power 〈Ra→b,Wa←b〉.

108

We first show pc,Γ À c, by induction on Γ, pc ` c. The only interesting case

is for declassification. If the declassification doesn’t reveal information to A

(i.e., either L 6v RA or L′ v RA), then the declassification type-checks by MSZ-

DECLASSIFY. If it does reveal information to A, then by definition of Ra→b and

Wa←b and Lemma 4.12 we have Wa←b 6v pc and Wa←b 6v L′, and so the statement

type-checks by MSZ-DECLASSIFY-TO-A.

Similarly, to show that Γ is well-formed for attacker A, consider a label L

such that Γ ` L label. If the attacker cannot observe information labeled L (L 6v

Ra→b) then Γ À L label by MSZ-LABEL. Otherwise, the attacker can observe

information labeled L (L v Ra→b). For any condition e ∈ eraseConds(L) we

have erased(L, e) v LtwritersToReaders(Ld), where Γ ` e : Ld exp. By definition

of Ra→b and Wa←b and Lemma 4.13 we have either that erased(L, e) v Ra→b or

Wa←b 6v Ld , and so the statement type-checks by MSZ-LABEL-FROM-A.

Given that pc,Γ À c and cCb d[~•], we can use the hole safety of Cb to show

that pc,Γ À d[~•], since code holes can only be introduced in low-confidentiality

contexts, and thus any hole type-checks.

109

110

CHAPTER 5

DECLASSIFICATION, ERASURE, AND ROBUSTNESS IN JIF

The Jif programming language (Myers, 1999; Myers et al., 2001–2008) extends

Java (Gosling et al., 2000) with information-flow control, allowing security policy

annotations on program variables and method signatures. Jif aims to provide a

practical programming model for end-to-end security enforcement, and supports

a large subset of Java. In this chapter, we describe how we extend Jif with

declassification and erasure policies, and mechanisms to enforce these policies,.

This chapter also describes the benefits obtained by using JifE to implement

Civitas (Clarkson et al., 2008), a secure remote voting service,

5.1 Syntax and semantics

Security policies in Jif are from the decentralized label model (DLM) (Myers

and Liskov, 2000). JifE uses security policies from the DLM extended with

declassification and erasure policies, as described in Chapter 4. JifE extends Jif’s

syntax and run-time system to incorporate the guarded declassification syntax

and run-time erasure mechanisms of Chapter 3.

5.1.1 Decentralized label model

In Chapter 4, declassification and erasure policies were incorporated into the

DLM using as the base lattice principals ordered by the acts-for relation. However,

the language for conditions was left unspecified.

For the condition language in JifE , we allow a restricted class of expressions:

access path expressions of type condition, and negations of these access path

expressions. The type condition is a new primitive type with two values:

true and false. Expressions of type condition may be cast to boolean, and

111

vice versa. An access path expression is an expression of the form r.f1.fn,

where r is a local variable, the special variable this, or a class name; each fi is a

field; and all path elements other than the last are declared final. Immutability

of path elements is needed for sound reasoning about conditions within the type

system.

5.1.2 Declassification and erasure mechanisms

JifE contains the new guarded declassification expression declassify(e, Lf to

Lt using e0, . . . , ek), where Lf and Lt are labels, and each expression ei is

of type condition. The expression is evaluated by first evaluating e to a

value v, then evaluating each ei in turn; if any ei evaluates to false, then

an UnsatisfiedConditionException is thrown; otherwise, the expression

evaluates to v. If the evaluation of e or any ei results in an exception, the de-

classification expression also results in the exception. As in the typing rule for

declassification TR-DECLASSIFY in Figure 4.9, type checking ensures that Lf may

be relabeled Lt under the assumption that all conditions ei are satisfied.

Note that Jif already provides a mechanism for selective declassification (Myers

and Liskov, 1997; Myers, 1999; Pottier and Conchon, 2000), whereby a declas-

sification that weakens or removes a policy owned by principal o requires o’s

authority. By contrast, guarded declassification does not require the authority of

any principal, since given a reader policy such as o→(p↘c q), the principal o has

already stated that information may be declassified when condition c is satisfied.

In JifE , selective declassification and guarded declassification coexist as separate

and independent mechanisms. Both mechanisms incorporate label constraints to

enforce robustness against all attackers.

112

To enforce erasure policies, JifE ensures that a variable or location that has

label L enforced on it is overwritten whenever any erasure policy in L requires

it. For example, if a location has the label {Alice→(Bob this.f↗Chuck) uDave→

(Alice this.o.d↗>)} enforced on it, then the location is overwritten whenever ei-

ther this.f or this.o.d evaluates to true. When a location or variable is

overwritten, its contents are replaced with an appropriate default value. Thus,

numeric locations are overwritten with zero, and reference locations are overwrit-

ten with null. Section 5.3 describes the run-time mechanisms used to achieve

this. This erasure mechanism is analogous to the erasure mechanism of IMPE ,

which overwrites variables if the policy enforced on the variable requires erasure.

5.1.3 Interaction with Java and Jif features

Jif is intended for practical information-flow control. It supports a large subset

of Java’s language features, and provides additional features such as dynamic

labels, constant arrays, and class and method polymorphism, needed for building

real applications. The erasure enforcement mechanism of IMPE needs careful

adaptation for these language features.

Final fields and variables. In Java, fields, local variables, and formal arguments

can be marked final, meaning their value will not change after initialization. To

respect the finality of variables and locations, JifE requires that final variables and

fields cannot be overwritten. The label L enforced on a final field or variable must

not contain any erasure policies, and if L contains a dynamic label (see below),

then the dynamic label must not contain any erasure policies. This ensures that

label L never requires erasure.

113

Arrays. Jif allows different labels to be enforced on the elements of an array and

the array itself. If the label enforced on the elements of an array requires erasure,

the array is overwritten with appropriate default values; the length of the array

is not altered. Jif supports constant arrays, whose elements cannot be modified

after initialization. As with final fields, labels on elements of constant arrays

must never require erasure.

Dynamic labels. Jif can represent labels at runtime and can treat labels as

first-class values. The primitive type label is the type of run-time labels, and

Jif permits run-time comparisons of dynamic labels. JifE extends the run-time

representation of labels to permit declassification and erasure policies also to be

represented at runtime.

Jif extends the DLM to allow dynamic labels to appear in labels. For example,

in Figure 5.1, the label that must be enforced on the variable i is the run-time

value of the dynamic label lbl. This dynamic label may be different in different

executions of the program.

Dynamic labels may be used to label fields, variables, and arrays. However,

final fields and variables, and elements of constant arrays must never require

erasure. We introduce a new kind of label, to reason about run-time labels that

may require erasure. The primitive type elabel is used for dynamic labels

that may require erasure. Only dynamic labels of type elabel may contain

erasure policies; a dynamic label of type label cannot contain erasure policies.

Thus, the labels of final fields, final variables, and elements of constant arrays,

may refer to dynamic labels of type label, but may not refer to dynamic labels

of type elabel. The type label can be cast to elabel, but not vice versa.

The restriction that only elabels may contain erasure policies also simplifies

backwards compatibility of JifE with Jif.

114

Polymorphism. Jif provides polymorphism for the labels of method arguments.

For example, the method signature double{a} sine(double{Alice → Bob} a)

states that the label on the value returned is the same as the label of the actual

argument a, which can be no more restrictive than {Alice→Bob}. In Jif method

bodies, the label of a formal argument is a polymorphic label, representing the

label of actual argument, and bounded above by the argument label specified in

the signature. However, because actual arguments may require erasure during

the method body execution, we need to know what label to enforce on formal

arguments in the method body. Thus, in JifE , method bodies assume that the

label of a formal argument is simply the argument label bound specified in the

signature. This is sound, but not as permissive as Jif, and effectively removes

argument label polymorphism. However, it is not overly restrictive: we success-

fully implemented a remote voting system in about 13,000 lines of JifE code, as

discussed in Section 5.4.

Jif also supports polymorphic classes, permitting classes to be parameterized

on labels and principals.1 JifE extends the class parameters to allow parameters

of type elabel.

5.2 Tracking information flow

Jif’s existing type system tracks information flow. JifE extends Jif’s run-time

mechanisms, overwriting variables, and allowing declassification based on the

satisfaction of condition. Thus, new information flows are introduced. JifE

extends Jif’s type system to soundly track and restrict these new information

flows, by adapting the typing rules of IMPE .

1Jif as of version 3.1 does not support Java generics, another form of class parameterization
for polymorphism.

115

5.2.1 Condition satisfaction

Condition satisfaction affects whether the expression declassify(e, Lf to Lt

using e0, . . . , ek) throws an UnsatisfiedConditionException or success-

fully declassifies e. JifE requires that the label of each ei is no more restrictive

than label Lt .

Condition satisfaction may also cause variables and locations to be overwrit-

ten. JifE tracks these information flows analogously to the IMPE label typing

judgment Γ ` L label. JifE requires that for all labels L declared in a program,

and for any erasure policy p e↗q that occurs in L, the label of expression e must

be no more restrictive than L. JifE also requires that if lbl is a dynamic label that

occurs in L, then the value lbl must be no more restrictive than L. So, if e is a

condition that appears in lbl, then the label of e is no more restrictive than lbl,

and thus no more restrictive than L.

5.2.2 Robustness

The IMPE typing rules to enforce robustness against all attackers (Figure 4.9)

are also incorporated into the type system of JifE . A declassification expression

declassify(e, Lf to Lt using e0, . . . , ek) is restricted to ensure that Lf v

Lt t writersToReaders(Lf) and Lf v Lt t writersToReaders(pc) hold, where pc is

the label of the program counter at the declassification expression. Similarly,

for any condition e that may case a label L to require erasure, the constraint

erased(L, e) v L t writersToReaders(Ld) must hold, where Ld is an upper bound

on the label of condition e.

The function writersToReaders(·) must be extended to account for the addi-

tional labels in Jif, such as dynamic labels and polymorphic method argument

labels.

116

1 final label{⊥→⊥;>←>} lbl = ...;
2 int{*lbl} i = ...;
3 if (lbl v {Alice→Bob ; Alice←Chuck}) {
4 int j = declassify(i, {⊥→⊥;Alice←Chuck});
5 }

Figure 5.1: Example of a dynamic label upper bound

In extending writersToReaders(·) to dynamic labels, we must ensure that

Property 4.11 continues to hold: for all principals p and q, and labels L, if

q ∈ writers(p, L), then q ∈ readers(p,writersToReaders(L)). Clearly, for any dy-

namic label lbl it is safe to define writersToReaders(lbl) to be {⊥→⊥;>←>};

since readers(p,{⊥ → ⊥;>←>}) is the set of all principals, this would satisfy

Property 4.11. While imprecise, this is the best we can do without additional

information about the dynamic label.

However, in some situations, a given dynamic label has an upper bound.

For example, at the declassification expression in line 4 of Figure 5.1, we know

statically that {Alice→Bob; Alice←Chuck} is an upper bound on the dynamic

label lbl, because of the run-time label test on line 3.

If L is an upper bound for dynamic label lbl, we have lbl v L, and so

for any principal p, by definition of v, we have writers(p,lbl) ⊆ writers(p, L).

Thus, if L consists only of reader and writer policies, then writersToReaders(L) is a

conservative approximation for writersToReaders(lbl), and if q ∈ writers(p,lbl),

then q ∈ readers(p,writersToReaders(L)).

We extended this technique for approximating writersToReaders(·) to other

labels, such as class parameters and polymorphic argument labels.

117

1 class C {
2 condition{} c = false;
3 final label{} lbl = new label {Alice→(⊥ this.c↗>)};
4 void m{}() {
5 String{*lbl; Alice→(⊥ this.c↗>)} x;
6 x = "Hello world!";
7 this.c = true;
8 }
9 }

Figure 5.2: Example translation source

5.3 Translation

The Jif compiler (Myers et al., 2001–2008) is a source-to-source compiler, produc-

ing Java code as output. Jif programs rely on a small trusted run-time library,

implemented in Java, that provides functionality such as run-time comparisons

of labels. We extend the run-time library, and modify the source-to-source trans-

lation, to provide run-time support for erasure. Figure 5.2 and Figure 5.3 show

the Jif source code and Java target code, respectively, of an example translation.

We refer to these figures in the description of translation below.

The key idea is that if a variable or location may need to be overwritten

depending on the satisfaction of a condition c, then a listener is registered with

condition c; the listener is notified whenever the value of c changes, and the

listener will overwrite the variable or location if necessary.

Listeners are implementations of the interface until.lang.Condition-

Listener, which contains a single method void conditionChange(). Im-

plementations of ConditionListener.conditionChange() simply check

if erasure of a location is required, and if so, write a suitable default value into

the location.

