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Abstract

In this paper we introduce and study the
online consistent k-clustering with outliers
problem, generalizing the non-outlier version
of the problem studied by Lattanzi and Vas-
silvitskii (2017). We show that a simple local-
search based online algorithm can give a bi-
criteria constant approximation for the prob-
lem with O(k2 log2(nD)) swaps of medians
(recourse) in total, where D is the diameter
of the metric. When restricted to the prob-
lem without outliers, our algorithm is sim-
pler, deterministic and gives better approxi-
mation ratio and recourse, compared to that
of (Lattanzi and Vassilvitskii, 2017).

1 Introduction

Clustering is one of the most fundamental primitives in
unsupervised machine learning, and k-median cluster-
ing is one of the most widely used primitives in prac-
tice. Input to the problem consists of a set C of n
points, a set F of potential median locations, a metric
space d : (C ∪ F ) × (C ∪ F ) → R≥0. The goal is to
choose a subset S ⊆ F of cardinality at most k so as to
minimize

∑
j∈C d(j, S) where d(j, S) := mini∈S d(j, i)

is the distance from j to its nearest chosen median.
The problem is known to be NP-hard and several con-
stant factor approximation algorithms are known to
the problem (Charikar et al., 1999; Jain and Vazirani,
2001; Arya et al., 2001; Li and Svensson, 2013; Byrka
et al., 2017).
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In many real world applications, the set of data points
arrive over time in an online fashion. For example,
images, videos, documents get added over time, and
clustering algorithms in such applications need to as-
sign a label (or a median) to each newly added point in
an online fashion. A natural framework to study these
online clustering problems is using competitive analy-
sis, where the goal is to assign each arriving data point
irrevocably to an existing cluster or start a new cluster
containing the point. Unfortunately, the competitive
analysis framework is too strong, and it is provably
impossible to maintain a good quality clustering of
data points if one insists on the irrevocable decisions
(Liberty et al., 2016). Recently, Lattanzi and Vassil-
vitskii (2017) observed that in many applications the
decisions need not be irrevocable, however the online
algorithm should not do too many re-clustering oper-
ations. Motivated by such settings they initiated the
study of consistent k-clustering problem. The goal in
consistent k-clustering is twofold:

• Quality: Guarantee at all the times that we have a
clustering of the points that is a good approximation
to the optimum one.

• Consistency: The chosen medians should be stable
and not change too frequently over the sequence of
data point insertions.

Lattanzi and Vassilvitskii (2017) measured the num-
ber of changes to the set of chosen medians using the
notion of recourse – a concept also studied in online al-
gorithms (Gupta and Kumar, 2015; Gupta et al., 2014;
Bernstein et al., 2019). The total recourse of an online
algorithm is defined as the number of changes it makes
to the solution. Specially for the k-median problem,
if St corresponds to the set of chosen medians at time
t and St+1 at time t + 1, then the recourse at time
step t+ 1 is |St+1 \ St|.3 The total recourse of an on-
line algorithm is the sum of recourse across all the time
steps. An online algorithm with small recourse ensures

3One can also define the recourse as |St+1 \ St| + |St \
St+1|, but if we assume |St| = |St+1| = k, this is exactly
2 · |St+1 \ St|.
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that the chosen medians do not change too frequently
and hence is consistent. In particular, it forbids an
algorithm from simply recomputing the solution from
scratch at each time step. This is a very desirable prop-
erty of a clustering algorithm in applications, as we do
not want to change the label assigned to data points
(which corresponds to cluster centers) as the data set
keeps growing. Broadly speaking, recourse is also a
measure of stability of an online algorithm. Lattanzi
and Vassilvitskii (2017) showed that one can main-
tain an O(1) approximation to the k-median prob-
lem with O(k2 log4 n) total recourse. More recently,
Cohen-Addad et al. (2019) studied facility location
(and clustering problems) from the perspective of both
dynamic and consistent clustering frameworks. See re-
lated work section for more details.

Very recently and independent of our work, Fichten-
berger et al. (2021) gave an O(1)-approximation online
algorithm for k-median (without outliers) with a total
recourse of O(k ·poly log(n,D)), where D is the diam-
eter of the metric. The recourse is tight in terms of
the dependence on k.

A drawback of using k-median clustering on real-world
data sets is that it is not robust to noisy data, i.e., a
few outliers can completely change the cost as well as
structure of solutions. Recognizing this shortcoming,
Charikar et al. (2001) introduced a robust version of
k-median problem called k-median with outliers. The
problem is similar to k-median problem except one
crucial difference: An algorithm for k-median with
outliers does not need to cluster all the points but can
choose to ignore a small fraction of the input points.
The number of points an algorithm can ignore is given
as a part of the input, and is typically set to be a small
fraction of the overall input.

Formally, in the k-median with outliers (k-Med-O)
problem, we are given F , C, d and k as in the k-
median problem. Additionally, we are given an integer
z ≤ n = |C|. The goal is to choose a set S ⊆ F of k
medians, so as to minimize

minO⊆C:|O|=z
∑
j∈C\O d(j, S).

The set O of points are called outliers and are not
counted in the cost of the solution S. Thus the
parameter z specifies the number of outliers. No-
tice that when S is given, the set O that minimizes∑
j∈C\O d(j, S) can be computed easily: It contains

the z points j ∈ C with the largest d(j, S) value.
Therefore for convenience we shall simply use a set
S ⊆ F of size k to denote a solution to a k-Med-O
instance. The k-Med-O problem is not only a more
robust objective function but also helps in removing
outliers – a very important issue in the real world
datasets (Ott et al., 2014; Chawla and Gionis, 2013).

