
Sketch based Memory for Neural Networks

A Theoretical Analysis

Let D = {(xi, yi)}Ni=1 be the set of (key, value) pairs, where xi and yi are i.i.d. samples of two independent
distributions. Assume xi’s and yi’s are random variables uniformly chosen from {0, 1}l. Let W denote the vector
of trained parameter of the neural network without the memory and n = |W | the dimension of W . Note that
after training W is a random variable that depends on xi and yi’s.

Claim A.1. Without neural memory problems 1.1, 1.2 with N key,value pairs from the above distribution cannot
be learnt with accuracy better than O(

√

n/N)

Proof sketch. Let g(x,w) be the function defined by the neural network, where x is the argument for the input,
and w is the argument for the weight. Let ŷi = g(xi,W) be the prediction from the neural network. Simple
information theoretical argument shows that 1

N

∑N
i=1 I(yi, ŷi) ≤ 1

N

∑N
i=1 I(yi;W) ≤ H(W)

N , where I is the mutual
information and H is the entropy function.

Since the n weight parameters are represented using some finite bit precision, H(W) ≤ O(n) Therefore the
average mutual information between prediction and true value is bounded by O(n/N), from which one can show
the accuracy is bounded by O(

√

n/N). See App. B for the full proof.

Let E denote the N × d matrix denoting the outputs of the LSH layer for N keys. The entries of E are obtained
from entries of memory contents N × s matrix Z by a linear transform involving the sketching matrices R1, .., Rk

and the LSH hash indices. We will also assume that the keys are random and long enough so that the hash
buckets are uniform random and independent (this is true in the hyperplane LSH for example if we use orthogonal
hyperplanes). The following claim (proven in App. C) shows that any E can be obtained by inverting this linear
transform to get a suitable Z and solving for it is a well conditioned problem (note that the condition number for
matrix A is the ratio of its largest to the smallest singular value of AtA).

Claim A.2. Let RB denote the linear transform that transforms entries in Z to entries in E (think of Z,E
flattened into a single vector). With high probability, Rt

B has condition number at most O(logN) (under reasonable
assumptions). Hence for any loss function L, ∇ZL is 0 iff ∇ZE is 0.

Proof sketch. To get the intuition consider the case when s = d = 1; that is, the values stored in the buckets
are one dimensional and the random matrices R1, .., Rk are 1 × 1 that are essentially scalars. In this case Rt

B

can also be viewed as a bipartite graph with N nodes on the left (corresponding to keys) and M nodes on the
right (corresponding to buckets) and Nk edges (corresponding to the hash lookups). The degree on the left nodes
is k and by a balls and bins argument we can bound the maximum degree on the right by O(logN) with high
probability (see for example Raab and Steger (1998)). Given this sparse random structure we can lower bound
|Rt

Bx|22/|x|22 by k/2 and upper bound it by O(k logN) giving a condition number bound of O(logN)

Claim A.3. With one layer of neural memory followed by a single linear layer denoted by matrix A ∈ R
d×l

problem 1.1, can be learnt using memory of size M = Ω(Nk logN), k = Ω(logN), sk = Ω(d) assuming At is well
conditioned through out the gradient descent training. Further with gradient descent one can achieve an error
below ǫ in O(κ logN log(1/ǫ)) steps where κ is a bound on the condition number of At.

Proof. Assume first for simplicity that there is no collision in the k LSH buckets for a certain key xi from any
other key and that At is fixed and well conditioned. Denote the corresponding value vector yi ∈ R

d. Then we are
training the vectors of entries in the k the LSH buckets, denoted by zh1(xi), ..., zhk(xi), or zh1

, ..., zhk
for brevity.

