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Abstract

In several applications of the stochastic
multi-armed bandit problem, the traditional
objective of maximizing the expected sum of
rewards obtained can be inappropriate. Mo-
tivated by the problem of optimizing job as-
signments to train novice workers of unknown
quality in labor platforms, we consider a new
objective in the classical setup. Instead of
maximizing the expected total reward from
T pulls, we consider the vector of cumula-
tive rewards earned from the K arms at the
end of T pulls, and aim to maximize the ex-
pected value of the highest cumulative re-
ward across the K arms. This corresponds
to the objective of training a single, highly
skilled worker using a limited supply of train-
ing jobs. For this new objective, we show that
any policy must incur an instance-dependent
asymptotic regret of Q(log7T') (with a higher
instance-dependent constant compared to
the traditional objective) and an instance-
independent regret of Q(K'/3T2/3). We then
design an explore-then-commit policy, featur-
ing exploration based on appropriately tuned
confidence bounds on the mean reward and
an adaptive stopping criterion, which adapts
to the problem difficulty and achieves these
bounds (up to logarithmic factors). Our nu-
merical experiments demonstrate the efficacy
of this policy compared to several natural al-
ternatives in practical parameter regimes.
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1 Introduction

The stochastic multi-armed bandit (MAB) problem
(Lai and Robbins, 1985; Auer et al., 2002) presents
a basic formal framework to study the exploration vs.
exploitation tradeoff fundamental to online decision-
making in uncertain settings. Given a set of K arms,
each of which yields independent and identically dis-
tributed (i.i.d.) rewards over successive pulls, the goal
is to adaptively choose a sequence of arms to maximize
the expected value of the total reward attained at the
end of T pulls. The critical assumption here is that the
reward distributions of the different arms are a priori
unknown. Any good policy must hence, over time,
optimize the tradeoff between choosing arms that are
known to yield high rewards (exploitation) and choos-
ing arms whose reward distributions are yet relatively
unknown (exploration). Over several years of exten-
sive theoretical and algorithmic analysis, this classical
problem is now quite well understood (see Lattimore
and Szepesvari (2018), Slivkins (2019), and Bubeck
and Cesa-Bianchi (2012) for a survey).

In this paper, we address a new objective in this clas-
sical setup. We consider the vector of cumulative re-
wards that have been earned from the different arms
at the end of T pulls, and instead of maximizing the
expectation of their sum, we aim to maximize the ex-
pected value of the mazimum (max) of these cumula-
tive rewards across the arms. This problem is moti-
vated by several practical settings, as we discuss below.

1. Training workers in online labor platforms.
An important operational objective of online labor
platforms is to develop and maintain a reliable pool
of high-quality workers to satisfy the demand for jobs.
This is a challenging problem since, a) workers con-
tinuously leave the platform and hence new talent
must be trained on an ongoing basis, b) the number
of “training” jobs available to train the incoming tal-
ent is limited (for instance, this could result from a
limited budget for the incentives offered to the clients
for choosing novice workers), and c¢) the quality of the
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workers is unknown: some workers are fast learners
while some are slow, and efficient allocation of train-
ing jobs entails distinguishing between these types. At
the core of this challenging operational question is the
following problem. Given a limited number of train-
ing jobs, the platform must determine a policy to allo-
cate these jobs to a set of novice workers to maximize
some appropriate functional of their terminal skill lev-
els. For a platform that seeks to offer robust service
guarantees to its clients, simply maximizing the sum
of the terminal skill levels across all workers may not
be appropriate. A more appropriate objective is to
maximize some ¢'" percentile skill level amongst the
workers ordered by their terminal skills, where ¢ is de-
termined by the volume of demand for regular jobs:
higher the demand for jobs, higher the ¢ needed. Ef-
fectively, the skill levels of the lower skilled workers
at the end of training do not matter, since there is
not enough demand for regular jobs to assign to them
anyway.

To address this problem, we can use the MAB frame-
work: the set of arms is the set of novice workers,
the reward of an arm is the random increment in the
skill level of the worker after performing a job, and
the number of training jobs available is 7. Assuming
that T' is not too large, the random increments may be
assumed to be i.i.d. over time. The mean of these in-
crements can be interpreted as the unknown learning
rate or the trainability of a worker. Given K work-
ers, the goal is to adaptively allocate the jobs to these
workers to maximize the smallest terminal skill level
amongst the top m < K (where m ~ ¢K) most ter-
minally skilled workers. Our objective corresponds to
the case where m = 1, and is a significant step towards
solving this general problem.

2. Training for external competitions. Related to
the above application, the objective we consider is also
relevant to the problem of developing advanced talent
within a region for participation in external competi-
tions like Science Olympiads, the Olympic games, etc.,
with limited training resources. In these settings, only
the terminal skill levels of those finally chosen to repre-
sent the region matter. The resources spent on others,
despite resulting in skill advancement, are effectively
wasteful. This feature is not captured by the sum ob-
jective, while it is effectively captured by the max ob-
jective, particularly in situations where one individual
will finally be chosen to represent the region.

3. Grooming an “attractor” product on e-
commerce platforms. E-commerce platforms typ-
ically feature very similar substitutes within a prod-
uct category. For instance, consider a product like
a tablet cover (e.g., for an iPad). Once the utility
of a new product of this type becomes established

(e.g., the size specifications of a new version of the
iPad becomes available), several brands offering close
to identical products serving the same purpose pro-
liferate the marketplace. This proliferation is prob-
lematic to the platform for two reasons: a) customers
are inundated by choices and may unnecessarily delay
their purchase decision, thereby increasing the possi-
bility of leaving the platform altogether (Settle and
Golden, 1974; Gourville and Soman, 2005), and b) the
heterogeneity in the purchase behavior resulting from
the lack of a clear choice may complicate the problem
of effectively managing inventory and delivery logis-
tics. Given a budget for incentivizing customers to
pick different products in the early exploratory phase
where the qualities of the different products are being
discovered, a natural objective for the platform is to
“groom” a product to have the highest volume of pos-
itive ratings at the end of this phase. This product
then becomes a clear choice for the customers. Our
objective effectively captures this goal.