In fact such a joint view of clustering and outlier
elimination has been observed to be more effective,
and has attracted significant attention both in theory
and practice Chen (2008); Chawla and Gionis (2013);
Gupta et al. (2017); Rujeerapaiboon et al. (2019); Kr-
ishnaswamy et al. (2018).

In this paper, we study the k-Med-O problem in the
online consistent k-clustering framework of Lattanzi
and Vassilvitskii. The goal is to maintain a good
quality (approximate) solution to the problem at all
times while minimizing the total recourse of the on-
line algorithm. (The total recourse is still defined
as
∑
t |St \ St−1|.) Though O(1)-approximation al-

gorithms for k-Med-O are known in the offline setting
(Chen, 2008; Krishnaswamy et al., 2018), it seems hard
to extend these algorithms to the online setting. In-
stead, we resort to bicriteria approximate solutions for
the k-Med-O problem:

Definition 1. We say a solution S ⊆ F of k medians
is a (β, α)-bicriteria approximation to the k-median
with outliers instance (F,C, d, k, z) for some α, β ≥ 1,
if there exists a set O ⊆ C of size at most βz such that∑
j∈C\O d(j, S) ≤ α · opt, where opt is the cost of the

optimum solution for the instance with z outliers.

So, a (β, α)-approximate solution removes at most βz
outliers and has cost at most α times the cost of the
optimum solution with z outliers.

Online Model for k-Median with Outliers We
now describe the online model for the k-Med-O prob-
lem. Recall that a k-Med-O instance is given by
F,C, d, k and z. As in (Lattanzi and Vassilvitskii,
2017), we assume k is given at the beginning of the
algorithm, and C and d will be given online. We use n
to denote the total number of clients that will arrive.

Depending how F is given, we have two slightly differ-
ent online settings:

• In the static F setting, we assume F is independent
of C and is given at the beginning of the online
algorithm. In each time step, one point in C arrives
and its distances to F are revealed. 4

• In the F = C setting, we assume we always have
F = C. Whenever a point arrives, its distances to
previously arrived points are revealed, and the point
is then added to both C and F .

The F = C setting is more natural for clustering ap-
plications and is the one used in (Lattanzi and Vassil-
vitskii, 2017). On the other hand, the static F setting
arises in applications where we want to build k facili-
ties to serve a set C of clients that arrive one by one.

4It is easy to see that in the k-Med-O problem, only
distances between F and C are relevant.
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In these applications, the set F of potential locations
to build facilities is independent of C and often does
not change over time. The analysis of our algorithm
works directly for the static F setting, but needs a
small twisting in the F = C setting.

It remains to describe how z is given. For simplicity,
we assume z is fixed and given at the beginning of the
algorithm; we call this the static z setting. In a typical
application, z may increase as more and more points
arrive, and we call this setting the incremental z set-
ting. We can reduce the incremental z setting to the
static z setting in the following way. We maintain an
integer z′ ∈ [z, (1 + ε)z) and use z′ as the given num-
ber of outliers. This will incur a factor of (1 + ε) in
the first factor of the bicriteria approximation. During
our algorithm, whenever z becomes more than z′, we
update z′ to b(1 + ε)zc. We define an epoch to be a
maximal period of time steps with the same z′ value.
So within an epoch, z′ value does not change. The

number of epochs is at most O(log1+ε n) = O
(

logn
ε

)
.

Thus, if we have an online (β, α)-approximation algo-
rithm for k-Med-O with total recourse R in the static z
setting, we can obtain an ((1 + ε)β, α)-approximation

algorithm with total recourse O
(
R logn
ε

)
in the incre-

mental z setting. Thus throughout the paper, we only
focus on the static z setting, that is, z is fixed and
given at the beginning of the algorithm.

Our Results The main contribution of the paper
is the following. Recall that n is the total number of
points that will arrive during the whole algorithm. We
assume all distances are integers and define D to be
the diameter of the metric d.

Theorem 2. There is a deterministic (O(1), O(1))-
bicriteria approximation algorithm for the online k-
median with outliers problem with a total recourse of
O
(
k2 log n log(nD)

)
.

When restricted to the case without outliers (i.e, z =
0), our algorithm gives the following.

Theorem 3. There is a deterministic O(1)-
approximation algorithm to the consistent k-median
problem with O

(
k2 log n log(nD)

)
total recourse.

The recourse achieved by our algorithm is O(log2 n)
factor better than the result of Lattanzi and Vassil-
vitskii (2017). 5 They also showed a lowerbound of
Ω(k log n) on the total recourse, hence our result also
takes a step towards achieving the optimal recourse for
this basic problem.

Lemma 6 that appears later gives a formal statement of
the guarantees obtained by our algorithm. In Lemma 6

5In (Lattanzi and Vassilvitskii, 2017), it is assumed that
D = poly(n) and thus O(log(nD)) = O(logn).

we prove a more general result, where one can trade-off
running time and the approximation factor achieved
by our algorithm by fine-tuning certain parameters.
In particular, by appropriate tuning of parameters we
can achieve 3+ε approximation in time nO(1/ε), match-
ing the approximation factor achieved by local search
algorithm in the offline setting, and also improves the
unspecified O(1) factor achieved by (Lattanzi and Vas-
silvitskii, 2017). Finally, our algorithm is deterministic
while that of (Lattanzi and Vassilvitskii, 2017) is ran-
domized and only succeeds with high probability.