The output is ŷ = A(R1zh1
+ ...+Rkzhk

), where Ri are random sketching matrices. The loss is measured by

|yi −A(R1zh1
+ ...+Rkzhk

)|22,

where |v|2 is the 2-norm of vector v. Let zb denote a single vector obtained by concatenating zh1
, ..., zhk

and Rb

denote a single matrix obtained by stacking R1, .., Rk horizontally. Then ŷ = Rbzb and Rt
b is well conditioned as

it is a sufficiently rectangular random matrix when sk ≥ Ω(d) (see Rudelson and Vershynin (2009)). Since this
loss function is strongly convex, in a gradient descent minimization the loss goes below ǫ in O(κ log(1/ǫ)) steps
for that key,value pair, (Boyd and Vandenberghe, 2004).

Even if there may be collisions, we look at the matrix Ŷ of all outputs by stacking together the outputs ŷ for all keys.
Let ŷB , eB , zB denote the flattened version of Ŷ , E, Z into single column vectors. ThenŷB = ABeB = ABRBzB

Rina Panigrahy, Xin Wang, Manzil Zaheer

where AB is a block diagonal matrix with N copies of A along the diagonal and so At
B is well conditioned. From

Lemma 3.2 the Rt
B has condition number at most O(logN) with high probability. Therefore (ABRB)

t has
bounded condition number. Even if A is allowed to be trained, the above argument holds as long as At is well
conditioned throughout the gradient descent.

Claim A.4. The LSH hash function maps the fuzzy keys in a ball B(x, ǫ) into at most NO(ǫ) hash buckets. Thus
with neural memory, an instance of problem 1.2 with N fuzzy keys can be viewed as an instance of problem 1.1
with at most O(N1+O(ǫ)) (key, value) pairs.

Proof. In the fuzzy (key, value) lookup problem instead of using a fixed key x, the query key is a random point r
from a ball B(x, ǫ). The main idea is that even though the number of possible keys in B(x, ǫ) may be large, the
number of hash buckets they get mapped to is bounded and at most NO(ǫ) – this is proven by bounding the
entropy of the distribution of the hash bucket-id h(r) (for any one of the LSH hash functions h) given x to be
at most log(NO(ǫ)) based on the the ideas in (Panigrahy, 2006). Specifically we can obtain the bound for the
entropy I = H(h(r)|x) ≤ O(ǫ logN). The number of buckets that cover a significant fraction of B(xi, ǫ) is at
most 2I . For any one random hyperplane w Lemma 3 in (Panigrahy, 2006) shows that H(sgn(r · w)|x)) ≤ O(ǫ)
which implies that from logm random hyperplanes I = H(h(r)|x)) ≤ O(ǫ logm) = O(ǫ logN). Lemma 2 in
(Panigrahy, 2006) shows that 2I = 2H(h(r)|x) = NO(ǫ) buckets cover more than 1/I fraction of the ball. So by
using k > Õ(1/I) = O(1/ǫ) LSH functions, with high probability most of each of the balls are covered. See the
proof of Theorem 4 in in (Panigrahy, 2006) for the details. Therefore, the problem of N fuzzy (key, value) pairs
essentially breaks down to a problem of N1+O(ǫ) (bucket-id, value) pairs via the LSH hash functions.

Claim A.5. Running gradient descent using an embedding table of size N and the rest of the network of size n is
equivalent to running gradient descent with a neural memory of size O(Nk) and the same network initialization in
the following sense: there is a one to one correspondence between parameter values in the two cases and a critical
point of the first case is also a critical point of the second case, and vice versa.

Proof. N is the size of the vocabulary corresponding to the embedding table. We will argue that training with
an embedding layer is equivalent to training with neural memory access at the first layer. For simplicity first
assume all the Nk buckets for the N words are distinct. In this case, we can interpret the output value of the
memory layer

∑k
j=1Rjzhj

to the embedding entry for a lookup word, this is because in the back propagation,
the gradient coming above the summation node can be viewed as the gradient coming to the embedding entry ei
in the case when there was an actual embedding layer. Even if there may be collisions, let E denote the N × k
matrix of embeddings obtained for the N words based on the hash the lookups into Z. The transform of entries
from Z to E is linear and that linear transform has condition number at most O(logN) with high probability
(see Lemma 3.2) Therefore, ∇ZL = 0 iff ∇EL = 0.