A key assumption we make in the paper is that the
rewards for all arms are non-negative; this is moti-
vated by training applications where rewards represent
skill increments. Under this assumption, in the full-
information setting where the reward distributions of
the arms are known, we first show that the optimal
policy for the max objective is identical to the one for
the sum objective: one always pulls the arm with the
highest mean reward (Proposition 1). This addition-
ally implies that the optimal rewards under the two
objectives are identical.

A standard approach in MAB problems is to design
a policy that minimizes regret, i.e., the quantity of
loss relative to the optimal full-information policy for a
given objective over time. In the classical setting with
the sum objective, it is well known that any policy
must incur an instance-dependent asymptotic regret of
Q> ;4i-(AjlogT)/d;) as T — oo (Lai and Robbins,
1985). Here, A; = p* — u;, ie., it is the difference
between the highest mean reward p* belonging to the
arm ¢* and the mean reward p; of arm 4; and d; is
a quantity that captures an appropriate notion of di-
vergence between the reward distribution of arm ¢ and
the “closest” distribution within the space of possible
distributions having a mean that is at least p*. Ad-
ditionally, it is also well-known that any policy must
incur and instance-independent regret of Q(v KT) in
the worst-case over the set of possible bandit instances
(Auer et al., 2002).

Since the optimal full-information reward is the same
under the sum and the max objectives, and since the
maximum of a set of non-negative numbers is always
at most the sum of the numbers, any lower bound on
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the regret for the sum objective implies the same lower
bound on the max objective. However, a key feature
of the max objective is that the rewards earned from
arms that do not eventually turn out to be the one
yielding the highest cumulative reward are effectively
a waste. Owing to this feature, we show that any
policy must incur a higher instance-dependent regret
of Q3,4 (u*logT)/d;) in this case (Theorem 1).
Moreover, we show that an instance-independent re-
gret of Q(K'/3T?/3) is inevitable in the worst-case
(Theorem 2). Both these results rely on novel argu-
ments that are a significant departure from those in-
volved in proving the corresponding lower bounds for
the sum objective.

Attaining these lower bounds requires algorithmic in-
novation. For the sum objective, well-performing poli-
cies are typically based on the principle of optimism
in the face of uncertainty. A popular policy-class is
the Upper Confidence Bound (UCB) class of policies
(Agrawal, 1995; Auer et al., 2002; Auer and Ortner,
2010), in which a confidence interval is maintained for
the mean reward of each arm, and at each time, the
arm with the highest upper confidence bound is cho-
sen. For a standard tuning of these intervals, this pol-
icy — termed UCBLI in literature due to (Auer et al.,
2002) — guarantees an instance-dependent asymptotic
regret of O(logT') and a regret of O(v/ KT logT) in the
worst case. With a more refined tuning, O(vVKT) can
be achieved (Audibert and Bubeck, 2018; Lattimore,
2018).

For our max objective, directly using one of the above
UCB policies can prove to be disastrous. To see this,
suppose that all K arms have equal deterministic re-
wards. Then, UCB1 will pull each of the arms in a
round-robin fashion until a total of T" pulls, resulting
in the highest terminal cumulative reward of O(T'/K);
whereas, a reward of ©(T) is feasible by simply com-
mitting to an arbitrary arm from the start. This re-
sults in a Q(T) regret in the worst case. Introducing
randomness in the rewards doesn’t change this obser-
vation: the result of a numerical experiment shown in
Figure 1 suggests a Q(T') regret on using UCBI1 for
a two-armed bandit problem with both arms having
Bernoulli rewards with mean 0.5.

This observation suggests that any good policy must,
at some point, stop exploring and permanently com-
mit to a single arm. A natural candidate is the ba-
sic explore-then-commit (ETC) strategy, which uni-
formly explores all arms until some time that is fixed
in advance, and then commits to the empirically best
arm (Lattimore and Szepesvari, 2018; Slivkins, 2019).
When each arm is chosen (T/K)?/3 times in the ex-
ploration phase, this strategy can be shown to achieve
a regret of O(K'/3T?/3,/logK) relative to the sum

objective (Slivkins, 2019). It is easy to argue that it
achieves the same regret relative to the max objective.
However, this policy is excessively optimized for the
worst case where the means of all the arms are within
(K/T)Y? of each other. When the arms are easier
to distinguish, this policy’s performance is quite poor
due to excessive exploration. For example, consider
a two armed bandit problem with Bernoulli rewards
and means (0.5,0.5 + A), where A > 0. For this fixed
instance, ETC will pull both arms Q(7%/3) times and
hence incur a regret of Q(7T%/3) relative to our max ob-
jective. However, it is well known that UCB1 will not
pull the suboptimal arm more than O(log T'//A?) times
with high probability (Auer et al., 2002) and hence for
this instance, UCB1 will incur an instance-dependent
regret of only O(logT), which could be much smaller
if A is large. Thus, although the worst case regret of
UCB1 is Q(T') due to perpetual exploration, for a fixed
bandit instance, its asymptotic performance is signifi-
cantly better than ETC. This observation motivates us
to seek a practical policy with a graceful dependence
of performance on the difficulty of the bandit instance,
and which will achieve both: the worst-case bound of
ETC and the instance-dependent asymptotic bound of
O(logT).