Our Techniques Unlike many of the previous results
on the online k-median problem and the related facil-
ity location problem, which are based on Meyerson’s
sampling procedure (Meyerson, 2001), our approach is
based on local search (Arya et al., 2001). When re-
stricted to the k-median without outliers problem, at
every time step, it repeatedly applies ρ-efficient swap
operations until no such operations exist: These are
the swaps that can greatly decrease the cost of the so-
lution (See Definition 4). Via standard analysis, one
can show that this gives an O(1)-approximation for
the problem. To analyze the total recourse of the algo-
rithm, we establish a crucial lemma that the total cost
increment due to the arrival of clients is small. Com-
pared to Meyerson’s sampling technique, local search
has two advantages: (i) The approximation ratio can
be made to be 3+ε, which matches the best offline ap-
proximation ratio for k-median based on local search.
(ii) Local-search based algorithms are deterministic in
general.

Very recently, similar techniques were used in (Guo
et al., 2020) to derive online algorithms for the related
facility location problem. We extend their ideas to
the k-median problem, and more importantly, the k-
median with outliers problem.

One barrier to extend the algorithm to the outlier
setting is that the analysis for the local search algo-
rithm breaks down if we impose the constraint that
the number of outliers can be at most z. To circum-
vent the barrier, we handle the constraint in a soft
manner: We introduce a penalty cost p, and instead
of requiring the number of outliers to be at most z,
we pay a cost of p for every outlier in the solution.
By setting p appropriately, we can ensure that the
algorithm does not produce too many outliers, while
at the same time maintaining the O(1) approxima-
tion ratio. Indeed, in the offline setting, our algo-
rithm gives the first (O(1), O(1))-bicritiera approxima-
tion for k-Med-O based on local search. Prior to our
work, in the offline setting, Gupta et al. (2017) devel-
oped a bicriteria approximation for the problem, but
it needs to violate the outlier constraint by a factor
of O(k log(nD)). On the other hand, though O(1)-
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approximation algorithms for k-Med-O were developed
in Chen (2008) and Krishnaswamy et al. (2018), un-
like our local search based algorithm, they are hard to
extend to the online setting.

Other Clustering Objectives We remark that our
algorithm and analysis can be easily extended to the
k-means objective, and more generally, the sum of q-th
power of distances for any constant q ≥ 1. However for
the cleanness of presentation, we choose to only focus
on the k-median objective.

Related work As we mentioned earlier, Cohen-
Addad et al. (2019) studied facility location and clus-
tering problems from the perspective of both dynamic
and consistent clustering frameworks. In the dynamic
setting, data points are both added and deleted, and
the emphasis is to maintain good quality solutions
while minimizing the time it takes to update the so-
lutions. For the facility location problem, they gave
an O(1) approximation algorithm with almost opti-
mal O(n) total recourse and O(n log n) per step update
time. They also extended their algorithm for facility
location to the k-median and k-means problems (with-
out outliers), achieving a constant factor approximate
solution with Õ(n+ k2) per step update time. Unfor-
tunately, they do not state the total recourse of their
algorithms. To our understanding, the total recourse
of their algorithms can be as large as O(n). However,
they also consider a harder setting where data points
are being both inserted and deleted. We believe that
finding a consistent k-clustering algorithm, where the
emphasis is more on the stability of cluster centers
than the update time, for the case when data points
are inserted and deleted is an important open problem.

For more details regarding clustering problems in the
context of dynamic and online algorithms, we refer
the readers to Charikar et al. (1997); Meyerson (2001);
Fotakis (2011); Goranci et al. (2018); Guo et al. (2020)
and references therein.

Organization In Section 2 we’ll give a bicriteria-
approximation algorithm for the offline k-Med-O prob-
lem by extending the classical local search algorithm
for k-median; then in Section 3 we give our online al-
gorithm based on the offline algorithm. We also give
some empirical verification of our algorithm on real-
world data. Due to space constraint, the experiment
results are postponed to Section B in the supplemen-
tary material.

2 An Offline Local Search Algorithm
for k-Median with Outliers

In this section, we describe an offline local search al-
gorithm for k-Med-O that achieves an (O(1), O(1))-

bicriteria-approximation ratio. To allow trade-offs
among the approximation ratio, number of outliers and
running time, we introduce two parameters: an integer
` ≥ 1 and a real number γ > 0. The algorithm gives((

1+ 1
` )(1+γ), (3+ 2

` )
(
1+ 1

γ

))
-bicriteria approximation

in nO(`) time. In particular, we can set ` = γ = Θ(1/ε)

to get an approximation ratio 3+ε with O
(
z
ε

)
outliers

and nO(1/ε)-time, matching the best approximation ra-
tio for k-median based on local search. To obtain any
(O(1), O(1))-bicriteria approximation, it suffices and
is convenient to set ` = γ = 1. This offline algorithm
will serve as the baseline for our online algorithm for
k-Med-O.

The main idea behind the algorithm is that we convert
the problem into the k-median with penalty problem.
Compared to k-Med-O, in the problem we are not given
the number z of outliers, but instead we are given a
penalty cost p ≥ 0 for not connecting a point. Our
goal is to choose k medians and connect some points
to the k medians so as to minimize the sum of the
connection cost and penalty cost. So, we shall use the
parameter p to control the number of outliers in a soft
way.

Indeed, the k-median with penalty problem is equiva-
lent to the original k-median problem up to the modifi-
cation of the metric. For every two points u, v ∈ F∪C,
we define dp(u, v) := min{d(u, v), p}. Then it is easy to
see that, the k-median with penalty problem becomes
the k-median problem on the metric dp. For a set S ⊆
F of k medians, we define costp(S) :=

∑
j∈C dp(j, S)

to be the cost of the solution S to the k-median in-
stance with metric dp, or equivalently, the k-median
instance on metric d with per-outlier penalty cost p.