A.1 LSH as Kernel

Consider one layer of the LSH memory that stores scalar values at each bucket and on an input simply outputs
the sum of the values stored in the retrieved hash buckets. We will show that by storing a scalar value zi in the
ith hash bucket, one can view the LSH table as a kernel that projects x into a k-sparse M dimensional vector
that indicates the buckets an input is mapped to. If we just take the sum of the zi values stored in the retrieved
buckets we get the function f(x) =

∑k
j=1 zhj(x) = z · Φ(x), a dot product of vectors z,Φ(x) where z is the vector

of values in the hash table and Φi(x) is the indicator bit that x get mapped to i under one of the k hash functions.

Let p(x, x′) denote the probability that x, x′ get mapped to the same bucket under random W . If x, x′ differ
by angle θ then for the hyperplane LSH p(x, x′) is the probability that none of the logm hyperplanes separate
the points (recall m is the size of each hash table), which is ψ(θ) = (1 − θ/π)logm ≈ m− ln e/π.θ. Note that
E[Φ(x) · Φ(x′)]/k = p(x, x′)

Thus this LSH kernel maps to the kernel K(x, x′) = (1 − arccos(x.x′)/π)logm. Thus the kernel function has a
Taylor expansion given by (1− arccos(x)/π)logm. Based on methods from (Arora et al., 2019; Du et al., 2019)
this can be used to show that even just one layer of LSH memory with a linear output node can learn polynomials
– it can learn (α.x)p (α is some unit vector) with generalization error O(

√

mp2/n) for large enough k, where n is

Sketch based Memory for Neural Networks

the number of training examples. Note that if the number of training examples n≫ mp2 this is negligible (see
App. A.1).

Claim A.6. The LSH lookup can be viewed as a kernel transform with kernel function K(x, x′) = P (x · x′) where
P (t) = (1− arccos(t)/π)logm represents a kernel function. The coefficient of tp is at least Ω(1

mp2)

Proof. First note

1− arccos(t)

π
= 1− π/2− arcsin t

π
=

1

2
+

arcsin t

π
.

So
(

1− arccos(t)

π

)logm

=

[

1

2

(

1 +
2 arcsin t

π

)]logm

=
1

m

(

1 +
2 arcsin t

π

)logm

.

Note arcsin t has a Taylor series t+ 1
2
t3

3 + 1·3
2·4

t5

5 + 1·3·5
2·4·6

t7

7 + This has a radius of convergence of 1, and the
coefficient of tk is at least 1/k2 for odd k. So for (1 + 2 arcsin t/π))logm just from the constant term the same
lower bound on coefficient of odd powers follows. For even powers we can use the linear term from one of the
factors.

As in Arora et al. (2019); Du et al. (2019) we will argue that since a single LSH hash function can be viewed as a
kernel function, if we have a sufficiently large number of such units k we learn any polynomial function. We will
show how to obtain an output yi for input xi that is some scalar function of xi; y is the vector of all yi’s. Let n
denote the number of data points.

Since on an input, certain k buckets out of the mk buckets are accessed, we can represent the set of buckets
accessed as a binary mk dimensional vector h(x) that is 1 wherever the bucket is accessed. Let w denote the
vector of values stored in all the mk buckets. If we just view a single LSH layer, with a linear node at the top
where we simply add up the values stored in the buckets that are accessed, then the output is wth(x) Let h be a
n×mk matrix denoting all the vectors h(x) stacked together as rows for all n data points.

As in Arora et al. (2019); Du et al. (2019) we will argue that for large enough k for fixed randomly chosen LSH

function, if we train the values w stored in the buckets, the generalization error is at most
√

yt(H∞)−1y
n where

H∞ = E[hht]. Note that as k → ∞, hht concentrates to its expected value.