We propose a new policy with an explore-then-commit
structure, in which appropriately defined confidence
bounds on the means of the arms are utilized to
guide exploration, as well as to decide when to stop
exploring. We call this policy Adaptive Explore-
then-Commit (ADA-ETC). We show that ADA-ETC
adapts to the problem difficulty by exploring less if
appropriate, while attaining the same regret guaran-
tee of O(K/3T2/3,/log K) attained by vanilla ETC in
the worst case (Theorem 3). In particular, ADA-ETC
guarantees an instance-dependent asymptotic regret of
O(logT) as T — oo, matching our instance-dependent
lower bound upto a constant factor. Finally, our nu-
merical experiments demonstrate that ADA-ETC re-
sults in significant improvements over the performance
of vanilla ETC in easier settings, while never perform-
ing worse in difficult ones, thus corroborating our theo-
retical results. Our numerical results also demonstrate
that naive ways of introducing adaptive exploration
based on upper confidence bounds, e.g., simply using
the upper confidence bounds of UCB1, may lead to no
improvement over vanilla ETC for practical values of
T and K.

1.1 Related literature

To the best of our knowledge, the objective we con-
sider in this paper has not been studied before. We
nevertheless note that buried in our objective is the
goal of quickly identifying the arm with approximately
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the highest mean reward so that a substantial amount
of time can be spent earning rewards from that arm
(e.g., “training” a worker). This goal is related to
the pure exploration problem in multi-armed bandits.
Several variants of this problem have been studied,
where the goal of the decision-maker is to either min-
imize the probability of misidentification of the opti-
mal arm given a fixed budget of pulls (Audibert et al.,
2010; Kaufmann et al., 2016; Carpentier and Locatelli,
2016); or minimize the expected number of pulls to
attain a fixed probability of misidentification, possi-
bly within an approximation error (Even-Dar et al.,
2002; Mannor and Tsitsiklis, 2004; Even-Dar et al.,
2006; Karnin et al., 2013; Vaidhiyan and Sundaresan,
2017; Jamieson et al., 2014; Kaufmann et al., 2016); or
to minimize the expected suboptimality (called “sim-
ple regret”) of a recommended arm after a fixed bud-
get of pulls (Bubeck et al., 2009, 2011; Carpentier
and Valko, 2015). Extensions to settings where mul-
tiple good arms are needed to be identified have also
been considered (Bubeck et al., 2013; Kalyanakrish-
nan et al., 2012; Zhou et al., 2014; Kaufmann and
Kalyanakrishnan, 2013). The critical difference from
these approaches is that in our scenario, the budget of
T pulls must not only be spent on identifying an ap-
proximately optimal arm but also on earning rewards
on that arm. Hence any choice of apportionment of
the budget to the identification problem, or a choice
for a target for the approximation error or probabil-
ity of misidentification within a candidate policy, is a
priori unclear and must arise endogenously from our
primary objective.

The fact that focusing on one arm in the long-run is
prudent for our objective makes it seem related to the
line of work on bandits with switching costs, where
there is a cost incurred for switching from one arm to
another (Cesa-Bianchi et al., 2013; Dekel et al., 2014).
Another related line of work is on batched bandits,
which imposes a constraint that the policy must split
the arm pulls into a small number of batches (Perchet
et al., 2016; Gao et al., 2019). However, we note that
our objective does not simply amount to keeping the
number of switches or batches low; it also matters
how “spread apart” the switches are. To enforce this
point, we note that the algorithm of Cesa-Bianchi et al.
(2013), which restricts the number of switches/batches
to O(loglog T) while attaining O(v/T) regret for the
sum objective, incurs a worst-case regret of ©(T') for
our max objective: Figure 1 shows this for K = 2 arms
with Bernoulli(0.5) rewards.

2 Problem Setup

Consider the stochastic multi-armed bandit (MAB)
problem parameterized by the number of arms, which

e Switch
1 < UCB1

Regret
2000 3000
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T
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Figure 1: Expected regret for the max objective under
UCB1 and the algorithm of Cesa-Bianchi et al. (2013),
referred to here as Switch, for K = 2 arms, each with
Bernoulli(0.5) rewards.

we denote by K; the length of the decision-making
horizon (the number of discrete times/stages), which
we denote by T; and the probability distributions for
arms 1,..., K, denoted by vq,...,vg, respectively.
We assume that the rewards are non-negative and their
distributions have a bounded support, assumed to be
[0,1] without loss of generality (although, this latter
assumption can be easily relaxed to allow, for instance,
o-Sub-Gaussian distributions with bounded o). We
define V to be the set of all K-tuples of distributions
for the K arms having support in [0, 1]. Let py, ..., ux
be the means of the distributions. Without loss of
generality, unless specified otherwise, we assume that
p1 > po > -+ > ug for the remainder of the dis-
cussion. The distributions of the rewards from the
arms are unknown to the decision-maker. We denote
v=(v,..,vg)and p = (p1,..., k). We also de-
fine A; = g — p; fori € {1,..., K}.

At each time, the decision-maker chooses an arm to
play and observes a reward. Let the arm played at time
t be denoted as I; and the reward be denoted as X,
where X; is drawn from the distribution vy,, indepen-
dent from the previous actions and observations. The
history of actions and observations at any time ¢ > 2
is denoted as Ht = (Il,Xl, .[2, XQ, PN ,It_l, Xt—l);
and H; is defined to be the empty set ¢. A pol-
icy m of the decision-maker is a sequence of mappings
(71,72, ..., 7r), where 7; maps every possible history
‘H: to an arm I; to be played at time ¢. Let II7 denote
the set of all such policies.