Swap Operations for k-Median with Outliers
Given a set S ⊆ F of k medians, and an integer ` ≥ 1,
an `-swap on S is a pair (A∗, A) of medians, such that
A ⊆ S,A∗ ⊆ F \ S and |A| = |A∗| ≤ `. Applying the
swap operation (A∗, A) on S will update S to S∪A∗\A.
Notice that after the operation S still has size k. We
simply say (A∗, A) is a swap on S if it is an `-swap for
some ` ≥ 1.

Definition 4 (Efficient swaps). For any ρ, p ≥ 0, a
swap (A∗, A) on a solution S ⊆ F, |S| = k is said
to be ρ-efficient w.r.t the penalty cost p, if we have
costp(S ∪A∗ \A) < costp(S)− |A|ρ.

In particular a 0-efficient swap with respect to some
penalty cost p ≥ 0 is a swap whose application on S
will strictly decrease costp(S). The efficiency param-
eter ρ will be used later in the online algorithm, in
which we apply a swap only if it can decrease costp(S)
significantly to guarantee that the recourse of our al-
gorithm is small.
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The following theorem can be shown by modifying
the analysis for the classic (3 + 2

` )-approximation lo-
cal search algorithm for k-median (Williamson and
Shmoys, 2011). We leave its proof to the supplemen-
tary material.

Theorem 5. Let S and S∗ be two sets of medians
with |S| = |S∗| = k. Suppose p, ρ ≥ 0, and ` ≥ 1 is an
integer. If there are no ρ-efficient `-swaps on S w.r.t
the penalty cost p, then we have

costp(S) ≤
∑

j∈C
min

{(
3 +

2

`

)
dp(j, S

∗),

(
1 +

1

`

)
p

}

+ kρ.

To understand the theorem, we first assume ρ = 0;
thus S is a local optimum for the k-median instance
defined by the metric dp. If we replace min

{(
3 +

2
`

)
dp(j, S

∗),
(
1+ 1

`

)
p
}

by
(
3+ 2

`

)
dp(j, S

∗), then the the-
orem says that a local optimum solution for k-median
is a

(
3+ 2

`

)
-approximation, which is exactly the locality

gap theorem for k-median. Using that dp has diame-
ter p, we can obtain the improvement as stated in the
theorem; this will be used to give a better trade-off be-
tween the two factors in the bicriteria approximation
ratio. When ρ ≥ 0, we lose an additive factor of kρ on
the right side of the inequality.

Theorem 5 immediately gives a
((

1 + 1
`

)
(1 + γ),

(
3 +

2
`

)(
1 + 1

γ

))
-bicriteria approximation algorithm for the

k-Med-O problem, for any γ > 0. For now, we as-
sume we know the optimum value opt for the k-Med-O
instance (we’ll explain how we remove the assump-

tion later). Let p = (3`+2)opt
(`+1)γz . Then we start from an

arbitrary set S of k medians, and repeatedly apply 0-
efficient `-swaps w.r.t penalty cost p on S, until no such
swaps can be found. The running time of the algorithm
is nO(`).6 Applying Theorem 5 with S∗ being the opti-
mum solution for the k-Med-O instance, we have that

the final solution S has costp(S) ≤ ∑j∈C min
{(

3 +

2
`

)
dp(j, S

∗),
(
1 + 1

`

)
p
}
≤
(
3 + 2

`

)
opt +

(
1 + 1

`

)
zp. The

second inequality holds since for inliers j in the solu-
tion S∗, we have dp(j, S

∗) ≤ d(j, S∗) and for outliers
j we have dp(j, S

∗) ≤ p. We return S as the set of
medians, and let j be an outlier if dp(j, S) = p. Then,
the number of outliers our algorithm produces is at

most
(
1 + 1

`

)
z +

(
3+ 2

`

)
opt

p =
(
1 + 1

`

)
z +

(
1 + 1

`

)
γz =(

1 + 1
`

)
(1 + γ)z. The cost of the solution is at most(

3 + 2
`

)
opt +

(
1 + 1

`

)
zp =

(
3 + 2

`

)
opt +

(
3 + 2

`

)
opt
γ =

(
3 + 2

`

)
opt
(

1 + 1
γ

)
.

6When the distances are not polynomially bounded, the
running time of the algorithm may be large; but using an
appropriate ρ we can reduce the running time to polyno-
mial by losing a factor of (1+ε) in the approximation ratio.

Finally, we explain how to remove the assumption that
we know opt via binary search. We can use some num-

ber B ≥ 0 as a guess of opt, let p = (3`+2)B
(`+1)γz and run

the local search procedure as described above. We
say the procedure succeeds if costp(S) ≤

(
3 + 2

`

)
B +(

1 + 1
`

)
zp. If it succeeds, we can decreaseB and repeat

the whole procedure in the binary-search framework;
otherwise we increase B and repeat. When B ≥ opt,
the algorithm is guaranteed to succeed (if B < opt
the algorithm may or may not succeed). Therefore at
the end we have some B ≤ opt for which the proce-
dure succeeds, which is sufficient for the approximation
guarantee.

3 Online Algorithm for k-Median with
Outliers

In this section, we give our online algorithm for
k-Med-O that proves Theorem 2 (and thus Theo-
rem 3). As mentioned earlier, indeed we give a more
general result that allows trade-offs between the ap-
proximation ratio, the number of outliers and running
time:

Lemma 6. Let ` ≥ 1 be an integer, ε > 0 be small
enough and γ > 0 be a real number. There is a de-
terministic nO(`)-time algorithm for online k-median

with outliers with a total recourse of O
(k2 logn log(nD)

ε

)
.

The algorithm achieves a bicriteria approximation of(
1

1−ε
(
1 + 1

`

)
(1 + γ), 1

1−ε
(
3 + 2

`

)
(1 + 2

γ

))
in the static

F setting, and
(

1
1−ε
(
1+ 1

`

)
(1+γ), 1

1−ε
(
3+ 2

`

)
(1+ 4

γ

))

in the F = C setting.