To see this more generally first look at the case when x is one dimensional to get the main point: since the Taylor
series corresponding to K(x, x′) consists of all degrees of (xx′) we can view it as taking dot product in the Kernel
space that maps x to Φ(x) = (1, x, x2, ...,) which is an infinite dimensional Hilbert space. K(x, y) = Φ(x).Φ(y)
(where the dot product operator may weigh different coordinates differently). Now we will argue that for any
distinct set of inputs x1, .., xn the set of vectors Φ(xi) are linearly independent – it’s suffices to prove linear
independence even if we just focus on the first n columns which produces the Vandermonde matrix obtained
by stacking rows 1, x, x, ..., xn−1 for n different values of x – this Vandermonde matrix cannot be singular as
otherwise it would mean that a degree n− 1 polynomial (corresponding to the linear combination of columns
that would give 0) can have n distinct roots x1, .., xn which is impossible. Even if x is multidimensional and all
the values along some dimension are distinct the same reasoning holds as we can ignore the other dimensions in
Φ(x). The same reasoning applies even if x is multidimensional as long as their projection along some direction is
distinct for all the n points as we can rotate the coordinate system accordingly. Now if all the points are distinct
and far apart from each other, probability that a given pair coincides under a random projection is negligible and
from a union bound the probability that any pair coincide is also bounded – so there must be directions so that
projections along that direction are all distinct. For large enough k, (hht)−1 approaches (H∞)−1

If we are only training the vector w then it becomes a linear problem and given by a w s.t. hw = y. Let us assume
that k is large enough so that hht is close enough to H∞ and is invertible.

Lemma A.7. If we train the weights w stored in the LSH buckets, then there exists a solution w with norm
yt(hht)−1y

Rina Panigrahy, Xin Wang, Manzil Zaheer

Proof. The minimum norm solution to this is given by w = (hth)−1hty The norm wtw of this solution is given by
yth(hth)−2hty

We claim that h(hth)−2ht = (hht)−1 To show this, we use the SVD. Let h = USV th(hth)−2ht =
USV t(V S2V t)−2V SU t = USV tV S−4V tV SU t = US−2U t = (hht)−1

Therefore, the norm of the minimum norm solution is yt(hht)−1y.

For large enough k, (hht)−1 approaches (H∞)−1 – if we assume that the lowest eigenvalue λmin(H
∞) ≥ λ0 then

the difference becomes negligible with high probability for large k = poly(n/λ0). As in proof of Theorem 6.1 in
Arora et al. (2019) if y = (α.x)p (α is some unit vector), ytH∞y = O(mp2) as the coefficient of (x.y)p in the

Taylor series is 1/O(mp2). Based on this the Rademacher complexity of this function class is at most
√

yt(H∞)−1y
n .

which is at most
√

mp2/n

B Proof of claim 3.1

We give the full proof to claim 3.1 in this section.

Proof. It is sufficient to assume that the values are just one dimensional random bits. Let g(x,w) be the function
defined by the neural network, where x is the argument for the input, and w is the argument for the weight. Let
ŷi = g(xi,W) be the prediction from the neural network. We have

I(yi, ŷi) = I(yi, g(xi,W)) ≤ I(yi, (xi,W)) = I(yi,W) (1)

where the first inequality follows from data processing inequality and the last equality is due to the independence
of xi and yi.

Now consider

I(y1, y2, ..., yN ;W) =

N
∑

i=1

I(yi;W |yi−1, yi−2, ..., y1)

≥
N
∑

i=1

I(yi;W).

By definition

I(y1, .., yN ;W) ≤ H(W).

Suppose the weight of the neural network is saved in a data structure of b bits (say, b = 32), then the total
number of possible W ’s is 2bn, and hence H(W) ≤ log2(2

bn) = bn.