For an arm 4, we denote ni to be the number of times
this arm is played until and including time ¢, i.e., ni =
22:1 I{7,—- We also denote U} to be the reward
observed from the n'" pull of arm i. (U}),e is thus
a sequence of i.i.d. random variables, each distributed
as v;. Note that the definition of U} implies that we
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have X; = U, . We further define Ui 2 Zz;l Ul to

be the cumulatutive reward obtained from arm ¢ until
time t.

Once a policy 7 is fixed, then for all t = 1,...,T, I,
X, and n! for all i € {1,..., K}, become well-defined
random variables. We consider the following notion of
reward for a policy

Ry (m,v) = E(max (Up, U, ..., Uy ). (1)

In words, the objective value attained by the policy
is the expected value of the largest cumulative reward
across all arms at the end of the decision making hori-
zon. When the reward distributions vy,...,vi are
known to the decision-maker, then for a large T, the
best reward that the decision-maker can achieve is

sup Rp(m,v).
wellp

A natural candidate for a “good” policy when the re-
ward distributions are known is the one where the
decision-maker exclusively plays arm 1 (the arm with
the with the highest mean), attaining an expected re-

ward of p1T. Let us denote R}.(v) = w1 T. One can
show that, in fact, this is the best reward that one can
achieve in our problem.

Proposition 1. For any bandit instance v € V,
SUprer, Rr(mv) =Ry (v).

The proof is presented in Section A in the Appendix.
This shows that the simple policy of always picking the
arm with the highest mean is optimal for our problem.
Next, we denote the regret of any policy 7 to be

Regr(m,v) = sup Rr(m,v) — Ry(m,v).
wellp

In the rest of the paper, we focus on two objectives.
The first is to design a policy wp € Iy, which attains
an asymptotically optimal instance-dependent (i.e., v
dependent) bound on Regy (7, v), simultaneously for
(almost) all instances v € ¥V as T — oo. The second
objective is to design a policy 71 € II7, which achieves
the smallest regret in the worst-case over all distribu-
tions v € V, i.e., the one that solves the optimization
problem:

AN

inf sup Reg,(m, v
nf sup gr(m v),

Reg?
where Reg} denotes the minmaz (or the best worst-
case) regret. In the remainder of the paper, we design
a single policy that attains the first objective to within
a constant factor and the second objective to within a
logarithmic factor.

3 Lower Bounds

We first provide an instance-dependent (logT')
asymptotic lower bound on the regret. We let M
be the set of distributions with support in [0, 1].
For v € M, and p € [0,1], define dins (v, p, M) =
llél/f\/t {D(v,v") : u(v') > p}, where p(v) denotes the

mean of distribution v, and D(v,v’) is the Kullback-
Leibler (KL) divergence between the distributions v
and v'. dins (v, pt, M) is thus the smallest KL diver-
gence between the distribution v and any other distri-
bution in M whose mean is at least u.

We say that a sequence of policies (77)ren, where
mp € Ilp for all T € N, is consistent for a class
Y = MX of stochastic bandits, if for all v € V
such that there is a unique arm with the highest
mean reward, and for any p > 0, we have that
TI;H;O Regp(mr,v)/TP = 0. We then have the following

result.

Theorem 1. Consider a class V = MX of K-armed
stochastic bandits and let (wr)ren be a consistent se-
quence of policies for V. Then, for allv € V such that
the optimal arm is unique,

*

.. . Regp(mr,v) p

liminf ————= > _—
IOg(T) N ik dinf (Viv M*a M)

where k* is the optimal arm with the highest mean p*.

The proof of Theorem 1 is presented in Section B in
the Appendix. The result has an intuitive explana-
tion. For convenience, we denote d; = dint (v4, u*, M).
Similar to the proof of the lower bound for the sum ob-
jective (Lai and Robbins, 1985), we can show that for
any consistent sequence of policies, each suboptimal
arm ¢ must be pulled Q(logT/d;) number of times in
expectation. However, unlike the sum objective where
each such pull yields a mean reward of p; and results in
an expected regret of A;, for the max objective, each
such pull is wasteful and results in an expected regret
of pu*.

Despite this intuitive explanation of the result, the
proof is not straightforward. In particular, showing
that each suboptimal arm ¢ must be pulled logT/d;
times in expectation doesn’t directly allow us to ac-
count for a regret contribution of p* log T'/d; from arm
1. This is because, in the full-information setting, with
a (relatively high) probability of logT/(T'd;), one can
choose to pull a suboptimal arm 4 for all the T" time pe-
riods, thus ensuring that it gets pulled logT'/d; times
in expectation and at the same time resulting in an ex-
pected reward contribution of p; logT/d; and hence a
regret contribution of (u* — ;) log T/d; = A;logT/d;.
To get around this difficulty, we prove a stronger re-
sult: we show that for each a € (0,1], a suboptimal



Training a Single Bandit Arm

arm ¢ must be pulled alog7'/d; times in expectation
until time 7% (Proposition 2 in the Appendix). We
then argue that the probability of a suboptimal arm
being the one with the highest cumulative reward can-
not be too high for any consistent sequence of policies,
and thus the best way to satisfy the stronger set of
lower bounds on the number of pulls for the subop-
timal arms in terms of minimizing regret is to chalk
these pulls as wasted.

We next show that for our objective, a regret of
Q(K/3T?/3) is inevitable in the worst case.