By setting ` = γ = 1 and ε to be a small enough
constant, Lemma 6 implies Theorem 2. On the other
hand, one can set ` = γ = 1

ε to achieve an approxi-
mation ratio of 3 + O(ε) with O( zε ) outliers and run-

ning time nO(1/ε). The goal of this section is to prove
Lemma 6. To explain our main ideas more clearly, we
assume F is static: the set F of potential medians is
fixed and given at the beginning of the online algo-
rithm. In the supplementary material, we show how
the algorithm can be extended to the setting where
F = C.

To avoid the case where the optimum solution has cost
0, we add an additive factor of 0.1 in all definitions of
costs: the cost of a solution to a k-Med-O instance, and
costp(S). We can think of that in the instance we have
one point and one median that are 0.1 distance apart
and have distance ∞ to all other points in the metric.
Since all distances are integers and the approximation
ratio we are aiming at is less than 10, the additive
factor of 0.1 does not change our approximation ratio.
Theorem 5 holds with an additive factor of 0.1 added
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to the right side of the inequality.7

In essence, our algorithm repeatedly applies ρ-efficient
swaps w.r.t the penalty cost p, for some carefully main-
tained parameters ρ and p. The main algorithm is
described in Algorithm 1. In each time t, we add the
arrival point jt to C (Step 3). Then we repeatedly per-

form
(
ρ :=

ε·costp(S)
k

)
-efficient swaps until no such op-

eration exists (loop 4). If the solution S obtained has
more than 1

1−ε
(
1 + 1

`

)
(1 + γ)z outliers (defined as the

points j with dp(j, S) = p, or equivalently d(j, S) ≥ p),
we then double p (Step 7) and redo the while loop. At
the beginning of the algorithm, we set p to be a small
enough number (Step 1).

Algorithm 1 Online algorithm for k-median

1: p← min
{

1
10γz , 0.1

}

2: for t← 1 to n do
3: C ← C ∪ {jt}
4: while there exists a

(
ρ :=

ε·costp(S)
k

)
-efficient

`-swap on S w.r.t the penaty cost p do
5: perform the swap operation

6: if dp(j, S) = p for more than 1
1−ε
(
1+ 1

`

)
(1+γ)z

points j ∈ C then
7: p← 2p
8: goto 4

3.1 Approximation Ratio of the Algorithm

We start from analyzing the approximation ratio of
the algorithm. At any moment of the algorithm, we
use opt to denote the cost of the optimum solution for
the k-Med-O problem defined by the current point set
C. Theorem 5 gives the following.

Claim 7. At any moment immediately after the while
loop (Loop 4), we have (1− ε)costp(S) ≤

(
3 + 2

` )opt+(
1 + 1

`

)
zp.

Proof. After the while loop, no
ε·costp(S)

k -efficient
swaps can be performed. Applying Theorem 5 with
S∗ being the optimum solution for the k-Med-O in-
stance at the moment, we have costp(S) ≤ 0.1 +∑
j∈C min

{(
3+ 2

`

)
dp(j, S

∗),
(
1+ 1

`

)
p
}

+k · ε·costp(S)
k ≤(

3+ 2
`

)
opt+

(
1+ 1

`

)
zp+ε ·costp(S). Moving ε ·costp(S)

to the left side gives the claim.

Lemma 8. At any moment, we have p ≤ 2(3`+2)opt
γ(`+1)z .

7One might think that the twisting is not necessary
since the case opt = 0 can be handled easily. However,
it is not trivial to bound the total recourse for the period
opt = 0. We still need most techniques for the general case.
Thus we chose to avoid the case opt = 0 by introducing a
tiny term.

Proof. The statement holds at the beginning since
opt = 0.1 and p ≤ 0.1. As opt can only increase during
the algorithm, it suffices to prove the inequality at any
moment after we run Step 7; this is the only step in
which we increase p. We assume z ≥ 1 since if z = 0
the lemma is trivial.

Focus on any moment before we run Step 7. We define
p∗ > 0 to be the real number such that

(
1 + 1

`

)
(1 +

γ)zp∗ =
(
3+ 2

`

)
opt+

(
1+ 1

`

)
zp∗. Then, if p > p∗, then

the condition in Step 6 does not hold: Otherwise, we
have (1− ε)costp(S) > (1− ε) · 1

1−ε
(
1 + 1

`

)
(1 + γ)zp ≥(

3+ 2
`

)
opt+

(
1+ 1

`

)
zp, contradicting Claim 7. Since we

assumed we are going to run Step 7, we have p ≤ p∗.
So, after Step 7, we have p ≤ 2p∗ = 2 · (3+2/`)opt

γ(1+1/`)z =
2(3`+2)opt
γ(`+1)z .

Combining Claim 7 and Lemma 8, at the end of each
time t, we have (1 − ε)costp(S) ≤

(
3 + 2

`

)
opt +

(
1 +

1
`

)
zp ≤

(
3 + 2

`

)
opt+

(
1 + 1

`

)
z 2(3`+2)opt

γ(`+1)z =
(
3 + 2

`

)
opt+(

3 + 2
`

)
2opt
γ =

(
3 + 2

`

)(
1 + 2

γ

)
opt. (This assumes

z ≥ 1, but the resulting inequality holds trivially when
z = 0.) Defining the outliers to be the points j with
dp(j, S) = p, our online algorithm achieves a bi-criteria

approximation ratio of
(

1
1−ε
(
1 + 1

`

)
(1 + γ), 1

1−ε
(
3 +

2
`

)(
1 + 2

γ

))
since Step 6 guarantees that the solution

S has at most 1
1−ε
(
1 + 1

`

)
(1 + γ)z outliers.