A field f of type condition in a class C is translated to a boolean field

(e.g., Figure 5.2 line 2, Figure 5.3 line 2), and two methods added to the class

118

1 class C implements ConditionContainer {
2 boolean c = false;
3 jif.lang.Label lbl;
4

5 void m() {
6 final LocalPlaceHolder y = new LocalPlaceHolder() {
7 public void conditionChange() {
8 if (C.this.get_c() ||
9 LabelUtil.requiresErasure(C.this.lbl))
10 this.erase();
11 }
12 };
13 this.register_c(y);
14 LabelUtil.register(this.lbl, y);
15 y.set(ConditionChecker.condCheckSilent("Hello world!",
16 !this.get_c() &&
17 !LabelUtil.requiresErasure(this.lbl)));
18 this.set_c(true);
19 }
20

21 // setter and listeners for c
22 boolean set_c(boolean v) {
23 this.c = v;
24 for (ConditionListener l : this.listeners_c)
25 l.conditionChange();
26 return v;
27 }
28 final Set listeners_c = new LinkedHashSet();
29 void register_c(ConditionListener l) {
30 this.listeners_c.add(l);
31 }
32

33 // ConditionContainer methods
34 boolean accessCondition(String condName) {
35 if ("c".equals(condName)) return this.c;
36 throw new Error("Unknown condition " + condName);
37 }
38 void register(String condName, ConditionListener e) {
39 if ("c".equals(condName)) this.register_c(e);
40 }
41 }

Figure 5.3: Example translation target

119

C: a registration method void register f(until.lang.ConditionListener l),

and a setter method boolean set f(boolean v) (e.g., Figure 5.3 lines 31–31).

The registration method adds the listener to a set of registered listeners. All

assignments to the field are translated to calls to the setter method (e.g., Figure 5.2

line 7, Figure 5.3 line 18), which modifies the field, and then notifies all registered

listeners.

If a local variable may need to be overwritten, then the translation moves the

local variable to the heap, to allow a condition listener to access it (and overwrite

it) as needed.

Assignments to fields and local variables are translated to check that the vari-

able or field does not currently require erasure (e.g., Figure 5.2 line 6, Figure 5.3

lines 15–17). The combination of condition listeners and assignment checks

ensures that whenever the label enforced on the variable or location requires

erasure, the variable or location will be zero or null as appropriate.

Overwriting a variable or location of type condition may trigger the over-

writing of other variables and locations. To ensure that updating a condition

does not cause an infinite cascade of listener invocations, the type system of JifE

requires that for all conditions c, the value of c cannot (directly or indirectly)

control whether c needs to be overwritten. This is analogous to ensuring that the

overwrite dependency relation ≺Γ of Chapter 3 is well-founded.

5.4 Case study: Civitas

Using JifE , we implemented Civitas (Clarkson et al., 2008), a practical, secure,

remote voting system. The use of declassification and erasure policies in the

implementation of Civitas help ensure that the system’s security requirements

120

are satisfied. This section discusses the experience of using JifE to implement

Civitas.

Civitas guarantees strong security properties in the presence of a strong

adversary. The design of Civitas refines a cryptographic voting scheme by

Juels et al. (2005). The entities involved in a Civitas election include an election

supervisor, voters, and election authorities, which are mutually distrusting entities

that collaborate to run an election. A Civitas election has several phases.

1. Setup. The electoral roll is established and shared keys are generated.

2. Registration. Voters retrieve credentials from election authorities.

3. Voting. Voters vote using their credentials.

4. Tabulation. Election authorities tabulate the election results.

More details of the design and security assurances of Civitas are available in the

Civitas technical report (Clarkson et al., 2007).

Civitas is implemented in 14,000 lines of JifE code, with about 8,000 additional

lines of Java code to perform I/O and implement cryptographic operations.

Declassification and erasure policies are used in four distinct places.

• Generation of a shared key by authorities. During setup, authorities engage in

a protocol to generate a shared ElGamal key pair. Each authority generates

a share of the key pair, and publishes a commitment to it. Each authority

publishes its share of the public key, but only after all commitments are

published.

The label {Ai→Ai↘allCommPosted⊥;Ai←Ai} is used for authority Ai’s public

key share. The declassification policy requires that initially the information

is readable only by election authority Ai, and may be declassified to be

readable by everyone (represented by the bottom principal ⊥) when con-

dition allCommPosted is satisfied. Condition allCommPosted is a field of

121

type condition. It is easy to check that this field is only updated once Ai

has successfully retrieved all key commitments. The writer policy Ai←Ai

indicates that the key share was influenced only by Ai.

• Commit-reveal protocol by authorities. During tabulation, the authorities

must jointly generate random bits, and each authority must believe that

the bits are random. Each authority selects random bits, and publishes

a commitment to these bits. Once all commitments are published, each

authority reveals its bits, which can be combined to form a sequence of bits

that all authorities agree are random.

Similar to the key shares, the label {Ai→Ai↘allBitsPosted⊥;Ai←Ai} is used

for authority Ai’s random bits. Condition allBitsPosted is a field of type

condition, and it is easy to check that this field is only updated once Ai

has been able to successfully retrieve all bit commitments.

• Management of credential shares by authorities. During registration, each

authority generates a credential share for each voter. Each voter contacts

each authority to retrieve his shares, combining them into a credential that

can be used to vote. After delivering the share to the voter, the authority

removes the share from the system. This helps ensure that the voter’s

anonymity is not violated should Ai be subsequently compromised.

Authority Ai enforces the label {Ai→ (Ai delivered↗>)↘deliveryReq⊥;Ai←Ai}

on each voter credential share. Condition deliveryReq is satisfied when the

voter has requested his credential share, and has authenticated himself to

the authority. The satisfaction of this condition allows the declassification

of the share.2 Any copies of the information that were not declassified must

2Ideally, the declassification policy should allow the share to be readable only by the voter Vj

it is intended for. In the protocol between authority Ai and Vj , each authenticates to the other, and
they establish a shared key k; the credential share is sent to Vj encrypted with k. The reasoning
supported by the DLM is not powerful enough to determine that information encrypted with k

122

be erased when condition delivered is satisfied upon successful retrieval by

the voter.

• Management of voter credential shares by voting clients. After voter Vj has

retrieved all credential shares from the authorities, he combines them into

a single credential, which he then uses to vote, publishing it together with

his ballot. After combining the shares, the voter deletes them, to remove

any record of which authority provided which share.

The voter enforces the label {Vj → (Vj postCombined↗>)↘combined⊥} on each

credential share. Upon combining the shares into a credential, condi-

tion combined is satisfied, and the voter can declassify the credential to

allow it to be published with his ballot. After combining shares, condition

postCombined is satisfied, and undeclassified copies of the shares (or of

information derived from them) are erased.

JifE allows complex declassification and erasure security requirements to be

clearly and unambiguously declared on the data. In addition to stating what

security must currently be enforced on the data, the policies limit how the data

may be used in the future. The information flow analysis ensures that uses of the

data conform to the declared security policies. This provides additional assurance

that the Civitas implementation is correct. The policy annotations serve as a form

of documentation, making complex information security requirements visible in

the code itself.

is readable only by Ai and Vj . Extending it to reason about the subtleties of cryptography would
allow a more precise declassification policy, but is largely orthogonal to this work.

123

124

CHAPTER 6

RELATED WORK

This dissertation presents expressive security policies for declassification and

erasure, and demonstrates how to enforce them end-to-end, using information-

flow control. In this chapter we summarize related work on information-flow

control, focusing on efforts to make information security more practical, and to

express and enforce declassification and erasure requirements. We also consider

expressive security policies and models, beyond information flow.

6.1 Information-flow control

Information-flow control is a mechanism that can provide end-to-end enforce-

ment of confidentiality. Seminal work by Bell and La Padula (1973) spurred the

investigation of information-flow policies, and information-flow control. In Bell

and La Padula’s model, objects in the system are associated with security classes.

Information may flow freely within a security class, but objects cannot read in-

formation from objects in more restrictive security classes, nor write information

to objects in less restrictive classes (“no read up, no write down”).

More generally, information-flow control techniques label data with security

levels; as data are updated and created, the security labels are also updated to

reflect data dependencies. The labels can be used to restrict sensitive operations

and actions within the system. Denning (1976) proposes the lattice model of

information flow, whereby the labels form a lattice structure. This model provides

a unifying view of systems that perform information-flow control.

What does it mean to successfully enforce confidentiality end-to-end? Goguen

and Meseguer (1982) answer that question by defining noninterference. The

intuition behind noninterference is that the actions of a user with high-security

125

clearance should have no effect on the observations of a user with lower security

clearance.

In the quarter-century since the introduction of noninterference, many similar

definitions of information security have been proposed. There is little agreement

on which definition of security is the correct one to use, either in general, or

in specific settings. Work on semantic security conditions for information-flow

control can be broadly divided into two camps: language-based security and

process calculi-based security.

Language-based security is concerned with the security of implementations,

and typically takes a “data-oriented” approach, seeking to prevent secret data

from being leaked. Process calculi-based security is mostly concerned with the

security of system specifications (as expressed in process calculi), and typically

takes an “event-oriented” approach, seeking to preventing the occurrence of

secret events being known by public observers.1 Focardi and Gorrieri (2001) pro-

vide a classification of process algebra-based security conditions; and Sabelfeld

and Myers (2003) survey language-based information-flow security. This disser-

tation takes a language-based approach to enforcing expressive security require-

ments; in the remainder of this chapter, we focus on language-based security.

6.1.1 Language-based information-flow control

The most common forms of information-flow control use dynamic mechanisms.

However, comparatively little work considers dynamic information-flow con-

trol at the language level of abstraction. The Perl scripting language allows

1Some work attempts to bridge this divide: Mantel and Sabelfeld (2001) show equivalent
notions of security for multi-threaded programs and event-based models of multi-threaded
program, and Castellani (2007) extends their results; von Oheimb (2004) combines both views
into a new security condition noninfluence; and Focardi et al. (2005) show formal links between
language-based and process calculi-based information security.

126

programs to be run in taint mode, which attempts to ensure that “tainted” data

from untrusted sources is not used in potentially unsafe system calls. Ferrari

et al. (1997) consider information flow in object-oriented systems. Lam and

Chiueh (2006) provide a dynamic information-flow tracking framework for C

programs. McCamant and Ernst (2007) present a proof technique for bounding

the amount of information leaked by a dynamic information-flow analysis on a

simple imperative language. Shroff et al. (2007) dynamically track dependencies

over multiple runs of a program to accurately track information flow in a lambda

calculus.

There is work on dynamic control of information flow at lower levels of

abstraction, including the operating system (SELinux; Efstathopoulos et al.,

2005; Zeldovich et al., 2006; Krohn et al., 2007; Nightingale et al., 2008), virtual

machine (Nair et al., 2007), and architecture (Fenton, 1973, 1974; Suh et al., 2004;

Vachharajani et al., 2004).

One of the problems with dynamic enforcement of information-flow control

is that information flow is not a predicate on a single execution trace, but rather

a predicate on sets of traces (Schneider, 2000). Dynamic techniques typically

do not consider executions other than the current one, and thus do not restrict

information flows that arise due to the non-occurrence of events. For example,

dynamic techniques typically do not soundly prevent implicit flows (Denning

and Denning, 1977), where information flows via the control structure of a

program.2 Another problem is the often prohibitively high run-time overhead of

label tracking.

Denning and Denning (1977) were the first to observe that compile-time, or

static, analysis facilitates sound reasoning about information flow. They present

2A recent exception is the work of Shroff et al. (2007), who prove noninterference results for
their dynamic information-flow control technique.

127

a program analysis, and show that if the analysis succeeds, then no execution of

the program will produce an illegal flow of information. An additional benefit of

static information-flow analyses is that they can remove the need to track labels

at runtime, and reduce many of the run-time information-flow control. Feiertag

(1980) and McHugh and Good (1985) developed static tools for reasoning about

information flow in programs; both use theorem provers to discharge proof

obligations.

Volpano et al. (1996) formulate Denning and Denning’s analysis as a type

system, and show soundness of the type system: well-typed programs satisfy

noninterference. Subsequently, much work has focused on type systems for

sound information-flow control. Many of these type systems are described in

the survey of language-based information-flow security by Sabelfeld and Myers

(2003).

Although IMPE and JifE use run-time mechanisms to enforce erasure and

declassification requirements, information-flow control in both languages is

static, using a type system to track and restrict the flow of information.

6.1.2 Practical enforcement

A goal of this dissertation is to make strong information security more practical.