Theorem 2. Suppose that K < T. Then, Regj >
QK —1)Y/372%/3),

The proof is presented in Section C in the Appendix.
Informally, the argument for the case of K = 2 arms
is as follows. Consider two bandits with Bernoulli re-
wards, one with the mean rewards (1/2+1/T%/3,1/2),
and the other with mean rewards (1/2+1/7"/3,1/2+
2/T'/3). Then until time ~ T?/3, no algorithm can
reliably distinguish between the two bandits. Hence,
until this time, either Q(7°%/3) pulls are spent on arm 1
irrespective of the underlying bandit, or Q(72/3) pulls
are spent on arm 2 irrespective of the underlying ban-
dit. In both cases, the algorithm incurs a regret of
Q(T?/3), essentially because of wasting Q(T2/3) pulls
on a suboptimal arm that could have been spent on
earning reward on the optimal arm. This latter argu-
ment is not entirely complete, however, since it ignores
the possibility always picking a suboptimal arm until
time 7', in which case spending time on the suboptimal
arm in the first ~ 72%/3 time periods was not waste-
ful. However, even in this case, one incurs a regret of
~ T x (1/TY3) = Q(T?/3). Thus a regret of Q(T2/3)
is unavoidable. Our formal proof builds on this basic
argument to additionally determine the optimal de-
pendence on K.

4 Adaptive Explore-then-Commit
(ADA-ETC)

We now define an algorithm that we call Adap-
tive Explore-then-Commit (ADA-ETC), specifically
designed for our problem. It is formally defined in Al-
gorithm 1. The algorithm can be simply described as
follows. After choosing each arm once, choose the arm
with the highest upper confidence bound, until there
is an arm such that (a) it has been played at least
T = [T?/3/K?/3] times, and (b) its empirical mean is
higher than the upper confidence bounds on the means
of all other arms. Once such an arm is found, commit
to this arm until the end of the decision horizon.

The upper confidence bound is defined in Equation 2.
In contrast to its definition in UCBI, it is tuned to

Algorithm 1: Adaptive Explore-then-Commit (ADA-
ETC)

Input: K arms with horizon T

Define: Let 7 = [%//ZW For n > 1, let ji}, be the
empirical average reward from arm 4 after n pulls,

ie., ph, =1%" Ul Also, for n > 1, define,

i i /4 T

Also, for t > 1, let n¢ be the number of times arm i is
pulled until and including time t.

Procedure:

e Explore Phase: From time ¢t = 1 until ¢t = K,
pull each arm once. For K <t < T

1. Identify L; € arg max;c|g) LCB:L;-_17 breaking
ties arbitrarily. If

LCB', > max UCB, |, (4)

nty T Ge[K]iAL

then define i* 2 L, break, and enter the
Commit phase. Else, continue to Step 2.

2. Identify E} € argmax;c(x UCBZLN breaking
ties arbitrarily. Pull arm FEj.

e Commit Phase: Pull arm ¢* until time ¢t = T'.

eliminate wasteful exploration and to allow stopping
early if appropriate. We enforce the requirement that
an arm is played at least 7 times before committing
to it by defining a trivial “lower confidence bound”
(Equation 3), which takes value 0 until the arm is
played less than 7 times, after which both the up-
per and lower confidence bounds are defined to be
the empirical mean of the arm. The stopping crite-
rion can then be simply stated in terms of these upper
and lower confidence bounds (Equation 4): stop and
commit to an arm when its lower confidence bound is
strictly higher than the upper confidence bounds of all
other arms (this can never happen before 7 pulls since
the rewards are non-negative).

Note that the collapse of the upper and lower confi-
dence bounds to the empirical mean after 7 pulls en-
sures that each arm is not pulled more than 7 times
during the Explore phase. This is because choosing
this arm to explore after 7 pulls would imply that its
upper confidence bound = lower confidence bound is
higher than the upper confidence bounds for all other
arms, which means that the stopping criterion has
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been met and the algorithm has committed to the arm.

Remark 1. A heuristic rationale behind the choice of
the upper confidence bound is as follows. Consider a
suboptimal arm whose mean is smaller than the high-
est mean by A. Let P. be the probability that this
arm is misidentified and committed to in the Com-
mit phase. Then the expected regret resulting from this
misidentification is approximately P.AT. Since we
want to ensure that the regret is at most O(T?/3K1/3)
in the worst-case, we can tolerate a P. of at most
~ K3 /(ATY/3). Unfortunately, A is not known to
the algorithm. However, a reasonable proxy for A
is 1/\/n, where n is the number of times the arm
has been pulled. This is because it is right around
n ~ 1/A%, when the distinction between this arm and
the optimal arm 1is expected to occur. Thus a good
(moving) target for the probability of misidentifica-
tion is 0, ~ (K'/3n/2)/T'/3. This necessitates the
V1og(1/6,) =~ +/log(T/(Kn3/2)) scaling of the con-
fidence interval in Equation 2. In contrast, our nu-
merical experiments show that utilizing the traditional
scaling of \/log T as in UCBI1 results in significant per-
formance deterioration. Qur tuning is reminiscent of
similar tuning of confidence bounds under the *

sum”
objective to improve the performance of UCB1; see Au-
dibert and Bubeck (2018); Lattimore (2018); Auer and
Ortner (2010).

Remark 2. Instead of defining the lower confidence
bound to be 0 until an arm is pulled T times, one may
define a non-trivial lower confidence bound to acceler-
ate commitment, perhaps in a symmetric fashion as
the upper confidence bound. However, this doesn’t lead
to an improvement in the regret bound. The reason
is that if an arm looks promising during exploration,
then eagerness to commit to it is imprudent, since if it
is indeed optimal then it is expected to be chosen fre-
quently during exploration anyway; whereas, if it is
suboptimal then we preserve the option of eliminat-
ing it by choosing to not commit until after T pulls.
Thus, to summarize, ADA-ETC eliminates wasteful
exploration primarily by reducing the number of times
suboptimal arms are pulled during exploration through
the choice of appropriately aggressive upper confidence
bounds, rather than by being hasty in commitment.