3.2 Analysis of Recourse

We now proceed to the analysis of the total recourse
of the online algorithm. For simplicity, we define
opt′ := minS′⊆F :|S′|=k costp(S′) to be the cost of the
optimum for the current k-median instance with met-
ric dp. Notice the difference between opt and opt′:
opt is for the original k-Med-O problem and opt′ is for
the k-median with penalty problem (or k-median with
metric dp). So, opt′ depends on both the current point
set C and the current p. Like opt, opt′ can only in-
crease during the course of the algorithm as C only
enlarges and p only increases.

Claim 9. At any moment, we have p ≤ O(1) · opt′.

Proof. Again it suffices to show the inequality at any
moment after we run Step 7. Suppose we just com-
pleted the while loop. Applying Theorem 5 with S∗

being the optimum solution for the current k-median
instance with metric dp, we have costp(S) ≤ 1

1−ε
(
3 +

2
`

)
opt′. If at the moment we have p > 1

1−ε
(
3 + 2

`

)
opt′,

then the condition for Step 6 will not be satisfied,
even if z = 0. So, before we run Step 7, we must
have p ≤ 1

1−ε
(
3 + 2

`

)
opt′. After the step, we have

p ≤ 2
1−ε
(
3 + 2

`

)
opt′ = O(1) · opt′.
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We define a stage of the online algorithm to be a period
of the algorithm between two adjacent moments when
we increase p in Step 7. That is, a stage is an inclusion-
wise maximal period of the algorithm in which the
value of p does not change. From now on, we fix a
stage and let p be the value of p in the stage. So, p is
fixed during the stage. Assume the stage starts at time
τ and ends at time τ ′. Notice that the stage contains
the tail of time τ , the head of time τ ′, and the entire
time τ ′′ for any τ ′′ ∈ [τ + 1, τ ′ − 1]. An exceptional
case is that τ = τ ′, in which case the stage contains
some period within time τ .

For every t ∈ [τ, τ ′], let opt′t be the optimum value for
the k-median instance with C = {j1, j2, · · · , jt} and
metric dp. So, for any t ∈ [τ, τ ′], opt′t is the value
of opt′ at any moment that is in the stage and after
Step 3 at time t. For t ∈ [τ + 1, τ ′], we define ∆t to
be the value of costp(S) after Step 3 at time t, minus
that before Step 3. We view this as the increase of
costp(S) due to the arrival of jt. Let ∆τ be the value
of costp(S) at the beginning of the stage; that is, the
moment immediately after p is increased to p.

Lemma 10. For every T ∈ [τ, τ ′], we have
∑T
t=τ ∆t ≤

O (k log n) opt′T .

Proof. We can show that ∆τ ≤ O(1)opt′τ ≤ O(1)opt′T
by applying Theorem 5 with S∗ being the optimum
solution that defines opt′τ . Thus it suffices to bound∑T
t=τ+1 ∆t.

Let S∗ be the optimum solution for the k-median in-
stance with point set {j1, j2, · · · , jT } and metric dp.
We are only interested in points jτ+1, jτ+2, · · · , jT in
the analysis. Fix any i∗ ∈ S∗. Let {jt1 , jt2 , · · · , jts} be
the set of points in {jτ+1, jτ+2, · · · , jT } connected to
i∗ in the solution S∗, where τ < t1 < t2 < · · · < ts ≤
T ≤ τ . For notation convenience, we let j′r = jtr and
∆′r = ∆tr for every r ∈ [s]. We now bound

∑s
r=1 ∆′r.

We assume s ≥ 1 since otherwise the quantity is 0.

We can bound ∆′1 by p, and by Claim 9, we have ∆′1 ≤
p ≤ O(1) · opt′τ ≤ O(1) · opt′T . Then we will bound
∆′r for any integer r ∈ [2, s]. Using Theorem 5, we can
show that at the beginning of time tr (or equivalently,
at the end of time tr − 1), we have costp(S) ≤ O(1) ·
opt′tr−1 ≤ O(1) · opt′T . For the S, we have

∑r−1
u=1

(
dp(j′u, S) + dp(j′u, i

∗)
)
≤ O(1)opt′T .

The inequality holds since the summation for each of
the two terms is at most O(1)opt′T . So, there is at
least one point j′u such that dp(j′u, S) + dp(j′u, i

∗) ≤
O(1)· opt

′
T

r−1 , implying dp(i∗, S) ≤ O(1)· opt
′
T

r−1 . Therefore,
we have ∆′r ≤ dp(i∗, j′r)+dp(i∗, S) ≤ dp(i∗, j′r)+O(1)·

opt′T
r−1 . Then

s∑

r=1

∆′r

≤O(1) · opt′T +

s∑

r=2

(
dp(i∗, j′r) +O(1) · opt

′
T

r − 1

)

≤
s∑

r=1

dp(i∗, j′r) +O(log s)opt′T = O(log T )opt′T

=O(log n)opt′T .

Considering all the k medians i∗ ∈ S∗ together, we
have

∑T
t=τ+1 ∆t ≤ O(k log n)opt′T .

Finally, we need the following technical lemma from
Guo et al. (2020). For completeness, we also include
the proof here.

Lemma 11. Let b ∈ RH≥0 for some integer H ≥ 1.

Let BH′ =
∑H′

h=1 bh for every H ′ = 0, 1, · · · , H. Let
0 < a1 ≤ a2 ≤ · · · ≤ aH be a sequence of real numbers
and α > 0 such that BH′ ≤ α ·aH′ for every H ′ ∈ [H].

Then we have
H∑

h=1

bh
ah
≤ α

(
ln
aH
a1

+ 1

)
.

Proof. Define aH+1 = +∞.