In this vein, it furthers work on practical information-flow control. Myers de-

veloped the Jif3 programming language (Myers, 1999; Myers et al., 2001–2008),

which extends Java with information-flow control. The price of extending a

complex and practical programming language such as Java is that proofs of

the correctness of information flow become infeasible. Jif uses labels from the

decentralized label model (Myers and Liskov, 2000; see also Chapter 4), a flexible

3The Jif programming language was originally called JFlow.

128

open-ended model for expressing security concerns, and provides mechanisms

for declassification—an important requirement for real applications. In this

dissertation, we extended both the decentralized label model, and the Jif pro-

gramming language with support for declassification and erasure.

Simonet (2003) also extends a practical programming language, Objective

Caml (Leroy et al., 2004), with information-flow control; the resulting language is

called Flow Caml. In line with other ML-style language, Flow Caml provides full

type inference (Pottier and Simonet, 2002). Flow Caml provides tools to visualize

the information flows expressed by types, but does not provide any mechanism

for declassification.

Praxis High Integrity System’s language SPARK (Barnes, 2003) is based on

a subset of Ada, and adds information-flow analysis. SPARK checks simple

dependencies within procedures using sets of input variables as the security

labels. Thus, the security lattice for a given procedure is the power set of the

procedure’s input variables. SPARK has been used to implement commercial

systems, including air traffic control systems, avionics systems, and certificate

authorities.

Deng and Smith (2004) modify the semantics of array accesses and arithmetic

operations to make typing for information-flow control more permissive. They

define an out-of-bound read to an array to evaluate to zero. That is, the expression

a[i] evaluates to zero when either i is less than zero, or greater than the length of

the array a. Similarly, an out-of-bound write to an array is a no-op, and division

by zero evaluates to zero. Thus, no errors are encountered during the execution

of a program, so there is no information flow due to exceptions or errors. The

type system can thus be simpler, and more permissive.

Hicks et al. (2007) develop Jifclipse, an extension to the Eclipse development

129

environment that supports writing Jif programs. Jifclipse integrates Jif’s security

annotations into the Eclipse development environment, allowing a programmer

to navigate and view security annotations and constraints. Jifclipse can also make

“quick fix” suggestions to the programmer, automating simple modifications to

resolve or remove illegal information flows.

Smith and Thober (2007) provide a type-inference algorithm to facilitate the

writing of security-typed code in a Java-like calculus. The programmer must

provide label annotations only where data enters and leaves the system; all

remaining annotations are inferred. A highly polymorphic type system permits

precise expressive typings, but at the cost of whole-program analysis. Improving

the inference of annotations simplifies the programmer’s task. Jif currently infers

type annotations on local variables, but does not infer other annotations in order

to provide modular compilation.

6.2 Declassification

It has been recognized since the beginnings of work on information flow that

noninterference is too rigid to describe the information security of real applica-

tions (Cohen, 1977; Goguen and Meseguer, 1982). There has been a great deal of

work on mechanisms and security definitions that weaken noninterference to

account for declassification. In this section, we focus on language-based security

policies and semantic conditions for declassification.

Sabelfeld and Sands (2007) survey recent work on declassification, categoriz-

ing work using four dimensions: what information is released, who releases it,

where in the system information is released, and when release may occur. We use

these categories to discuss related work on declassification.

130

In the same publication, Sabelfeld and Sands also propose four “prudent prin-

ciples for declassification,” desirable properties for declassification policies and

semantic conditions. Semantic consistency requires that semantically equivalent

programs should satisfy the same declassification security conditions. Conser-

vativity requires that the definition of security should reduce to noninterference

in the absence of declassification. Non-occlusion requires that the presence of

declassification does not hide illegal information flows. Monotonicity requires

that adding declassification annotations cannot make a secure program insecure.

Noninterference according to policy (presented in Chapter 2) satisfies semantic

consistency, conservativity, and monotonicity. Because the declassification poli-

cies address when, but not what, information may be declassified, noninterference

according to policy does not satisfy non-occlusion.

6.2.1 When

In many systems, it is critical to security requirements that declassification occur

only at the appropriate time. Much of the work that restricts when declassifi-

cation may occur does so by specifying conditions that must be satisfied for

declassification to occur, and ensuring those conditions are satisfied. The declas-

sification policies presented in this dissertation make these conditions explicit in

the security policies.

Conditions for declassification

Giambiagi and Dam (2003) consider information flow in the secure implementa-

tion of security protocols. Security protocols are specified using dependency rules

that declare both what information may flow, and the conditions under which the

flow is allowed. They provide a semantic security condition based on their ear-

131

lier work on admissability (Giambiagi and Dam, 2000), which requires invariant

behavior of a system despite perturbations to secrets input to the system.

Banerjee and Naumann (2003, 2005a) explore mediating information release

with stack-based access control mechanisms. Declassification (and other sensitive

operations) occur only when appropriate permissions have been enabled by

calling-contexts on the stack. Thus, the condition for declassification is that

access was granted by the access control system. They present a noninterference

property to describe such “permission-dependent” information flows, and a

security type system to enforce this property. Banerjee and Naumann (2005b)

extend this work to consider history-based access control (Abadi and Fournet,

2003), where access control decisions may depend not just on the current call

stack, but on the execution history. The access control decisions may form a

covert channel, as they depend on possibly confidential parts of the execution

history. Like the conditions for declassification and erasure seen in this work,

information that may leak via this covert channel must be tracked and restricted.

Hicks et al. (2005) consider the dynamic update of information-flow policies

in a program. Because updates to policies could allow new information flows,

policy updates can be a form of declassification. Hicks et al. restrict updates to

occur only when such updates are consistent with the currently running program,

and thus may delay a policy update until soundness can be ensured. If the policy

update is regarded as a declassification, then the condition for declassification is

that the run-time state is consistent with the update. They define and enforce

noninterference between updates.

Swamy et al. (2006) further develop the dynamic update work of Hicks et al.

(2005) and introduce the language Rx. Instead of delaying policy updates, Rx

uses transactions to ensure consistency of information flow and policy updates;

132

conflicting transactions will be rolled back if needed. Rx enforces noninterference

between updates, and also ensures the policy update itself does not incorrectly

reveal information. Rx uses role-based security (Li et al., 2002) instead of an

arbitrary confidentiality lattice, or the decentralized label model. Bandhakavi

et al. (2008) refine Rx, providing finer-grained specification of role-based security

policies, and using established trust-management principles to restrict policy

updates. More specifically, they adopt a “writers-oriented” approach to integrity

instead of the “readers-oriented” approach used in Rx.

Time-complexity

A small body of work considers the time-complexity of declassification. Although

connected to temporal aspects of declassification, this work is not closely related

to reasoning about the conditions for declassification. Volpano and Smith (2000)

define relative secrecy to require that a secret of length n cannot be leaked in time

polynomial in n. They consider as a motivating example a password-checking

program that declassifies whether a guess equaled the password, and give a type

system such that no well-typed program can copy the secret in polynomial time.

6.2.2 Where

Sabelfeld and Sands (2007) identify two kinds of locality pertaining to declas-

sification: code locality (where in the code declassification is permitted), and level

locality (where in the confidentiality lattice information is permitted to flow). Re-

stricting where in the code declassification is permitted can be seen as a special

case of restricting when declassification is permitted, to wit, when execution is in

the permitted code locations.

133

Intransitive noninterference (Rushby, 1992; Pinsky, 1995; Roscoe and Gold-

smith, 1999; Mantel, 2001; Mantel and Sands, 2004; van der Meyden, 2007) is

an intensional property, where in each step of computation, information only

flows between security levels according to some (possibly intransitive) relation.

The relation captures the intuition that some of the intended information flow is

information release (i.e., the intransitive parts of the relation), and is thus a form

of level locality. For example, information may be allowed to flow from L to H ,

from H to a Declassifier level, and from Declassifier to L; information would not

be allowed to flow directly from H to L. Often left unstated is the code locality

assumption that only trusted components will perform the computation steps

that result in information release.

Mantel and Sands (2004) apply intransitive noninterference in a language-

based setting, and combine code and level locality. Following Mantel’s earlier

work (Mantel, 2001), the permitted flows between security levels are factored

into a partial order ≤ over security levels and a relation over security levels.

The flows permitted by are the intransitive “exceptions” to the normal flows

≤. Declassification commands are written [x := y]. For each step of a program,

information flow must conform to the normal flow ≤, except for declassification

commands, which must conform to ≤ ∪ .

Independently, Almeida Matos and Boudol (2005) combine code locality and

level locality in their nondisclosure semantic security condition, which requires

that in each step information flows according to the flow policy for that step. They

use a language construct flow a1 ≺ b1, . . . , an ≺ bn in c, where c is a command,

a1, . . . , an, b1, . . . , bn are principals, and for each i ∈ 1..n, information is allowed

to flow from principal ai to bi within the command c.

Hicks et al. (2006) propose trusted declassification as a mechanism to specify

134

which modules are trusted to perform declassification, and so provide a form of

code locality. Their policy language allows principals to specify which modules

to use when communicating with which principals. For example, Alice could

declare that AES encryption can be used when communicating with principal

Bob, but that RSA encryption should be used when communicating with Charlie.

As such, trusted declassification also addresses to some extent level locality,

and the what and who dimensions of declassification. Hicks et al. define a

semantic security condition noninterference modulo trusted methods that permits

only declassifications that use the trusted modules appropriately. They have

implemented trusted declassification by compiling principals’ policies into Jif

code that grants a principal’s authority to a module based on which modules the

principal trusts.

6.2.3 Who

In the presence of multiple principals, perhaps mutually distrusting, it is impor-

tant to reason about who controls or affects declassification.

The decentralized label model (DLM), introduced by Myers and Liskov (2000)

and discussed extensively in Chapter 4, is a framework for specifying and rea-

soning about security in the presence of mutual distrust. To prevent abuse of

declassification, the DLM as originally presented required that owners of poli-

cies weakened by a declassification must authorize that declassification. This

requirement was termed selective declassification by Pottier and Conchon (2000),

who presented selective declassification as a combination of information flow

and access control. Pottier and Conchon express selective declassification as

declassification operations “locked” at appropriate levels of authority; access

control allows suitably authorized principals to unlock the declassification oper-

135

ations, and only unlocked declassification operations can declassify information.

Selective declassification prevents inappropriate declassification by requiring a

condition to be satisfied when declassification occurs: all required owners of the

data have authorized the declassification.

Although Banerjee and Naumann (2003, 2005a,b) also use access control to

mediate information release, their access control relies on the call stack and

execution history, not the identity of principals.

Further extensions to the DLM have added capability mechanisms for con-

trolling access to declassification and have integrated these mechanisms with

public-key infrastructures. Chothia et al. (2003) extend the DLM by adding capa-

bility mechanisms for controlling access to declassification and integrate these

mechanisms with public-key infrastructures. They introduce a programming

language that uses typed cryptographic operations to restrict which principals

may access information. A principal may issue a declassification certificate for a

label he owns, enabling additional principals to access information protected by

that label.

Tse and Zdancewic (2004, 2005) also consider certificates for declassifications

in a type system. Using a monadic calculus, they encode both principal delega-

tion and declassification as subtyping. Tse and Zdancewic define and enforce

conditioned noninterference, which requires that if no one issues a declassification

certificate for a given observer, then the program is noninterfering from that ob-

server’s perspective. They also define certified noninterference, the contrapositive

of conditioned noninterference, which requires all declassifications of a program

be permitted by appropriate declassification certificates.

Vaughan and Zdancewic (2007) consider a cryptographic implementation of a

variant of the DLM, and incorporate it into a programming language. They show

136

a noninterference result for well-typed programs, under a Dolev-Yao attacker

model (Dolev and Yao, 1983).

Robustness (Zdancewic and Myers, 2001; Myers et al., 2004; Zdancewic, 2003)

protects declassification (and other sensitive operations; see Tse and Zdancewic

2005) from active attackers, and was described in Chapter 4. To recap, a system

is robust if an active attacker (one who can observe and modify the behavior of

the system) cannot learn more about the system (including secret inputs) than

could a passive attacker (one who can observe but not modify the behavior of a

system). Chapter 4 extends robustness to account for mutual distrust, defining

and enforcing robustness against all attackers.

6.2.4 What

What information is permitted to be declassified is crucial to the security of

systems. Much work concerned with security policies and semantic conditions

for declassification has focused on expressing what information is declassified.

Sabelfeld and Myers (2004) introduce delimited release to reason about what

information may be declassified. A collection of escape-hatch expressions are spec-

ified, and the only escape-hatch expressions may be declassified. Delimited

release is presented as an end-to-end, extensional, security condition: if two ini-

tial states are identical on the publicly observable variables and on the evaluation

of all escape-hatch expressions, then an observer will not be able to distinguish

two (terminating) executions from these initial states.

