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Motivation

= Source separation is important for several real-world applications
— Monaural speech separation is more difficult

= Previous approaches — linear models

— Non-negative matrix factorization (NMF), probabilistic latent semantic indexing
(PLSI)

— Similar to a one layer linear network with non-negative weights and coefficients

= Representation
— NMF based models — spectral representation

— Deep learning models — learning optimal representation

» Explore deep learning models
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Overview

" Previous Work
" Proposed Framework
" Proposed methods

— Model architecture
— Joint time frequency masking
— Discriminative training

= Experiment

= Demo

= Conclusion

ILLINOIS



Previous Work — Deep Learning

= Two-stage framework for predicting ideal binary mask
[Narayanan and Wang, 2013]
— First stage: Train one DNN per output dimension

— Second stage: train another one layer perceptron or SVM for
refinement

» Impractical for high dimensional output
= Robust ASR [Mass et al. 2012]

— Given noisy speech, train DRNN to predict clean speech

» Suboptimal in the source separation scenario to model only one
source
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Proposed Framework

" Given spectral or log-mel features, use DNN or DRNN to
predict spectral targets (multiple sources)

= Apply time-frequency masking

= ISTFT
DNN/ Source;
Signal ——{ STFT/log-mel DRNN -
’ Source,
Evaluation ISTFT Time Freguency
Masking
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Proposed Methods

" Model architecture
" Joint time frequency masking
= Discriminative training
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Model Architecture
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Time Frequency Masking

= Masking — enforce the constraints that sum of the
predictions equals to the original mixture

" Binary mask

)1 3 ()] > y2.()]
My (f) = { 0 otﬁerwise i
= Soft mask

O u
M) = B+ e )

= Apply the mask to predicted results

S1,(f) = M(f)X¢(f)
S2,(f) = (1 —M(f)) X¢(f)
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Joint Time Frequency Masking

" Viewed the masking operation Source 1 Source 2
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Source 1 Source 2
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Discriminative training

Output ’y\lt Q oo Q Q se O V2

= Minimize squared error

||S’1t _yhll% T Hy2t _yztllg

= Enforce source to interference ratio

151,y =F1.—y2. [ 5+F2. —y2. [ 5§72, — 1.5
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Experimental Setting

= TIMIT dataset

— Mixed the speech from a male and a female speaker at 0 dB
= Circular shift to increase the variety of training samples
" Deep learning models

— RELU

— L-BFGS for optimization

— Use 2 hidden layers with 150 hidden units
= BSS EVAL metric (SDR, SIR, SAR)

— SIR - Suppression of interference

— SAR - Artifacts introduced by the separation process
— SDR - Overall performance
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Baseline - NMF

= 512-point STFT
= Generalized KL-divergence metric

NMF with Binary Masking NMF with Soft Masking
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Experimental Results — DNN vs. DRNN

= Spectral features
= No significant difference

win=1, soft mask win=3, soft mask
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Experimental Results — Features, Joint Mask Training

= |og-mel features perform better with joint mask training

win=1, without joint mask training win=1, with joint mask training
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Experimental Results — Discriminative Training

= Discriminative training provides extra regularization

win=1, logmel with joint mask training win=3, logmel with joint mask training
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Summary

= Comparison between NMF and DRNN with log-mel, joint
mask training, and discriminative training objective

NMF with soft masking DRNN with soft masking
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DEMO
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Conclusion

" Propose using deep learning models for monaural speech
separation.

— Propose the joint optimization of a soft masking function and
deep learning models

— Discriminative training criterion to further improve the SIR

= Qverall, our proposed models achieve 3.8~4.9 dB SIR gain
compared to the NMF baseline

" Future work
— Explore longer temporal information with neural networks
— Apply many other applications such as robust ASR
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Thank you!

https://sites.google.com/site/deeplearningsourceseparation
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MIR1K GNSDR

Train on two singers and test on other 17 singers

MIR 1K GNSDR
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