Let ADA-ETCg 1 denote the implementation of
ADA-ETC using K and T as the input for the number
of arms and the time horizon, respectively. We charac-
terize the regret guarantees achieved by ADA-ETCg 1
in the following result.

Theorem 3 (ADA-ETC). Let K < T. Consider a
v € V such that the optimal arm is unique and relabel
arms so that py > po > -+ > pg. Then the expected

regret of ADA-ETCg 1 is upper bounded as:'

RegT (ADA—ETCK T, I/)

K

< mw Z min (k;, 7) + 17 Zmln
=2

Regret contribution from wasted pulls in the Explore phase

n Z exp(— 320K

TA3 )
K]
Regret contribution from misidentification in the Commit phase

648K
TA3 )

TA,;

)

T2/3
K2/3

)+A2 log™ ( TA

]7Ai:A¢*Ai_1 and k; = 3% +

where T = | A2

log (

we have

) In the worst case,

sup Regy(ADA-ETCk 7, v) < O(KY/3T%3/log K).
vey

The proof of Theorem 3 is presented in Section D
in the Appendix. Theorem 3 features an instance-
dependent regret bound and a worst-case bound of
O(K'/3T%/3,/log K). The first two terms in the
instance-dependent bound arise from the wasted pulls
during the Explore phase. Under vanilla Explore-then-
Commit, to obtain near-optimality in the worst case,
every arm must be pulled 7 times in the Explore phase
(Slivkins, 2019). Hence, the expected regret from the
Explore phase is Q(K7) = Q(T?/3K'/3) irrespective
of the instance. On the other hand, our bound on this
regret depends on the instance and can be significantly
smaller than K7 if the arms are easier to distinguish.
In particular, for a fixed K and v (with As > 0),
the regret from exploration (and the overall regret) is
O(>",55 1611 log T/A?) under ADA-ETC as opposed
to Q(T?/3K'/3) under ETC as T — oo. This shows
that ADA-ETC attains the instance-dependent lower
bound on regret of Theorem 1 up to a constant factor.

The next two terms in our instance-dependent bound
arise from the regret incurred due to committing
to a suboptimal arm, which can be shown to be
O(K'/317?/3,/logK) in the worst case, thus match-
ing the guarantee of ETC. The first of these terms is
not problematic since it is the same as the regret aris-
ing under ETC. The second term arises due to the in-
evitably increased misidentifications occurring due to
stopping early in adaptive versions of ETC. If the con-
fidence bounds are aggressively small, then this term
increases. In ADA-ETC, the upper confidence bounds
used in exploration are tuned to be as small as pos-
sible while ensuring that this term is no larger than
O(K'/3T?/3) in the worst case (see Remark 1). Thus,

"We define log™ (a) = log(max(a, 1)) for a > 0.
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our tuning of the Explore phase ensures that the per-
formance gains during exploration does not come at
the cost of higher worst-case regret (in the leading-
order) due to misidentification.

Remark 3. It is possible to show that using the con-
fidence bounds of UCB1 under ADA-ETC results in
the same asymptotic instance-dependent regret bound
of O(logT') and an instance-independent regret bound
of O(K'Y/3T?%/3\/log K) in the worst case. However,
for fited T and K, the bounds derived for ADA-ETC,
as defined, have an improved dependence on the in-
stance owing to the reasons mentioned in Remark 1.
As we shall see in Section 5, this results in signifi-
cant performance gains for practical values of T and
K. Optimizing finite T performance is particularly im-
portant, since in training applications, the assumption
of skill increments being i.i.d. is not expected to hold
when T is large.

5 Experiments

Benchmark Algorithms. We compare the perfor-
mance of ADA-ETC with five algorithms described
in Table 1. UCBI1 never stops exploring and pulls
the arm with the highest upper confidence bound at
each time step, while ETC pulls arms in a round-robin
fashion and commits to the arm with the highest em-
pirical mean after each arm has been pulled 7 times.
NADA-ETC and UCBI1-s have the same algorithmic
structure as ADA-ETC: they explore based on upper
confidence bounds and commit if the lower confidence
bound of an arm rises above upper confidence bounds
for all other arms. They differ from ADA-ETC in how
the upper and lower confidence bounds are defined.
Both NADA-ETC and UCB1-s use UCB1’s upper con-
fidence bound, but they differ in their lower confidence
bounds. These definitions are presented in Table 1.

SUCC is an adaptation of the well-known “succes-
sive elimination” algorithm of Even-Dar et al. (2006)
for best-arm identification, which finds the best arm
within a probability of error of ¢ in a sample efficient
manner. This algorithm proceeds in rounds and sam-
ples every active arm once in each round, eliminating
arms based on their empirical performance. In our
adaptation, we set § = (K/T)'/? so that the expected
regret in case of failure is at most 67 = T2/3K'/3
in the worst-case. We further force the algorithm to
commit to the an active arm with the highest empirical
mean after 7 rounds have elapsed.

Instances. We let v; ~ Bernoulli(y;), where p; is
uniformly sampled from [a, 1 — a] for each arm in each
instance. We sample two sets of instances, each of size
500, with « € {0,0.4}. The regret for an algorithm
for each instance is averaged over 500 runs to estimate

Table 1: Benchmark Algorithms

UCB}, = i, + 1/ 4108 (=575 ) 1 ner)

ADA-ETC : ‘ :
LCB;, = fi;, — Bplin<ry
NADA-ETC UCB;L = ﬂzl + \/. % log (T)]l{n<7-}
LCB,, = [, — fpl{n<r}
UCB!, = *
succ LOBY — «
UCB:L = %
BTC LCB!, = *
UCBL UCB_; = fl, + 4/ 2 log (T)
LCB!, = x

UCBl1-s UCB::IL = /sz + \V % log (T)]l{"<f}
LCB; = ﬁiL Y % log (T)]l{n<'r)

the expected regret. We vary K € {2,5,10, 15,20, 25}
and T € {100, 200, 300,400, 500}. The average regret
over the 500 instances under different algorithms and
settings is presented in Figure 2 and Figure 3.