H∑

h=1

bh
ah

=
H∑

h=1

Bh −Bh−1

ah
=

H∑

h=1

Bh

(
1

ah
− 1

ah+1

)

=

H∑

h=1

Bh
ah

(
1− ah

ah+1

)
≤ α

H∑

h=1

(
1− ah

ah+1

)

= αH − α
H−1∑

h=1

ah
ah+1

≤ αH − α(H − 1)
( a1

aH

)1/(H−1)

= α(H − 1)
(

1− e− ln
aH
a1
/(H−1)

)
+ α

≤ α(H − 1) ln
aH
a1
/(H − 1) + α = α

(
ln
aH
a1

+ 1

)
.

The inequality in the second line used the following
fact: if the product of H − 1 positive numbers is a1

aH
,

then their sum is minimized when they are equal. The
inequality in the third line used that 1 − e−x ≤ x for
every x.

Now we can prove Lemma 6. We define H = τ ′−τ+1.
For every t ∈ [τ ′, τ ], we define bt−τ ′+1 = ∆t and
at−τ ′+1 = opt′t. We define BT−τ ′+1 for every T =

τ − 1, τ, · · · , τ ′ to be
∑T
t=τ bt−τ ′+1 =

∑T
t=τ ∆t. By

Lemma 10 we have BH′ ≤ αopt′H′+τ−1 = α · aH′
for some α = O(k log n) and every H ′ ∈ [H]. In
time t within the stage, costp(S) first increases by
∆t in Step 3 (or becomes ∆τ at the beginning of
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the stage if t = τ). Then for every median we swap
inside the while loop 4, we decrease costp(S) by at

least
εcostp(S)

k ≥ ε·opt′t
k , due to the use of the efficient

swaps. Noticing that opt′t is non-decreasing in t, us-
ing Lemma 11 we can bound the total recourse in the
stage by

∑τ ′

t=τ
∆t

εopt′t/k
=
k

ε

H∑

h=1

bh
ah
≤ k

ε
α

(
ln
aH
a1

+ 1

)

=
αk

ε

(
ln

opt′τ ′
opt′τ

+ 1

)
.

We remark that we can not bound the recourse at
each time t ∈ [τ, τ ′] by ∆t

εopt′t/k
. But the total recourse

in [τ, τ ′] can be bounded as above: For the cost incre-
ment ∆t at time t, it can contribute to at most ∆t

εopt′t/k

fractional recourse since after the ∆t cost is incurred,
each unit of recourse will decrease the cost by at least
εopt′t/k, and our cost is always non-negative. This uses
that opt′t is non-decreasing.

Now it is time to consider all stages [τ, τ ′] together.

The summation of ln
opt′

τ′
optτ

over all stages is the nat-

ural logarithm of the product of
opt′

τ′
opt′τ

over all stages.

For some time t that crosses many different stages,
opt′t values depend on the p value of a stage. How-
ever as p increases, opt′t can only increase. Therefore,
the summation is at most ln of the ratio between the
maximum possible opt′ value and the minimum possi-
ble opt′ value. So, this is at most O(log(nD)). There
are at most log2O(nD) = O(log(nD)) stages. Thus,
the total recourse over the whole algorithm is at most
αk
ε · O(log(nD)) = O

(
k2 logn log(nD)

ε

)
. This finishes

the proof of Lemma 6.

3.3 Handling the F = C Setting

When F = C, a small issue with the analysis is that
opt and opt′ may decrease as the algorithm proceeds.
However, it can only decrease by at most a factor of
2 from a moment to any later moment. This holds
due to the following fact: If we have a star (i, C ′)
and any metric d′, we have minj∗∈C′

∑
j∈C′ d(j∗, j) ≤

2
∑
j∈C′ d

′(i, j). That is, including additional medians
in F on top of F = C can only save a factor of 2.

To address the issue, we define opt to be the optimum
value of the current k-Med-O instance. We define opt
at any moment of the algorithm to be the maximum
opt we see until the moment. Then at any moment
of the algorithm, we have opt ≤ opt ≤ 2opt. More-
over opt can only increase as the algorithm proceeds.
Claim 7 still holds, and Lemma 8 holds with opt re-
placed by opt or 2opt. Then eventually we shall get a

bifactor of
(

1
1−ε
(
1 + 1

`

)
(1 + γ), 1

1−ε (3 + 2
` )
(
1 + 4

γ

))
.

We can use the same trick to handle opt′ in the anal-
ysis of the recourse. In this case, the factor of 2 will
be hidden in the O(·) notation and thus the recourse
bound is not affected. More precisely, we define opt

′
to

be the maximum opt′ we see until the moment. Then,
we always have opt′ ≤ opt

′ ≤ 2opt′, and opt
′

can only
increase. Claim 9 still holds. Then we fix a stage
whose p value is p and assume the stage starts in time
τ and ends in time τ ′. For every t ∈ [τ, τ ′], define opt

′
t

to be the value of opt
′

at any moment that is in the
stage and after Step 3 at the time t. Then Lemma 10
still holds and in the end we can bound the recourse
by O

(
k2 logn log(nD)

ε

)
. Thus we proved Lemma 6.

4 Discussion

A natural follow-up question is whether one can get a
true approximation (i.e, remove no more than z out-
liers) for the consistent k-median with outliers prob-
lem. There do exist such algorithms for the offline
case (Chen, 2008; Krishnaswamy et al., 2018). How-
ever, both of them are quite complicated and use tech-
niques that seem difficult to apply to the online setting.
On the other hand, our algorithm is very simple and
likely to have more practical value, but the bicrite-
ria approximation seems necessary for the local search
method.
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imer, Florence d’Alché-Buc, Emily B. Fox, and Ro-
man Garnett, editors, Advances in Neural Infor-
mation Processing Systems 32: Annual Conference
on Neural Information Processing Systems 2019,
NeurIPS 2019, 8-14 December 2019, Vancouver,
BC, Canada, pages 3250–3260, 2019.