Li and Zdancewic (2005a) use lambda-calculus functions to specify what infor-

mation may be declassified. A declassification policy is a set of lambda-calculus

functions, and the application of any of these functions to secret information

may be declassified. The security condition relaxed noninterference requires that

137

information is only declassified according to the declassification policies. Li and

Zdancewic (2005b) extend the policies to also consider downgrading integrity.

Askarov and Sabelfeld (2007a) explicitly model attacker knowledge, and

introduce the semantic security condition gradual release, which requires that at-

tacker knowledge not increase except when explicit declassifications occur. They

enforce gradual release in a language that includes cryptographic operations,

and model how an attacker’s knowledge interacts with cryptography.

Giacobazzi and Mastroeni (2004) introduce abstract noninterference, which

applies the machinery of abstract interpretation (Cousot and Cousot, 1977) to

information flow. To model what an attacker is permitted to learn about secret

information, attackers are regarded as abstract interpretations of programs. Thus,

instead of observing the actual values of secret information, attackers are charac-

terized as observing properties of the secret information, such as parity or sign

of the secret information. Abstract noninterference has been further developed

and elaborated (e.g., Clark et al. 2004; Giacobazzi and Mastroeni 2005; Hunt and

Mastroeni 2005; Mastroeni 2005; Banerjee et al. 2007a). However, it is not appar-

ent how abstract interpretation can be used to reason about other dimensions of

declassification.

Sabelfeld and Sands (1999) use partial equivalence relations (PERs)4 to rea-

son about the observations an attacker can make. Although both PERs and

abstract domains are used to model an attacker’s observational power, it is

unclear what relationship exists between the PER model and abstract noninter-

ference (Sabelfeld and Sands, 2007).

A growing body of work considers how much information is declassified or

leaked by a program. Quantitative information flow attempts to measure and

restrict the amount of information released, and/or the rate at which information
4Partial equivalence relations are symmetric and transitive, but not necessarily reflexive.

138

is released. Typically, quantitative approaches measure information flow in terms

of an attacker’s reduction in uncertainty (e.g., Millen 1987; Gray 1991; Lowe 2002;

Di Pierro et al. 2002; Clark et al. 2005; Malacaria 2007), although Clarkson et al.

(2005) argue that accuracy of belief is a more appropriate measure.

6.2.5 Multiple dimensions

Researchers have recently considered multiple dimensions of declassification.

Although some work has touched on multiple dimensions of declassification

(e.g., Hicks et al. 2006), the recent trend is distinguished by the explicit extension

or combination of previous work to cover more dimensions of declassification.

Askarov and Sabelfeld (2007b) propose localized delimited release to extend

delimited release (Sabelfeld and Myers, 2004) with further restrictions on when

information may be released. Whereas delimited release permits an observer

to learn the evaluation of any escape-hatch expression e, localized delimited

release permits an observer to learn e only after a declassify(e) expression has

been executed. For example, the following program satisfies delimited release,

but does not satisfy localized delimited release. (We assume the observer can

view the contents of variable l but not variable h, and h mod 10 is the only

escape-hatch expression.)

l := h mod 10; l := declassify(h mod 10)

The type system proposed by Sabelfeld and Myers (2004) to enforce delimited

release is sufficiently restrictive that it also enforces localized delimited release.

Although Askarov and Sabelfeld regard localized delimited release as com-

bining the what and where dimensions of declassification, it is more accurately

characterized as combining what and when. Localized delimited release restricts

139

declassification based on the execution history, and not on code location. This is

demonstrated by the following program.

1 i := 0;
2 while i < 2 do
3 if j > 0 then
4 l := h mod 10
5 else
6 skip;
7 l := declassify(h mod 10);
8 j := 1;
9 i := i+ 1

The while loop executes exactly twice. The initial value of variable j deter-

mines whether the assignment on line 4 will occur on the first loop iteration.

If the assignment occurs during the first iteration, then the program does not

satisfy localized delimited release. However, if the assignment occurs only in the

second iteration, the program does satisfy localized delimited release. Thus, for

localized delimited release, it is not where the code is located that is significant,

but when the code is executed.

Banerjee et al. (2007b, 2008) combine the when, what, and where dimensions of

declassification using flowspecs: flexible specifications of permitted information

flow. Flowspecs are a restricted form of relational Hoare triples over a logic

for reasoning about information flow (Amtoft et al., 2006; Amtoft and Banerjee,

2007). Flowspec pre-conditions can specify the conditions for declassification to

occur (when), and the expression that may be declassified (what). The occurrence

of a flowspec in code denotes where in the program declassification may occur.

Banerjee et al. define conditioned gradual release (an extension of gradual release

that incorporates flowspec pre-conditions) and show that it holds when flowspecs

are enforced. They suggest using program verification techniques to enforce

flowspecs, and type-checking to enforce stronger information-flow controls on

flowspec-free portions of code.

140

Broberg and Sands (2006) introduce flow locks, a simple mechanism for spec-

ifying conditions under which information may flow. They propose a simple

calculus with explicit operations to “open” and “close” locks, and a type system

to statically verify the enforcement of flow-lock policies. Broberg and Sands

show that flow locks can express and enforce several declassification conditions,

including noninterference until declassification (a precursor to noninterference ac-

cording to policy, introduced in Chong and Myers 2004), nondisclosure (Almeida

Matos and Boudol, 2005), and robust declassification (Zdancewic and Myers,

2001; Myers et al., 2004; Zdancewic, 2003). Thus, flow locks are capable of ex-

pressing and enforcing when, where, and who dimensions of declassification, and

may be able to provide a “core calculus of dynamic information flow policies.”

Indeed, flow locks appear capable of enforcing erasure requirements (Sands,

2006).

Mantel and Reinhard (2007) consider the what and where dimensions of de-

classification. However, they present separate semantic security conditions for

each dimension, as opposed to a single security condition that combines multiple

dimensions. Their where is similar to intransitive noninterference as presented

by Mantel and Sands (2004), but satisfies the prudent principles for declassifi-

cation (Sabelfeld and Sands, 2007). They present two semantic what conditions,

both of which are intensional conditions similar to delimited release. They

present a type system that enforces all three of their semantic security conditions.

6.3 Information erasure

Although both erasure and declassification requirements are common in many

applications, erasure is not as well-studied as declassification. Comparatively

141

little work has considered semantic security conditions that hold in the presence

of erasure, or security policies for specifying erasure requirements.

6.3.1 Language-based erasure

Since the introduction of erasure policies (Chong and Myers, 2005), other re-

searchers have considered language-based enforcement of information erasure,

and uses of erasure policies in applications.

Concurrently with this work on erasure policy enforcement, Hunt and Sands

(2008) consider the enforcement of simple erasure policies of the form `↗`′, where

erasure is required at the end of a lexical scope. These policies are a restricted

instantiation of the policy framework used here, where only non-nested erasure

policies are allowed, and the condition language is limited to specifying the end

of lexical scopes. Using flow-sensitive typing contexts (Hunt and Sands, 2006),

Hunt and Sands present an elegant type system to enforce erasure policies; their

system requires no run-time erasure mechanism.

Comparing erasure enforcement in this work to Hunt and Sands’ highlights

a tension between expressiveness of erasure conditions and ease of enforcement.

Simpler condition languages are easier to reason about statically, and thus easier

to enforce statically. Hunt and Sands’ conditions are tied to lexical scopes, and

it is straightforward to reason statically about when conditions are satisfied.

By contrast, the condition language used in this work is program expressions:

flexible, but difficult to reason about statically. Because it is difficult or impossible

to know the value of an arbitrary expression at a given program point prior to ex-

ecution, it is difficult to determine statically whether a policy will require erasure

at that program point, and thus difficult to enforce erasure statically. Instead,

we use a simple run-time mechanism to enforce erasure, an approach similar in

142

spirit to hybrid type checking (Flanagan, 2006), in which proof obligations that

cannot be proven at compile-time are deferred to run-time.

Hunt and Sands also consider erasure in the presence of input and output.

They note that once data is output and leaves the purview of the system, the

system cannot ensure erasure. They also note that a user may provide multiple

inputs to a system throughout execution, and each input may require erasure.

They define the semantic security condition local erasure to express the appropri-

ate erasure of a single input, and lift this to a notion of global erasure to ensure

that each input is erased appropriately. Although noninterference according to

policy is defined in terms of a single input to the system provided at the start of

execution, it can be easily modified to deal with input and output by adapting

the approach of O’Neill et al. (2006), who consider noninterference in interactive

programs. In their work, noninterference is required with respect to a user’s

strategy, a function from the trace the user has seen so far to inputs the user

provides.

Of the four semantic principles for declassification proposed by Sabelfeld and

Sands (2007) and described above, three seem applicable to erasure. Semantic

consistency and conservativity can easily be adapted for erasure: semantic

consistency requires that semantically equivalent programs should satisfy the

same declassification and erasure security conditions, and conservativity requires

that in the absence of declassification and erasure, the definition of security

reduces to noninterference. Non-occlusion for declassification requires that the

presence of declassification does not hide illegal information flows; the equivalent

of non-occlusion for erasure is that the absence of erasure does not hide illegal

information flows. Monotonicity does not appear to have a ready equivalent for

erasure, unless there are explicit erasure annotations. The languages IMPE and

143

JifE presented in this dissertation do not have explicit erasure annotations, and

neither does the language considered by Hunt and Sands (2008).

6.3.2 Uses of erasure policies

Hansen and Probst (2006) consider information-flow security in Java Card byte-

code, and identify the utility of erasure policies in providing security assurance.

They consider “simple erasure policies” of the form L end↗H , where end is a

condition indicating the end of execution of the current program. They define

a corresponding simple erasure security condition. Simple erasure requires that

every location has one of the policies L, H , or L end↗H enforced on it. A program

satisfies simple erasure if the program satisfies noninterference, and in addition,

any two executions of the program that start with equivalent values in the L

locations terminate with equivalent values in the L and L end↗H locations. Thus,

values in L end↗H locations are erased before the end of the program. Simple

erasure is consistent with noninterference according to policy. Hansen and Probst

conjecture, but do not demonstrate, that simple erasure is straightforward to

enforce.

Hansen and Probst (2005) have also used erasure policies in secure dynamic

program repartitioning. Secure program partitioning (Zdancewic et al., 2001)

is a technique to split data and code across a set of mutually distrusting hosts

while guaranteeing security. Hansen and Probst consider repartitioning a pro-

gram when the set of hosts changes dynamically, and use erasure policies to

ensure that old copies of data are removed from the system when repartitioning

occurs. Hansen and Probst do not describe how to enforce the erasure policies.

Søndergaard’s subsequent master’s thesis (Søndergaard, 2006) expands on the

use of erasure policies in dynamic program repartitioning, proposing erasure

144

policies of the form ` c↗`′, where conditions c are limited to Boolean formulas

over two predicates that indicate whether principals of the dynamic system are

active, and what components of the system principals are currently responsible

for. Søndergaard discusses the trusted run-time components required to enforce

these erasure policies, but does not implement them.

6.3.3 System-based and hardware-based erasure

Although not much work has considered erasure of information at the language

level of abstraction, there is a body of work that considers the deletion of infor-

mation at the operating system or hardware levels of abstraction.

Corner and Noble (2002) introduce zero-interaction authentication to automati-

cally restrict information on a laptop computer when the user is not physically

present. In their system, the user wears an authentication token that communi-

cates with the laptop. The laptop is assumed to use a cryptographic file system,

and the authentication token provides a decryption key. When the laptop detects

the authentication token is not present, the laptop discards the decryption key,

and encrypts the file cache. Thus, the laptop enforces an erasure policy on files,

ensuring no unencrypted files are accessible without a decryption key when

the authentication token is not physically present. This is similar to the mobile

computing example introduced in Section 1.3 and expanded in Section 2.1.

Fenton (1974) defines a memoryless subsystem as a program or procedure that

is “guaranteed to have kept no record of data supplied when it has completed

its task.” Defined this way, memoryless subsystems seem to have an erasure

requirement, which can be achieved by ensuring “the machine is wiped clean

at the end” of execution. Fenton points out that memoryless subsystems are

inadequate to implement systems that must compute with data from mutually

145

distrusting principals. Fenton restates the problem as a system that must pro-

duce public output that does not depend on secret input, and defines the Data

Mark machine (Fenton, 1973, 1974) to provide hardware support to solve this

problem. The problem restatement has no erasure requirement, and may thus be

a weakening of Fenton’s initial definition.

Gutmann (1996, 2001) considers the recovery of supposedly erased data from

magnetic media and semiconductor devices (DRAM, SRAM, and EEPROM).