Discussion. ADA-ETC shows the best performance
uniformly across all settings, although there are set-
tings where its performance is similar to ETC. As an-
ticipated, these are settings where either (a) o = 0.4,
in which case, the arms are expected to be close to
each other and hence adaptivity in exploring has lit-
tle benefits, or (b) T/K is relatively small, due to
which 7 is small. In these latter situations, the ex-
ploration budget of 7 is expected to be exhausted for
almost all arms under ADA-ETC, yielding in perfor-
mance similar to ETC, e.g., if K = 25 and T = 100,
then 7 = [4%/%] = 3, i.e., a maximum of only three
pulls can be used per arm for exploring. When « is
smaller, i.e., when arms are easier to distinguish, or
when 7 is large, the performance of ADA-ETC is sig-
nificantly better than that of ETC. This illustrates the
gains from the adaptivity of exploration under ADA-
ETC.

Furthermore, we observe that the performances of
SUCC, UCB1-s and NADA-ETC are essentially the
same as ETC for the ranges of T and K we con-
sider.?2 This important observation suggests that
naively adding adaptivity to exploration, e.g., based
on UCBI’s upper confidence bounds, may not im-
prove upon the performance of ETC in finite param-
eter settings, and appropriate refinement of the confi-
dence bounds is crucial to the gains of ADA-ETC in
these settings. Finally, we note that UCB1 performs
quite poorly, thus demonstrating the importance of
introducing an appropriate stopping criterion for ex-
ploration.

2Further experiments show that increasing T results in
UCBI1-s and NADA-ETC eventually outperforming ETC
as well as SUCC.
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Figure 2: Performance comparison of ADA-ETC for vary-
ing values of T'. The performances of SUCC, UCB1-s and
NADA-ETC are identical to ETC.

6 Conclusion and Future directions

In this paper, we proposed and offered a near-tight
analysis of a new objective in the classical stochastic
MARB setting, of optimizing the expected value of the
maximum of cumulative rewards across arms. From a
theoretical perspective, although the current analysis
of ADA-ETC is tight, it is unclear whether the extra-
neous (compared to the lower bound) /log K factor
from the upper bound can be eliminated via a more
refined algorithm design. Additionally, our assump-
tion that the rewards are i.i.d. over time, while ap-
propriate for the application of qualifying an attractor
product for e-commerce platforms, may be a limitation
in the context of worker training, especially in settings
where the number of training jobs available is large. It
would be interesting to study our objective in settings
that allow rewards to decrease over time; such mod-
els, broadly termed as rotting bandits (Heidari et al.,
2016; Levine et al., 2017; Seznec et al., 2019), have
attracted recent focus in literature as a part of the
study of the more general class of MAB problems with
non-stationary rewards (see, for instance, Besbes et al.
(2014, 2019)). This literature has so far only focused
on the traditional sum objective.

More importantly, our paper presents the possibility of
studying a wide variety of new objectives under exist-

© ADA-ETC * NADA-ETC e UCB1 10 © ADA-ETC ¢ NADA-ETC  UCB1
* ETC * SUCC * UCB1-s * ETC * Succ * UCB1-s

2 5 10 15 20 25 2 5 10 15 20 25
K

(a) T =100, a =0 (b) T =100, a = 0.4

400

Regret
Regret

© ADA-ETC * NADA-ETC e UCB1

© ADA-ETC ¢ NADA-ETC e UCB1

« ETC * Succ * UCB1-s * ETC » SuCC * UCB1-s
2 5 10 15 20 25 2 5 10 15 20 25
K

(c) T =500, a =0 (d) T =500, a = 0.4

Figure 3: Performance comparison of ADA-ETC for vary-
ing values of K. The performances of SUCC, UCB1-s and
NADA-ETC are identical to ETC.

ing online learning setups motivated by training appli-
cations, where the traditional objective of maximizing
the total rewards is inappropriate. A natural gener-
alization of our objective is the optimization of other
functionals of the vector of cumulative rewards, e.g.,
maximizing the m*" highest cumulative reward, which
is relevant to online labor platforms as we mentioned
in the Section 1, or the optimization of £P norm of
the vector of cumulative rewards for p > 0, which has
natural fairness interpretations in the context of hu-
man training (the traditional objective corresponds to
the £! norm, while our objective corresponds to the
L% norm). More generally, one may consider multi-
ple skill dimensions, with job types that differ in their
impact on these dimensions. In such settings, a simi-
lar variety of objectives may be considered driven by
considerations such as fairness, diversity, and focus.

References

Agrawal, R. (1995). Sample mean based index poli-
cies with O(log n) regret for the multi-armed ban-
dit problem. Advances in Applied Probability, pages
1054-1078.

Audibert, J.-Y. and Bubeck, S. (2018). Minimax poli-
cies for adversarial and stochastic bandits.

Audibert, J.-Y., Bubeck, S., and Munos, R. (2010).



Training a Single Bandit Arm

Best arm identification in multi-armed bandits. In
COLT, pages 41-53.

Auver, P.; Cesa-Bianchi, N., and Fischer, P. (2002).
Finite-time analysis of the multiarmed bandit prob-
lem. Machine learning, 47(2-3):235-256.

Auer, P. and Ortner, R. (2010). Ucb revisited: Im-
proved regret bounds for the stochastic multi-armed
bandit problem. Periodica Mathematica Hungarica,
61(1-2):55—-65.