Hendrik Fichtenberger, Silvio Lattanzi, Ashkan
Norouzi-Fard, and Ola Svensson. Consistent k-
clustering for general metrics. In Proceedings of the
Thirty-Second Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2021, 2021.

Dimitris Fotakis. Online and incremental algorithms
for facility location. SIGACT News, 42(1):97–
131, March 2011. ISSN 0163-5700. doi: 10.1145/
1959045.1959065. URL http://doi.acm.org/10.

1145/1959045.1959065.

Gramoz Goranci, Monika Henzinger, and Dariusz Le-
niowski. A tree structure for dynamic facility loca-
tion. In 26th Annual European Symposium on Algo-
rithms, ESA 2018, August 20-22, 2018, Helsinki,
Finland, pages 39:1–39:13, 2018. doi: 10.4230/
LIPIcs.ESA.2018.39. URL https://doi.org/10.

4230/LIPIcs.ESA.2018.39.

Xiangyu Guo, Janardhan Kulkarni, Shi Li, and Jiayi
Xian. The power of recourse: Better algorithms for
facility location in online and dynamic models, 2020.

Anupam Gupta and Amit Kumar. Greedy algo-
rithms for steiner forest. In Proceedings of the
Forty-Seventh Annual ACM on Symposium on The-
ory of Computing, STOC 2015, Portland, OR,
USA, June 14-17, 2015, pages 871–878, 2015. doi:
10.1145/2746539.2746590. URL https://doi.org/

10.1145/2746539.2746590.

Anupam Gupta, Amit Kumar, and Cliff Stein. Main-
taining assignments online: Matching, scheduling,
and flows. In Proceedings of the Twenty-Fifth
Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2014, Portland, Oregon, USA, Jan-
uary 5-7, 2014, pages 468–479, 2014. doi: 10.1137/
1.9781611973402.35. URL https://doi.org/10.

1137/1.9781611973402.35.

Shalmoli Gupta, Ravi Kumar, Kefu Lu, Benjamin
Moseley, and Sergei Vassilvitskii. Local search meth-
ods for k-means with outliers. Proceedings, In-
ternational Conference on Very Large Data Bases



Consistent k-Median: Simpler, Better and Robust

(VLDB), 10(7):757–768, March 2017. ISSN 2150-
8097. doi: 10.14778/3067421.3067425. URL https:

//doi.org/10.14778/3067421.3067425.

K. Jain and V. V. Vazirani. Approximation algorithms
for metric facility location and k-median problems
using the primal-dual schema and lagrangian relax-
ation. Journal of the ACM, 48(2):274 – 296, 2001.

Ravishankar Krishnaswamy, Shi Li, and Sai Sandeep.
Constant approximation for k-median and k-means
with outliers via iterative rounding. In Proceed-
ings of the 50th Annual ACM SIGACT Sympo-
sium on Theory of Computing, STOC 2018, page
646–659, New York, NY, USA, 2018. Association for
Computing Machinery. ISBN 9781450355599. doi:
10.1145/3188745.3188882. URL https://doi.org/

10.1145/3188745.3188882.

Silvio Lattanzi and Sergei Vassilvitskii. Consistent k-
clustering. In Doina Precup and Yee Whye Teh,
editors, Proceedings of the 34th International Con-
ference on Machine Learning, ICML 2017, Sydney,
NSW, Australia, 6-11 August 2017, volume 70 of
Proceedings of Machine Learning Research, pages
1975–1984. PMLR, 2017.

S. Li and O. Svensson. Approximating k-median via
pseudo-approximation. ACM Symp. on Theory of
Computing (STOC), 2013.

Edo Liberty, Ram Sriharsha, and Maxim Sviridenko.
An algorithm for online k-means clustering. In 2016
Proceedings of the eighteenth workshop on algorithm
engineering and experiments (ALENEX), pages 81–
89. SIAM, 2016.

M. Lichman. UCI machine learning repository, 2013.
URL http://archive.ics.uci.edu/ml.

A. Meyerson. Online facility location. In Proceedings of
the 42Nd IEEE Symposium on Foundations of Com-
puter Science, FOCS ’01, pages 426–, Washington,
DC, USA, 2001. IEEE Computer Society. ISBN 0-
7695-1390-5. URL http://dl.acm.org/citation.

cfm?id=874063.875567.

Lionel Ott, Linsey Xiaolin Pang, Fabio Tozeto Ramos,
and Sanjay Chawla. On integrated clustering and
outlier detection. In Zoubin Ghahramani, Max
Welling, Corinna Cortes, Neil D. Lawrence, and
Kilian Q. Weinberger, editors, Advances in Neural
Information Processing Systems 27: Annual Con-
ference on Neural Information Processing Systems
2014, December 8-13 2014, Montreal, Quebec,
Canada, pages 1359–1367, 2014. URL https:

//proceedings.neurips.cc/paper/2014/hash/

6f2268bd1d3d3ebaabb04d6b5d099425-Abstract.

html.

Napat Rujeerapaiboon, Kilian Schindler, Daniel
Kuhn, and Wolfram Wiesemann. Size matters:

Cardinality-constrained clustering and outlier detec-
tion via conic optimization. SIAM Journal on Op-
timization, 29(2):1211–1239, 2019.

David P. Williamson and David B. Shmoys. The De-
sign of Approximation Algorithms. Cambridge Uni-
versity Press, New York, NY, USA, 1st edition,
2011. ISBN 0521195276, 9780521195270.