Traces of the data that was stored may be detectable even after the data has

been overwritten. He describes techniques to hinder recovery of data from these

media. Anderson and Kuhn (1997) consider low-cost attacks on tamper-resistant

devices, and apply Gutmann’s techniques to the DRAM of a security module

used in a bank to check customer PIN numbers. They successfully recover

approximately 90% of the bits of the secret key values.

6.4 Expressive models and policies

This dissertation develops expressive security policies, and enforces them end-to-

end using information-flow control. However, the study and use of expressive

security policies goes well beyond language-based information-flow control. In

this section we describe other expressive security models, and security policy

formalisms.

Security models Label models have been used extensively in military appli-

cations, due to the Department of Defense’s “Orange Book” (Department of

Defense, 1985), which mandated the use of labeled data for high-assurance sys-

tems. Feiertag et al. (1977) instantiate Denning’s lattice model (Denning, 1976)

as multi-level security policies for military systems. Biba (1977) shows that

146

information-flow control could be used to enforce integrity as well as confiden-

tiality. Biba reverses the Bell-LaPadula information-flow control rules, requiring

“no write up, no read down,” demonstrating that integrity is dual to confidential-

ity.

Label models have also been used in commercial systems. The Clark-Wilson

model (Clark and Wilson, 1987) emphasizes the need for integrity in commercial

systems, and has been widely used in the banking industry. The Chinese-Wall

model (Brewer and Nash, 1989) can express conflicts of interest, and restrict a

user’s access rights based on the access rights currently held by the user.

Foley (1991) presents a framework that can express many previous label

models and requirements (including Bell-LaPadula, Biba, Clark-Wilson, Chinese

Walls, and separation of duties), and induces a taxonomy on these information-

flow models.

Access control The most commonly used mechanism to control information

release in real systems is discretionary access control, also called access control. The

key idea is that before a program performs a potentially dangerous action (such

as the release of information), it performs a run-time check (at the discretion of

the user and/or program) to ensure that appropriate authority exists to perform

the action.

Although access control mechanisms can express declassification and erasure

requirements, they are unable to enforce these information security requirements

end-to-end.

Many access control mechanisms have been designed and implemented,

including capabilities (Dennis and VanHorn, 1966; Wulf et al., 1974), access control

lists (Lampson, 1971), and stack inspection (Wallach et al., 1997; Wallach and

Felten, 1998; Fournet and Gordon, 2002). Logics for access control have been

147

devised as a way to explain and improve access control (see Abadi 2003 for a

brief survey).

There have been many extensions and generalizations of access control mech-

anisms, increasing their expressiveness. Several extensions have considered

temporal aspects of access control (e.g., Bertino et al., 1998; Cuppens and Gabil-

lon, 1996), specifying the time periods that access is permitted or denied.

Jajodia et al. (2001) introduce a framework for provisional authorization, where

access is granted only if certain conditions are satisfied, for example, an audit log

entry is made. The framework is parameterized on a logic for conditions. Bettini

et al. (2003) generalize this idea, and introduce provisions and obligations. Provi-

sions are conditions that must be satisfied, or actions that must be performed,

before an access decision is made; obligations are conditions or actions that must

be fulfilled after the access decision. Subsequently, much recent work (Hilty et al.,

2005; Barth et al., 2006; Dougherty et al., 2007; Hilty et al., 2007) has investigated

the use and enforcement of obligations.

The conditions in declassification policies can be seen as provisions: condition

c must be satisfied when information labeled p↘c q is declassified. Similarly,

erasure conditions can be viewed as obligations: there is an obligation to erase

information labeled p c↗q when condition c is satisfied. Indeed, erasure of data is

a common obligation in privacy policies and digital rights management (DRM).

For example, DRM may require a user who has purchased the right to watch

a movie to delete the movie when it has been watched twice or one week has

elapsed.

148

Security automata Alpern and Schneider (1987) specify safety properties5 us-

ing a class of Büchi automata, named security automata by Schneider (2000). A

security automaton is defined by a countable set of states, a countable input

alphabet, and a transition relation. Security automata have been used to specify

many useful security policies, including access control (Evans and Twyman,

1999; Erlingsson and Schneider, 1999; Abadi and Fournet, 2003), software fault

isolation (Wahbe et al., 1003; Erlingsson and Schneider, 2000), Chinese Walls

(Erlingsson, 2003; Fong, 2004), and information release (Swamy and Hicks, 2008).

Security automata can be enforced by a variety of mechanisms, including execu-

tion monitoring (Schneider, 2000), program rewriting (Erlingsson and Schneider,

1999; Hamlen et al., 2006), and type systems (Walker, 2000; Swamy and Hicks,

2008).

Enforcement mechanisms for security automata are able to enforce (approx-

imately) the class of safety properties (Schneider, 2000; Viswanathan, 2000;

Hamlen et al., 2006). Bauer et al. (2002) introduce edit automata, an extension

of security automata that allows the suppression and insertion of actions. Edit

automata allow non-safety properties to be expressed and enforced (Ligatti et al.,

2005).

Although security automata provide an expressive language for security

policies, they cannot express information-flow policies. Nonetheless, a suitable

adaptation of security automata could generalize the declassification and erasure

policies presented here, and permit the specification of more complex declassifica-

tion and erasure requirements. Because a policy may refer to distinct conditions

that are both satisfied in a single state, an erasure and declassification security

5Properties are predicates over traces (Alpern and Schneider, 1985). Informally, a safety prop-
erty (Lamport, 1985) ensures that no “bad thing” happens during any execution.

149

automaton may need to make multiple transitions without consuming an input.6

Typical information-flow control mechanisms require a lattice structure over

the security policies; to enforce erasure and declassification security automata,

either an alternative enforcement mechanism would need to be used, or a lattice

structure imposed on the automata.

6Automata on guarded strings (Kozen, 2003) similarly make multiple transitions on a single
input.

150

CHAPTER 7

CONCLUSION

Trustworthy systems enforce their information security requirements. Build-

ing trustworthy systems is difficult for at least two reasons: systems have com-

plex information security requirements; and in most implementation method-

ologies, enforcement of information security is only weakly tied to the security

requirements. As a result, it is difficult to obtain assurance that a system’s

requirements are satisfied by an implementation.

The goal of this work is to make it easier to build trustworthy systems, by

providing security policies that can express a system’s security requirements,

and provably enforcing them in the implementation. This dissertation focused

on two common and important kinds of information security requirements:

declassification and erasure, which both describe how the confidentiality of

information changes during a system’s execution.

This dissertation makes two key contributions. The first contribution is the

development of an expressive security policy framework for declassification and

erasure. The framework includes the definition of a precise semantic security

guarantee that holds when the policies are enforced, a proof that a combination

of static and dynamic mechanisms do enforce the policies in a simple imperative

language IMPE , and an extension of the decentralized label model with declassi-

fication and erasure policies. The second contribution is the incorporation of the

policy framework into Jif, a practical security-typed programming language, and

the use of this extended version of Jif to implement a large system, validating

151

the expressiveness and utility of the policies.

7.1 Declassification and erasure policies

The information security policies presented in Chapter 2 describe how permitted

information flows change during the execution of a system, by expressing when

information may be declassified, and when information must be erased. Declas-

sification and erasure are both common information security requirements of

many systems.

Chapter 2 also presented a formal semantics for the declassification and

erasure policies, explicating their meaning in terms of the observability of infor-

mation during execution of a system. The policy semantics were used to define

a precise semantic security condition, noninterference according to policy. This

semantic security condition allows us a formal and precise understanding of

what security guarantees are obtained when a system enforces declassification

and erasure policies on information.

Chapter 3 demonstrated that the policies can be provably enforced in a simple

imperative language, using run-time mechanisms, and a mostly-standard type-

system for information-flow control.

The decentralized label model (DLM) (Myers and Liskov, 2000) allows mutu-

ally distrusting principals to independently express their security requirements.

Chapter 4 described how to incorporate declassification and erasure policies into

the DLM.

The extended version of the DLM allows the specification of both confiden-

tiality and integrity requirements. The semantic security condition of robust-

ness (Zdancewic and Myers, 2001; Myers et al., 2004; Zdancewic, 2003) connects

integrity and confidentiality by requiring changes to the confidentiality of infor-

152

mation to have sufficiently high integrity with respect to a distinguished attacker.

Also in Chapter 4 we define robustness against all attackers, a generalization of

robustness that accounts for mutual distrust, where any entity may be a potential

attacker, and provide a type system that enforces robustness against all attackers

in IMPE .

7.2 Practical use of declassification and erasure policies

Although the declassification and erasure policies are expressive, the simple

language IMPE is not sufficiently powerful to implement real-world systems. To

enable the use of declassification and erasure policies in real implementations,

we incorporated the policies into the Jif programming language (Myers, 1999;

Myers et al., 2001–2008), an extension of Java with information-flow control.

The language JifE was presented in Chapter 5. JifE incorporates the extended

DLM into Jif, allowing declassification and erasure policies to be used in Jif

code. The IMPE type system and run-time enforcement mechanisms to enforce

declassification and erasure policies required careful adaptation to interact with

Java and Jif language features.

We used JifE to implement Civitas (Clarkson et al., 2008), a secure remote

voting service. The declassification and erasure policies were useful in several

places in the implementation of Civitas, and provide additional assurance that

the Civitas implementation is correctly enforcing the security requirements.

7.3 Future work

There is much more work to be done to make the task of writing trustworthy

programs easy enough to be incorporated into standard software methodolo-

153

gies, and achievable by programmers who are not security specialists. There

are other aspects of information security, and software security, that are impor-

tant to enforce in systems before they are trustworthy, including availability of

information, reliability, and functional correctness.

Programming is ultimately a human endeavor, and tools to assist program-

mers have much potential to ease the production of trustworthy software. For

example, tools that allow visualization and navigating of information flows

within a program (both locally and globally) would help programmers develop

intuition, and comprehend the impact of different policy annotations in the

code. Mechanisms for easy navigation of security policies within a system would

perhaps enable an even clearer connection between system security require-

ments and the implementation. Reducing the number of annotations, perhaps

by inferring as many as possible, would reduce the burden on the programmer.

An interesting approach is to allow the programmer to decide how much

security is sufficient, by allowing a tradeoff between programmer effort and

security guarantees. That is, provide weak (but well-understood) security guar-

antees if the programmer puts little effort into information security, and stronger

security guarantees for more effort. This approach would perhaps require the

development of new semantic security conditions, and perhaps new program

analyses for determining when the conditions hold.

Trustworthy systems should enforce fine-grained, application-specific, in-

formation security requirements. The expressive specification, and provable

enforcement, of security requirements is key to building trustworthy systems,

and this dissertation has focused on one aspect of this: the specification and

enforcement of declassification and erasure requirements. Many significant chal-

lenges remain before the production of trustworthy systems is simple enough,

154

and cheap enough, to be the norm. However, recent years have seen a concen-

tration of research effort towards this goal, and significant progress has been

made. I am optimistic that the following years will bring us practical, strong,

information security, to enable the building of trustworthy systems.

155

156

BIBLIOGRAPHY

Martı́n Abadi. Logic in access control. In Eighteenth Annual IEEE Symposium on

Logic in Computer Science, pages 228–233. IEEE Computer Society, June 2003.

Martı́n Abadi and Cédric Fournet. Access control based on execution history. In

Network and Distributed System Security Symposium. The Internet Society, 2003.

ISBN 1-891562-16-9, 1-891562-15-0.

Ana Almeida Matos and Gerard Boudol. On declassification and the non-

disclosure policy. In Proceedings of the 18th IEEE Computer Security Foundations

Workshop, pages 226–240, Washington, DC, USA, 2005. IEEE Computer Society.

Bowen Alpern and Fred B. Schneider. Defining liveness. Information Processing

Letters, 21(4):181–185, Oct 1985.

Bowen Alpern and Fred B. Schneider. Recognizing safety and liveness. Distributed

Computing, 2(3):117–126, 1987.

Torben Amtoft and Anindya Banerjee. Verification condition generation for

conditional information flow. In Proceedings of the Fifth ACM Workshop on

Formal Methods in Security Engineering, New York, NY, USA, November 2007.

ACM Press.

Torben Amtoft, Sruthi Bandhakavi, and Anindya Banerjee. A logic for informa-

tion flow in object-oriented programs. In Conference Record of the Thirty-Third

Annual ACM Symposium on Principles of Programming Languages, pages 91–102,

New York, NY, USA, January 2006. ACM Press.

Ross Anderson and Markus Kuhn. Low cost attacks on tamper resistant devices.