Besbes, O., Gur, Y., and Zeevi, A. (2014). Stochastic
multi-armed-bandit problem with non-stationary re-
wards. In Advances in neural information processing
systems, pages 199-207.

Besbes, O., Gur, Y., and Zeevi, A. (2019). Opti-
mal exploration—exploitation in a multi-armed ban-
dit problem with non-stationary rewards. Stochastic
Systems, 9(4):319-337.

Bubeck, S. and Cesa-Bianchi, N. (2012). Regret analy-
sis of stochastic and nonstochastic multi-armed ban-
dit problems. arXiv preprint arXiv:1204.5721.

Bubeck, S., Munos, R., and Stoltz, G. (2009). Pure ex-
ploration in multi-armed bandits problems. In Inter-
national conference on Algorithmic learning theory,
pages 23-37. Springer.

Bubeck, S., Munos, R., and Stoltz, G. (2011).
Pure exploration in finitely-armed and continuous-

armed bandits.  Theoretical Computer Science,
412(19):1832-1852.

Bubeck, S., Wang, T., and Viswanathan, N. (2013).
Multiple identifications in multi-armed bandits.
In International Conference on Machine Learning,
pages 258-265.

Carpentier, A. and Locatelli, A. (2016). Tight (lower)
bounds for the fixed budget best arm identification
bandit problem. In Conference on Learning Theory,
pages 590-604.

Carpentier, A. and Valko, M. (2015). Simple regret
for infinitely many armed bandits. In International
Conference on Machine Learning, pages 1133-1141.

Cesa-Bianchi, N., Dekel, O., and Shamir, O. (2013).
Online learning with switching costs and other adap-
tive adversaries. In Advances in Neural Information
Processing Systems, pages 1160-1168.

Dekel, O., Ding, J., Koren, T., and Peres, Y. (2014).
Bandits with switching costs: T 2/3 regret. In Pro-
ceedings of the forty-sixth annual ACM symposium
on Theory of computing, pages 459-467. ACM.

Even-Dar, E., Mannor, S., and Mansour, Y. (2002).
Pac bounds for multi-armed bandit and markov
decision processes. In International Conference
on Computational Learning Theory, pages 255-270.
Springer.

Even-Dar, E., Mannor, S., and Mansour, Y. (2006).
Action elimination and stopping conditions for
the multi-armed bandit and reinforcement learning
problems. Journal of machine learning research,

7(Jun):1079-1105.

Gao, Z., Han, Y., Ren, Z., and Zhou, Z. (2019).
Batched multi-armed bandits problem. arXiw
preprint arXiw:1904.01763.

Gourville, J. T. and Soman, D. (2005). Overchoice and
assortment type: When and why variety backfires.
Marketing science, 24(3):382-395.

Heidari, H., Kearns, M. J., and Roth, A. (2016). Tight
policy regret bounds for improving and decaying
bandits.

Jamieson, K., Malloy, M., Nowak, R., and Bubeck, S.
(2014). lil'uch: An optimal exploration algorithm
for multi-armed bandits. In Conference on Learning
Theory, pages 423—-439.

Kalyanakrishnan, S., Tewari, A., Auer, P., and Stone,
P. (2012). Pac subset selection in stochastic multi-
armed bandits. In Proceedings of the 29th Inter-
national Coference on International Conference on
Machine Learning, pages 227-234.

Karnin, Z., Koren, T., and Somekh, O. (2013). Almost
optimal exploration in multi-armed bandits. In In-
ternational Conference on Machine Learning, pages
1238-1246.

Kaufmann, E., Cappé, O., and Garivier, A. (2016). On
the complexity of best-arm identification in multi-
armed bandit models. The Journal of Machine
Learning Research, 17(1):1-42.

Kaufmann, E. and Kalyanakrishnan, S. (2013). In-
formation complexity in bandit subset selection. In
Conference on Learning Theory, pages 228-251.

Lai, T. L. and Robbins, H. (1985). Asymptotically ef-
ficient adaptive allocation rules. Advances in applied
mathematics, 6(1):4-22.

Lattimore, T. (2018). Refining the confidence level for

optimistic bandit strategies. The Journal of Ma-
chine Learning Research, 19(1):765-796.

Lattimore, T. and Szepesvari, C. (2018). Bandit algo-
rithms. preprint.

Levine, N., Crammer, K., and Mannor, S. (2017). Rot-
ting bandits. In Advances in neural information pro-
cessing systems, pages 3074-3083.

Mannor, S. and Tsitsiklis, J. N. (2004). The sample
complexity of exploration in the multi-armed bandit
problem. Journal of Machine Learning Research,

5(Jun):623-648.

Perchet, V., Rigollet, P., Chassang, S., Snowberg, E.,
et al. (2016). Batched bandit problems. Annals of
Statistics, 44(2):660-681.



Eren Ozbay, Vijay Kamble

Settle, R. B. and Golden, L. L. (1974). Consumer
perceptions: Overchoice in the market place. ACR
North American Advances.

Seznec, J., Locatelli, A., Carpentier, A., Lazaric, A.,
and Valko, M. (2019). Rotting bandits are no harder
than stochastic ones. In The 22nd International
Conference on Artificial Intelligence and Statistics,

pages 2564-2572.

Slivkins, A. (2019). Introduction to multi-armed ban-
dits. arXiv preprint arXiv:1904.07272.

Vaidhiyan, N. K. and Sundaresan, R. (2017). Learning
to detect an oddball target. IEEE Transactions on
Information Theory, 64(2):831-852.

Zhou, Y., Chen, X., and Li, J. (2014). Optimal
pac multiple arm identification with applications to
crowdsourcing. In International Conference on Ma-
chine Learning, pages 217-225.