In Proceedings of the 5th International Workshop on Security Protocols, pages 125–

136, London, UK, 1997. Springer-Verlag.

157

Aslan Askarov and Andrei Sabelfeld. Gradual release: Unifying declassification,

encryption and key release policies. In Proceedings of the IEEE Symposium on

Security and Privacy, pages 207–221. IEEE Computer Society, 2007a.

Aslan Askarov and Andrei Sabelfeld. Localized delimited release: combining

the what and where dimensions of information release. In Proceedings of the

2007 Workshop on Programming Languages and Analysis for Security, pages 53–60,

New York, NY, USA, 2007b. ACM Press. ISBN 978-1-59593-711-7.

Sruthi Bandhakavi, William Winsborough, and Marianne Winslett. A trust man-

agement approach for flexible policy management in security-typed languages.

In Proceedings of the 21st IEEE Computer Security Foundations Symposium. IEEE

Computer Society, June 2008.

Anindya Banerjee and David A. Naumann. Using access control for secure infor-

mation flow in a Java-like language. In Proceedings of the 16th IEEE Computer

Security Foundations Workshop, pages 155–169. IEEE Computer Society, June

2003.

Anindya Banerjee and David A. Naumann. Stack-based access control and secure

information flow. Journal of Functional Programming, 15(2):131–177, 2005a. ISSN

0956-7968.

Anindya Banerjee and David A. Naumann. History-based access control and

secure information flow. In Proceedings of the Workshop on Construction and

Analysis of Safe, Secure and Interoperable Smart Cards, volume 3362 of Lecture

Notes in Computer Science, pages 27–48. Springer-Verlag, March 2005b.

158

Anindya Banerjee, Roberto Giacobazzi, and Isabella Mastroeni. What you lose

is what you leak: Information leakage in declassification policies. Electronic

Notes in Theoretical Computer Science, 173:47–66, 2007a.

Anindya Banerjee, David A. Naumann, and Stan Rosenberg. Towards a logical

account of declassification. In Proceedings of the 2007 Workshop on Programming

Languages and Analysis for Security, pages 61–66, New York, NY, USA, 2007b.

ACM Press.

Anindya Banerjee, David A. Naumann, and Stan Rosenberg. Expressive declas-

sification policies and modular static enforcement. In Proceedings of the IEEE

Symposium on Security and Privacy. IEEE Computer Society, May 2008.

John Barnes. High Integrity Software: The SPARK Approach to Safety and Security.

Addison Wesley, April 2003. ISBN 0321136160.

Adam Barth, Anupam Datta, John C. Mitchell, and Helen Nissenbaum. Privacy

and contextual integrity: Framework and applications. In Proceedings of the

IEEE Symposium on Security and Privacy. IEEE Computer Society, 2006.

Lujo Bauer, Jarred Ligatti, and David Walker. More enforceable security policies.

In Proceedings of the Foundations of Computer Security Workshop, July 2002.

D. Elliott Bell and Leonard J. La Padula. Secure computer systems: A mathemat-

ical model. Technical Report MTR-2547, Vol. 2, MITRE Corp., Bedford, MA,

1973. Reprinted in J. of Computer Security, vol. 4, no. 2–3, pp. 239–263, 1996.

Marisol Bello. Data security top tech issue for colleges. USA Today, March 20,

2008.

159

Elisa Bertino, Claudio Bettini, Elena Ferrari, and Pierangela Samarati. An access

control model supporting periodicity constraints and temporal reasoning.

ACM Transactions on Database Systems, 23(3):231–285, 1998.

Claudio Bettini, Sushil Jajodia, X. Sean Wang, and Duminda Wijesekera. Provi-

sions and obligations in policy rule management. Journal of Network and System

Management, 11(3):351–372, 2003.

K. J. Biba. Integrity considerations for secure computer systems. Technical Report

ESD-TR-76-372, USAF Electronic Systems Division, April 1977.

Matt Bishop. Computer Security: Art and Science. Addison-Wesley Professional,

2002. ISBN 0-201-44099-7.

David F. C. Brewer and Michael J. Nash. The Chinese Wall security policy. In

Proceedings of the IEEE Symposium on Security and Privacy, pages 206–258. IEEE

Computer Society, May 1989.

British Broadcasting Corporation. Brown apologises for records loss. http:

//news.bbc.co.uk/1/hi/uk_politics/7104945.stm, November 21,

2007.

Niklas Broberg and David Sands. Flow locks: Towards a core calculus for

dynamic flow policies. In Proceedings of the 15th European Symposium on Pro-

gramming, pages 180–196. Springer, 2006.

Ilaria Castellani. State-oriented noninterference for CCS. Electronic Notes in

Theoretical Computer Science, 194(1):39–60, 2007. ISSN 1571-0661.

Hubie Chen and Stephen Chong. Owned policies for information security.

In Proceedings of the 17th IEEE Computer Security Foundations Workshop. IEEE

Computer Society, June 2004.

160

http://news.bbc.co.uk/1/hi/uk_politics/7104945.stm
http://news.bbc.co.uk/1/hi/uk_politics/7104945.stm

Stephen Chong and Andrew C. Myers. Security policies for downgrading. In

Proceedings of the 11th ACM Conference on Computer and Communications Security,

New York, NY, USA, October 2004. ACM Press.

Stephen Chong and Andrew C. Myers. Language-based information erasure.

In Proceedings of the 18th IEEE Computer Security Foundations Workshop. IEEE

Computer Society, June 2005.

Stephen Chong and Andrew C. Myers. Decentralized robustness. In Proceedings of

the 19th IEEE Computer Security Foundations Workshop. IEEE Computer Society,

June 2006.

Stephen Chong and Andrew C. Myers. End-to-end enforcement of erasure and

declassification. In Proceedings of the 21st IEEE Computer Security Foundations

Symposium. IEEE Computer Society, June 2008.

Tom Chothia, Dominic Duggan, and Jan Vitek. Type-based distributed access

control. In Proceedings of the 16th IEEE Computer Security Foundations Workshop,

pages 170–186. IEEE Computer Society, June 2003.

David Clark and David R. Wilson. A comparison of commercial and military

computer security policies. In Proceedings of the IEEE Symposium on Security

and Privacy, pages 184–194. IEEE Computer Society, 1987.

David Clark, Sebastian Hunt, and Pasquale Malacaria. Non-interference for

weak observers. In Proceedings of the Programming Language Interference and

Dependence, August 2004.

David Clark, Sebastian Hunt, and Pasquale Malacaria. Quantified interference

for a while language. Electronic Notes in Theoretical Computer Science, 112:

149–166, January 2005.

161

Michael R. Clarkson, Andrew C. Myers, and Fred B. Schneider. Belief in in-

formation flow. In Proceedings of the 18th IEEE Computer Security Foundations

Workshop, pages 31–45, Washington, DC, USA, 2005. IEEE Computer Society.

Michael R. Clarkson, Stephen Chong, and Andrew C. Myers. Civitas: Toward

a secure voting system. Technical Report TR2007-2081, Cornell University,

November 2007.

Michael R. Clarkson, Stephen Chong, and Andrew C. Myers. Civitas: Toward

a secure voting system. In Proceedings of the IEEE Symposium on Security and

Privacy. IEEE Computer Society, May 2008.

E. S. Cohen. Information transmission in computational systems. ACM SIGOPS

Operating Systems Review, 11(5):133–139, 1977.

Mark D. Corner and Brian D. Noble. Zero-interaction authentication. In Pro-

ceedings of the The Annual International Conference on Mobile Computing and

Networking, New York, NY, USA, September 2002. ACM Press.

Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice

model for static analysis of programs by construction or approximation of

fixpoints. In Conference Record of the Fourth Annual ACM Symposium on Principles

of Programming Languages, pages 238–252, New York, NY, USA, 1977. ACM

Press.

Frédéric Cuppens and Alban Gabillon. Modelling a multilevel database with

temporal downgrading functionalities. In Proceedings of the Ninth Annual IFIP

TC11 WG11.3 Working Conference on Database Security IX : Status and Prospects,

pages 145–164, 1996.

162

Zhenyue Deng and Geoffrey Smith. Lenient array operations for practical secure

information flow. In Proceedings of the 17th IEEE Computer Security Foundations

Workshop, pages 115–124. IEEE Computer Society, June 2004.

Dorothy E. Denning. A lattice model of secure information flow. Communications

of the ACM, 19(5):236–243, 1976.

Dorothy E. Denning and Peter J. Denning. Certification of programs for secure

information flow. Communications of the ACM, 20(7):504–513, July 1977.

J. B. Dennis and E. C. VanHorn. Programming semantics for multiprogrammed

computations. Communications of the ACM, 9(3):143–155, March 1966.

Department of Defense. Trusted computer system evaluation criteria, 1985.

Alessandra Di Pierro, Chris Hankin, and Herbert Wiklicky. Approximate non-

interference. In Proceedings of the 15th IEEE Computer Security Foundations

Workshop, pages 1–15. IEEE Computer Society, June 2002.

D. Dolev and A. Yao. On the security of public-key protocols. IEEE Transactions

on Information Theory, 2(29):198–208, 1983.

Daniel J. Dougherty, Kathi Fisler, and Shriram Krishnamurthi. Obligations and

their interaction with programs. In Proceedings of the 12th European Sympo-

sium On Research In Computer Security, volume 4734, pages 375–389, Berlin,

September 2007. Springer.

Petros Efstathopoulos, Maxwell Krohn, Steve VanDeBogart, Cliff Frey, David

Ziegler, Eddie Kohler, David Mazières, Frans Kaashoek, and Robert Morris.

Labels and event processes in the asbestos operating system. In Proceedings of

the 20th ACM Symposium on Operating System Principles, New York, NY, USA,

October 2005. ACM Press.

163

Úlfar Erlingsson. The Inlined Reference Monitor Approach to Security Policy Enforce-

ment. PhD thesis, Cornell University, 2003.

Úlfar Erlingsson and Fred B. Schneider. IRM enforcement of Java stack inspection.

In Proceedings of the IEEE Symposium on Security and Privacy. IEEE Computer

Society, May 2000.

Úlfar Erlingsson and Fred B. Schneider. SASI enforcement of security policies:

A retrospective. In Proceedings of the New Security Paradigm Workshop, pages

87–95, September 1999.

David Evans and Andrew Twyman. Flexible policy-directed code safety. In

Proceedings of the IEEE Symposium on Security and Privacy. IEEE Computer

Society, May 1999.

Federal Trade Commission. Eli Lilly settles FTC charges concerning security

breach. Press release, available at http://www.ftc.gov/opa/2002/01/

elililly.shtm, January 18, 2002.

Federal Trade Commission. BJ’s Wholesale Club settles FTC charges. Press re-

lease, available at http://www.ftc.gov/opa/2005/06/bjswholesale.

shtm, June 16, 2005a.

Federal Trade Commission. Internet service provider settles FTC privacy

charges. Press release, available at http://www.ftc.gov/opa/2005/03/

cartmanager.shtm, March 10, 2005b.

R. J. Feiertag, K. N. Levitt, and L. Robinson. Proving multilevel security of a

system design. Proceedings of the 6th ACM Symposium on Operating System

Principles, ACM Operating Systems Review, 11(5):57–66, November 1977.

164

http://www.ftc.gov/opa/2002/01/elililly.shtm
http://www.ftc.gov/opa/2002/01/elililly.shtm
http://www.ftc.gov/opa/2005/06/bjswholesale.shtm
http://www.ftc.gov/opa/2005/06/bjswholesale.shtm
http://www.ftc.gov/opa/2005/03/cartmanager.shtm
http://www.ftc.gov/opa/2005/03/cartmanager.shtm

Richard J. Feiertag. A technique for proving specifications are multilevel secure.

Technical Report CSL-109, SRI International Computer Science Lab, Menlo

Park, California, January 1980.

J. S. Fenton. Information Protection Systems. PhD thesis, University of Cambridge,

1973.

J. S. Fenton. Memoryless subsystems. Computer Journal, 17(2):143–147, May 1974.

Elena Ferrari, Pierangela Samarati, Elisa Bertino, and Sushil Jajodia. Providing

flexibility in information flow control for object-oriented systems. In Pro-

ceedings of the IEEE Symposium on Security and Privacy, pages 130–140. IEEE

Computer Society, May 1997.

Cormac Flanagan. Hybrid type checking. In Conference Record of the Thirty-Third

Annual ACM Symposium on Principles of Programming Languages, pages 245–256,

New York, NY, USA, 2006. ACM Press.

Riccardo Focardi and Roberto Gorrieri. Classification of security properties (Part

I: Information flow). In Foundations of Security Analysis and Design, volume

2171 of Lecture Notes in Computer Science, pages 331–396. Springer, 2001.

Riccardo Focardi, Sabina Rossi, and Andrei Sabelfeld. Bridging language-based

and process calculi security. In Foundations of Software Science and Computation

Structure, volume 3441 of Lecture Notes in Computer Science, pages 299–315,

Edinburgh, UK, April 2005. Springer-Verlag.

Simon N. Foley. A taxonomy for information flow policies and models. In

Proceedings of the IEEE Symposium on Security and Privacy, pages 98–108. IEEE

Computer Society, May 1991.

165

Philip W. L. Fong. Access control by tracking shallow execution history. In

Proceedings of the IEEE Symposium on Security and Privacy. IEEE Computer

Society, May 2004.

Cedric Fournet and Andrew D. Gordon. Stack Inspection: Theory and Variants.

In Conference Record of the Twenty-Ninth Annual ACM Symposium on Principles of

Programming Languages, New York, NY, USA, 2002. ACM Press.

Ralph S. Freese, Jaroslav Jez̆ek, and James Bryant Nation. Free Lattices. American

Mathematical Society, Providence, RI, 1995. ISBN 0821803891.

Roberto Giacobazzi and Isabella Mastroeni. Timed abstract non-interference. In

Proceedings of the International Conference on Formal Modelling and Analysis of

Timed Systems, volume 3829 of Lecture Notes in Computer Science, pages 289–303.

Springer-Verlag, September 2005.

Roberto Giacobazzi and Isabella Mastroeni. Abstract non-interference: parame-

terizing non-interference by abstract interpretation. In Proceedings of the 31st

ACM SIGPLAN-SIGACT symposium on Principles of programming languages,

pages 186–197, New York, NY, USA, 2004. ACM Press.

Pablo Giambiagi and Mads Dam. Confidentiality for mobile code: The case of

a simple payment protocol. In Proceedings of the 13th IEEE Computer Security

Foundations Workshop, pages 233–244. IEEE Computer Society, 2000.

Pablo Giambiagi and Mads Dam. On the secure implementation of security pro-

tocols. In Proceedings of the 12th European Symposium on Programming, volume

2618 of Lecture Notes in Computer Science, pages 144–158. Springer, 2003.

166

Joseph A. Goguen and Jose Meseguer. Security policies and security models. In

Proceedings of the IEEE Symposium on Security and Privacy, pages 11–20. IEEE

Computer Society, April 1982.

James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Specifica-

tion. Addison Wesley, 2nd edition, 2000. ISBN 0-201-31008-2.

James W. Gray, III. Toward a mathematical foundation for information flow

security. In Proceedings of the IEEE Symposium on Security and Privacy, pages

21–35. IEEE Computer Society, 1991.

Peter Gutmann. Data remanence in semiconductor devices. In The Tenth USENIX

Security Symposium Proceedings, pages 39–54. USENIX Association, 2001.

Peter Gutmann. Secure deletion of data from magnetic and solid-state memory.

In The Sixth USENIX Security Symposium Proceedings, pages 77–90. USENIX

Association, 1996.

Kevin W. Hamlen, Greg Morrisett, and Fred B. Schneider. Computability classes

for enforcement mechanisms. ACM Transactions on Programming Languages and

Systems, 28(1):175–205, January 2006.

René Rydhof Hansen and Christian W. Probst. Secure dynamic program repar-

titioning. In Proceedings of the Nordic Workshop on Secure IT-Systems, October

2005.

René Rydhof Hansen and Christian W. Probst. Non-interference and erasure

policies for Java Card bytecode. In Proceedings of the 6th International Workshop

on Issues in the Theory of Security, March 2006.

Boniface Hicks, Dave King, Patrick McDaniel, and Michael Hicks. Trusted

declassification: high-level policy for a security-typed language. In Proceedings

167

of the 2006 Workshop on Programming Languages and Analysis for Security, pages

65–74, New York, NY, USA, 2006. ACM Press. ISBN 1-59593-374-3.

Boniface Hicks, Dave King, and Patrick McDaniel. Jifclipse: Development

tools for security-typed applications. In Proceedings of the 2007 Workshop on

Programming Languages and Analysis for Security, pages 1–10, New York, NY,

USA, 2007. ACM Press.

Michael Hicks, Stephen Tse, Boniface Hicks, and Steve Zdancewic. Dynamic

updating of information-flow policies. In Proceedings of the Foundations of

Computer Security Workshop, pages 7–18, June 2005.

M. Hilty, A. Pretschner, D. Basin, C. Schaefer, and T. Walter. A policy language

for distributed usage control. In Proceedings of the 12th European Symposium On

Research In Computer Security, volume 4734 of Lecture Notes in Computer Science,

pages 531–546, Berlin, September 2007. Springer.

Manuel Hilty, David Basin, and Alexander Pretschner. On obligations. In

Proceedings of the 10th European Symposium On Research In Computer Security,

volume 3679 of Lecture Notes in Computer Science, pages 98–117, Berlin, 2005.

Springer.

Sebastian Hunt and Isabella Mastroeni. The PER model of abstract non-

interference. In Proceedings of the 12th International Static Analysis Symposium,

number 3672 in Lecture Notes in Computer Science, pages 171–185. Springer-

Verlag, September 2005.

Sebastian Hunt and David Sands. On flow-sensitive security types. In Conference

Record of the Thirty-Third Annual ACM Symposium on Principles of Programming

Languages, pages 79–90, New York, NY, USA, January 2006. ACM Press.

168

Sebastian Hunt and David Sands. Just forget it—the semantics and enforce-

ment of information erasure. In Proceedings of the 17th European Symposium on

Programming. Springer, 2008.

Sushil Jajodia, Michiharu Kudo, and V.S. Subrahmanian. Provisional authoriza-

tions. In Anup Gosh, editor, E-Commerce Security and Privacy, pages 133–159.

Kluwer Academic Press, 2001.

Chris Jones and Flavio Marques Menezes. Auctions and corruption: How to com-

pensate the auctioneer. Technical Report 291, Australian National University—

Department of Economics, 1995.

Ari Juels, Dario Catalano, and Markus Jakobsson. Coercion-resistant electronic

elections. In Proceedings of the Workshop on Privacy in the Electronic Society, pages

61–70, November 2005.

Dexter Kozen. Automata on guarded strings and applications. Matématica

Contemporânea, 24:117–139, 2003.

Brian Krebs. Banks: Losses from computer intrusions up in 2007.

http://blog.washingtonpost.com/securityfix/2008/02/

banks_losses_from_computer_int.html, February 26, 2008.

Maxwell Krohn, Alexander Yip, Micah Brodsky, Natan Cliffer, M. Frans

Kaashoek, Eddie Kohler, and Robert Morris. Information flow control for

standard OS abstractions. In Proceedings of the 21st ACM Symposium on Operat-

ing System Principles, New York, NY, USA, October 2007. ACM Press.

Lap-chung Lam and Tzi-cker Chiueh. A general dynamic information flow

tracking framework for security applications. In Proceedings of the 22nd Annual

Computer Security Applications Conference, December 2006.

169

http://blog.washingtonpost.com/securityfix/2008/02/banks_losses_from_computer_int.html
http://blog.washingtonpost.com/securityfix/2008/02/banks_losses_from_computer_int.html

Leslie Lamport. Basic concepts: Logical foundation. In Distributed Systems:

Methods and Tools for Specification, An Advanced Course, volume 190 of Lecture

Notes in Computer Science, pages 19–30. Springer, 1985.

Butler Lampson. Protection. In Proceedings of the 5th Annual Princeton Conference

on Information Sciences and Systems, pages 437–443, 1971.

Butler Lampson, Martı́n Abadi, Michael Burrows, and Edward Wobber. Authen-

tication in distributed systems: Theory and practice. In Proceedings of the 13th

ACM Symposium on Operating System Principles, pages 165–182, New York, NY,

USA, October 1991. ACM Press. Operating System Review, 253(5).

Xavier Leroy, Damien Doligez, Jacques Garrigue, Didier Remy, and Jerome

Vouillon. The Objective Caml – Documentation and user’s manual, July 2004.

Located at http://caml.inria.fr/ocaml/htmlman/.

Ninghui Li, John C. Mitchell, and William H. Winsborough. Design of a role-

based trust management framework. In Proceedings of the IEEE Symposium on

Security and Privacy, pages 114–130. IEEE Computer Society, May 2002.

Peng Li and Steve Zdancewic. Downgrading policies and relaxed noninter-

ference. In Conference Record of the Thirty-Second Annual ACM Symposium on

Principles of Programming Languages, New York, NY, USA, January 2005a. ACM

Press.

Peng Li and Steve Zdancewic. Unifying confidentiality and integrity in down-

grading policies. In Proceedings of the Foundations of Computer Security Workshop,

2005b.

Jay Ligatti, Lujo Bauer, and David Walker. Enforcing non-safety security policies

with program monitors. In Proceedings of the 10th European Symposium On

170

http://caml.inria.fr/ocaml/htmlman/

Research In Computer Security, volume 3679 of Lecture Notes in Computer Science,

pages 355–373, September 2005.

Gavin Lowe. Quantifying information flow. In Proceedings of the 15th IEEE

Computer Security Foundations Workshop. IEEE Computer Society, June 2002.

Pasquale Malacaria. Assessing security threats of looping constructs. In Confer-

ence Record of the Thirty-Fourth Annual ACM Symposium on Principles of Program-

ming Languages, pages 225–235, New York, NY, USA, 2007. ACM Press.

Heiko Mantel. Information flow control and applications—bridging a gap. In

Proceedings of the International Symposium of Formal Methods Europe on Formal

Methods for Increasing Software Productivity, pages 153–172, London, UK, 2001.

Springer-Verlag. ISBN 3-540-41791-5.

Heiko Mantel and Alexander Reinhard. Controlling the what and where of de-

classification in language-based security. In Rocco De Nicola, editor, Proceedings

of the 16th European Symposium on Programming, volume 4421 of Lecture Notes

in Computer Science, pages 141–156. Springer, 2007. ISBN 978-3-540-71314-2.

Heiko Mantel and Andrei Sabelfeld. A generic approach to the security of

multi-threaded programs. In Proceedings of the 14th IEEE Computer Security

Foundations Workshop, page 126, Washington, DC, USA, 2001. IEEE Computer

Society.

Heiko Mantel and David Sands. Controlled Declassification based on Intransitive

Noninterference. In Proceedings of the 2nd ASIAN Symposium on Programming

Languages and Systems, LNCS 3303, pages 129–145. Springer-Verlag, November

2004.

171

Steven Marlin. Citigroup’s lost tapes cast spotlight on data secu-

rity. http://www.informationweek.com/news/security/privacy/

showArticle.jhtml?articleID=164301046, June 7, 2005.

Isabella Mastroeni. On the rôle of abstract non-interference in language-based

security. In Proceedings of the Third Asian Symposium on Programming Languages

and Systems, volume 3780 of Lecture Notes in Computer Science, pages 418–433.

Springer-Verlag, November 2005.

Stephen McCamant and Michael D. Ernst. A simulation-based proof technique

for dynamic information flow. In Proceedings of the 2007 Workshop on Program-

ming Languages and Analysis for Security, pages 41–46, New York, NY, USA,

2007. ACM Press. ISBN 978-1-59593-711-7.

John McHugh and Donald I. Good. An information flow tool for Gypsy: Ex-

tended abstract. In Proceedings of the IEEE Symposium on Security and Privacy,

pages 46–48. IEEE Computer Society, 1985.

Jonathan K. Millen. Covert channel capacity. In Proceedings of the IEEE Symposium

on Security and Privacy. IEEE Computer Society, 1987.

Andrew C. Myers. JFlow: Practical mostly-static information flow control. In

Conference Record of the Twenty-Sixth Annual ACM Symposium on Principles of

Programming Languages, pages 228–241, New York, NY, USA, January 1999.

ACM Press.

Andrew C. Myers and Barbara Liskov. A decentralized model for information

flow control. In Proceedings of the 16th ACM Symposium on Operating System

Principles, pages 129–142, New York, NY, USA, 1997. ACM Press.

172

http://www.informationweek.com/news/security/privacy/showArticle.jhtml?articleID=164301046
http://www.informationweek.com/news/security/privacy/showArticle.jhtml?articleID=164301046

Andrew C. Myers and Barbara Liskov. Protecting privacy using the decentralized

label model. ACM Transactions on Software Engineering and Methodology, 9(4):

410–442, October 2000.

Andrew C. Myers, Lantian Zheng, Steve Zdancewic, Stephen Chong, and

Nathaniel Nystrom. Jif: Java information flow. Software release. Located

at http://www.cs.cornell.edu/jif, 2001–2008.

Andrew C. Myers, Andrei Sabelfeld, and Steve Zdancewic. Enforcing robust

declassification. In Proceedings of the 17th IEEE Computer Security Foundations

Workshop. IEEE Computer Society, June 2004.

Srijith K. Nair, Patrick N.D. Simpson, Bruno Crispo, and Andrew S. Tanenbaum.

A virtual machine based information flow control system for policy enforce-

ment. In Proceedings of the First International Workshop on Run Time Enforcement

for Mobile and Distributed Systems. Springer, 2007.

Edmund B. Nightingale, Daniel Peek, Peter M. Chen, and Jason Flinn. Paral-

lelizing security checks on commodity hardware. In Proceedings of the 13th

International Conference on Architectural Support for Programming Languages and

Operating Systems, pages 308–318, New York, NY, USA, 2008. ACM Press.

Kevin R. O’Neill, Michael R. Clarkson, and Stephen Chong. Information-flow

security for interactive programs. In Proceedings of the 19th IEEE Computer

Security Foundations Workshop. IEEE Computer Society, June 2006.

Sylvan Pinsky. Absorbing covers and intransitive non-interference. In Proceedings

of the IEEE Symposium on Security and Privacy, pages 102–113. IEEE Computer

Society, 1995.

173

http://www.cs.cornell.edu/jif

François Pottier and Sylvain Conchon. Information flow inference for free. In

Proceedings of the 2000 ACM SIGPLAN International Conference on Functional

Programming, pages 46–57, New York, NY, USA, 2000. ACM Press.

François Pottier and Vincent Simonet. Information flow inference for ML. In

Conference Record of the Twenty-Ninth Annual ACM Symposium on Principles of

Programming Languages, pages 319–330, New York, NY, USA, 2002. ACM Press.

Project on Government Oversite. http://www.pogo.org/p/homeland/

ha-070806-lanl.html, August 6, 2007.

A. W. Roscoe and M. H. Goldsmith. What is intransitive noninterference? In

Proceedings of the 12th IEEE Computer Security Foundations Workshop. IEEE Com-

puter Society, 1999.

John Rushby. Noninterference, transitivity and channel-control security policies.

Technical report, SRI, 1992.

Andrei Sabelfeld and Andrew Myers. Language-based information-flow security.

IEEE Journal on Selected Areas in Communications, 21(1):5–19, January 2003.

Andrei Sabelfeld and Andrew C. Myers. A model for delimited release. In

Proceedings of the 2003 International Symposium on Software Security, number

3233 in Lecture Notes in Computer Science, pages 174–191. Springer-Verlag,

2004.

Andrei Sabelfeld and David Sands. A PER model of secure information flow in

sequential programs. In Proceedings of the 8th European Symposium on Program-

ming, pages 40–58, London, UK, 1999. Springer.

Andrei Sabelfeld and David Sands. Declassification: Dimensions and principles.

Journal of Computer Security, 2007.

174

http://www.pogo.org/p/homeland/ha-070806-lanl.html
http://www.pogo.org/p/homeland/ha-070806-lanl.html

J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end arguments in system design.

ACM Transactions on Computer Systems, 2(4):277–288, November 1984.

David Sands. Personal communication, July 2006.

Fred B. Schneider. Enforceable security policies. ACM Transactions on Information

and System Security, 3(1):30–50, 2000. Also available as TR 99-1759, Computer

Science Department, Cornell University, Ithaca, New York.

SELinux. Security-enhanced Linux. Project website http://www.nsa.gov/

selinux.

Paritosh Shroff, Scott F. Smith, and Mark Thober. Dynamic dependency monitor-

ing to secure information flow. In Proceedings of the 20th IEEE Computer Security

Foundations Symposium. IEEE Computer Society, 2007.

Vincent Simonet. The Flow Caml System: documentation and user’s manual.

Technical Report 0282, Institut National de Recherche en Informatique et en

Automatique (INRIA), July 2003.

Scott F. Smith and Mark Thober. Improving usability of information flow security

in Java. In Proceedings of the 2007 Workshop on Programming Languages and

Analysis for Security, pages 11–20, New York, NY, USA, 2007. ACM Press. ISBN

978-1-59593-711-7.

Dan Søndergaard. Secure program partitioning in dynamic networks. Master’s

thesis, Technical University of Denmark, 2006. IMM-M.Sc-2006-92.

G. Edward Suh, Jae W. Lee, David Zhang, and Srinivas Devadas. Secure program

execution via dynamic information flow tracking. In Proceedings of the 11th

International Conference on Architectural Support for Programming Languages and

Operating Systems, pages 85–96, New York, NY, USA, 2004. ACM Press.

175

http://www.nsa.gov/selinux
http://www.nsa.gov/selinux

Nikhil Swamy and Michael Hicks. Verified enforcement of automaton-based

information release policies. In Proceedings of the 2008 Workshop on Programming

Languages and Analysis for Security, New York, NY, USA, June 2008. ACM Press.

Nikhil Swamy, Michael Hicks, Stephen Tse, and Steve Zdancewic. Managing

policy updates in security-typed languages. In Proceedings of the 19th IEEE

Computer Security Foundations Workshop, pages 202–216. IEEE Computer Society,

2006. ISBN 0-7695-2615-2.

Stephen Tse and Steve Zdancewic. A design for a security-typed language with

certificate-based declassification. In Proceedings of the 14th European Symposium

on Programming, pages 279–294. Springer, April 2005.

Stephen Tse and Steve Zdancewic. Run-time principals in information-flow type

systems. In Proceedings of the IEEE Symposium on Security and Privacy, Oakland,

CA, May 2004. IEEE Computer Society.

Neil Vachharajani, Matthew J. Bridges, Jonathan Chang, Ram Rangan, Guilherme

Ottoni, Jason A. Blome, George A. Reis, Manish Vachharajani, and David I.

August. RIFLE: An architectural framework for user-centric information-flow

security. In Proceedings of the 37th International Symposium on Microarchitecture.

IEEE Computer Society, December 2004.

Ron van der Meyden. What, indeed, is intransitive noninterference? In Proceed-

ings of the 12th European Symposium On Research In Computer Security, volume

4734 of Lecture Notes in Computer Science, pages 235–250. Springer, September

2007. ISBN 978-3-540-74834-2.

176

Jeffrey A. Vaughan and Steve Zdancewic. A cryptographic decentralized label

model. In Proceedings of the IEEE Symposium on Security and Privacy, pages 192–

206, Washington, DC, USA, 2007. IEEE Computer Society. ISBN 0-7695-2848-1.

Mahesh Viswanathan. Foundations for the Run-time Analysis of Software Systems.

PhD thesis, University of Pennsylvania, December 2000.

Dennis Volpano and Geoffrey Smith. Verifying secrets and relative secrecy. In

Conference Record of the Twenty-Seventh Annual ACM Symposium on Principles

of Programming Languages, pages 268–276, New York, NY, USA, January 2000.

ACM Press.

Dennis Volpano, Geoffrey Smith, and Cynthia Irvine. A sound type system for

secure flow analysis. Journal of Computer Security, 4(3):167–187, 1996.

David von Oheimb. Information flow control revisited: Noninfluence = Nonin-

terference + Nonleakage. In P. Samarati, P. Ryan, D. Gollmann, and R. Molva,

editors, Proceedings of the 9th European Symposium On Research In Computer Secu-

rity, volume 3193 of Lecture Notes in Computer Science, pages 225–243. Springer,

2004.

David Wagner and Matthew Bishop. Voting systems top-to-bottom review.

http://www.sos.ca.gov/elections/elections_vsr.htm, 2007.

Robert Wahbe, Steven Lucco, Thomas Anderson, and Susan Graham. Efficient

software-based fault isolation. In Proceedings of the 14th ACM Symposium on

Operating System Principles, pages 203–216, New York, NY, USA, December

1003. ACM Press.

177

http://www.sos.ca.gov/elections/elections_vsr.htm

David Walker. A type system for expressive security policies. In Conference Record

of the Twenty-Seventh Annual ACM Symposium on Principles of Programming

Languages, pages 254–267, New York, NY, USA, 2000. ACM Press.

Dan S. Wallach and Edward W. Felten. Understanding Java stack inspection. In

Proceedings of the IEEE Symposium on Security and Privacy, pages 52–63, Oakland,

California, USA, May 1998. IEEE Computer Society.

Dan S. Wallach, Dirk Balfanz, and Edward W. Felten. Extensible security archi-

tectures for Java. In Proceedings of the 15th ACM Symposium on Operating System

Principles, pages 116–128, New York, NY, USA, October 1997. ACM Press.

W. A. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin, C. Pierson, and F. Pollack.

HYDRA: The kernel of a multiprocessor system. Communications of the ACM,

17(6):337–345, June 1974.

Andrew Yao. Protocols for secure computations. In Proceedings of the 23rd Annual

IEEE Symposium on Foundations of Computer Science, pages 160–164. CSREA

Press, 1982.

Steve Zdancewic. A type system for robust declassification. In Proceedings of the

Nineteenth Conference on the Mathematical Foundations of Programming Semantics,

Electronic Notes in Theoretical Computer Science, March 2003.

Steve Zdancewic and Andrew C. Myers. Robust declassification. In Proceedings

of the 14th IEEE Computer Security Foundations Workshop, pages 15–23, Cape

Breton, Nova Scotia, Canada, June 2001. IEEE Computer Society.

Steve Zdancewic, Lantian Zheng, Nathaniel Nystrom, and Andrew C. Myers.

Untrusted hosts and confidentiality: Secure program partitioning. In Proceed-

178

ings of the 17th ACM Symposium on Operating System Principles, pages 1–14,

New York, NY, USA, October 2001. ACM Press.

Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and David Mazières.

Making information flow explicit in HiStar. In Proceedings of the 7th Sympo-

sium on Operating Systems Design and Implementation, pages 263–278. USENIX

Association, 2006.

Lantian Zheng, Stephen Chong, Andrew C. Myers, and Steve Zdancewic. Using

replication and partitioning to build secure distributed systems. In Proceed-

ings of the IEEE Symposium on Security and Privacy, pages 236–250, Oakland,

California, May 2003. IEEE Computer Society.

179

	Biographical Sketch
	Dedication
	Acknowledgments
	Table of Contents
	List of Figures
	1 Introduction
	1.1 End-to-end information security
	1.2 Information security changes
	1.3 Declassification and erasure
	1.4 Mutual distrust
	1.5 Contributions and outline

	2 Erasure and declassification policies
	2.1 Policies
	2.2 Semantics
	2.2.1 Notation
	2.2.2 Policy semantics
	2.2.3 Relabeling judgment

	2.3 Security properties
	2.3.1 Observational model
	2.3.2 Noninterference
	2.3.3 Noninterference according to policy

	3 Enforcement of erasure and declassification
	3.1 The IMPE language
	3.1.1 Syntax
	3.1.2 Operational semantics
	3.1.3 Type system
	3.1.4 Example

	3.2 Noninterference according to policy
	3.2.1 Syntax and semantics of IMP2E
	3.2.2 Adequacy of IMP2E
	3.2.3 Type preservation of IMP2E

	4 Decentralized policies and robustness
	4.1 Decentralized Label Model
	4.1.1 Confidentiality policies
	4.1.2 Integrity policies
	4.1.3 Labels

	4.2 Decentralized robustness
	4.2.1 Robustness
	4.2.2 Example
	4.2.3 Robustness against all attackers
	4.2.4 Constraints for checking robustness

	4.3 Enforcing robustness
	4.3.1 Defining robustness in IMPE
	4.3.2 Enforcing robustness in IMPE
	4.3.3 Enforcing robustness against all attackers in IMPE

	5 Declassification, erasure, and robustness in Jif
	5.1 Syntax and semantics
	5.1.1 Decentralized label model
	5.1.2 Declassification and erasure mechanisms
	5.1.3 Interaction with Java and Jif features

	5.2 Tracking information flow
	5.2.1 Condition satisfaction
	5.2.2 Robustness

	5.3 Translation
	5.4 Case study: Civitas

	6 Related work
	6.1 Information-flow control
	6.1.1 Language-based information-flow control
	6.1.2 Practical enforcement

	6.2 Declassification
	6.2.1 When
	6.2.2 Where
	6.2.3 Who
	6.2.4 What
	6.2.5 Multiple dimensions

	6.3 Information erasure
	6.3.1 Language-based erasure
	6.3.2 Uses of erasure policies
	6.3.3 System-based and hardware-based erasure

	6.4 Expressive models and policies

	7 Conclusion
	7.1 Declassification and erasure policies
	7.2 Practical use of declassification and erasure policies
	7.3 Future work

	 Bibliography