Therefore we get

I(y1, ..., yN ;W) ≤ bn⇒
N
∑

i=1

I(yi;W) ≤ bn (2)

Combine (1) and (2), we get

1

N

N
∑

i=1

I(yi, ŷi) ≤
1

N

N
∑

i=1

I(yi;W) ≤ bn

N
. (3)

Sketch based Memory for Neural Networks

Suppose P (ŷi = yi) = p = 1
2 + 1

2q, then

I(yi, ŷi) = H(yi)−H(yi|ŷi) = H(1/2)−H(p)

= 1 + p log p+ (1− p) log(1− p)

= (1/2)((1 + q) log(1 + q) + (1− q) log(1− q))

=
3

2 ln(2)
q2 +

7

12 ln(2)
q4 + ...

≥ 3

2 ln(2)
q2.

Plug into (3), we get

1

N

∑

i

q2i ≤ 2b ln(2)

3

n

N
⇒ 1

N

∑

i

|qi| ≤
√

2b ln(2)

3

√

n

N
,

by convexity of x2 function.

C Condition number of RB

Let Z be a M × s matrix denoting the contents of the LSH memory buckets. Let E denote the N × d matrix
denoting the outputs of the LSH layer for N keys. The entries of E are obtained from entries of Z by a linear
transform involving the sketching matrices R1, .., Rk. Let eB , zB denote flattened versions of E,Z where the rows
are concatenated to get a single column vector. Then eB = RBzB where RB can be viewed as block sparse with
N ×M blocks of size d× s each – for each key xi corresponding to the jth hash function hj there is a block with
value Rj at position hj(xi), i. We will also assume that the keys are random and long enough that all the hash
buckets will be random and independent (this is true in the hyperplane LSH for example if we use orthogonal
hyperplanes). We will now show that the transform RB is well conditioned by bounding the condition number of
Rt

B .

Lemma C.1. With high probability, Rt
B has condition number at most O(logN) as long as M = Ω(Nk logN),

k ≥ Ω(logN), and sk ≥ Ω(d). For any loss function L, ∇ZL is 0 iff ∇ZE is 0.

Proof. To simplify the proof we will assume that s = d = 1 but the same proof holds for larger s, d. In this case
the random matrices R1, .., Rk are 1x1 matrices and can be represented by scalars r1, .., rk RB is a M ×N matrix
that represents how for a key xi, the contents of the M are accessed and linearly combined to obtain a single
value for that key. RB is sparse and for every key xi has value rj at position hj(xi), i. RBz is the vector of values
for each key. output by the LSH layer.

We will upper and lower bound |Rt
Bx|2/|x|2. Rt

B can also be viewed as a bipartite graph with N nodes on the the
left (corresponding to keys) and M nodes on the right (corresponding to buckets) and Nk edges (corresponding to
the hash lookups) – from vector x, xi is supplied into the ith nodes on the left and the values are propagated along
the edges (weighted by edge weight) and accumulated into the buckets giving the vector Rtx. The probability
that hj(xi) collides with another hash function another key is at most kN/M and the expected number out of the
k hash buckets for a given key that see any collisions is k2N/M . If M = Ω(Nk logM) and k = Ω(logN), with
high probability at least k/2 hash buckets for each key are distinct and unique. Since ri are ±1, Rt

Bx will have at
least k/2 entries with magnitude xi corresponding to these unique buckets. So |Rt

Bx|22 ≥ (k/2)|x|22 (we note that
eigenvalues of sparse random graphs have also been studied in Tran et al. (2013); Krivelevich and Sudakov (2003)

To upper bound |Rt
Bx|22 we make use of the fact that the maximum number of colliding keys in a single bucket is

at most O(logNk) = O(logN) w.h.p – this follows from the balls and bins literature that analyses maximum
load when Nk balls are randomly thrown into M ≥ Nk bins (see for example Raab and Steger (1998)). So any
row of RB has at most t = O(logN) non-zero entries. Now from the convexity of the f(x) = x2 function, for any
row r of R, (rx)2 ≤ t

∑

(rixi)
2 ≤ O(logN)

∑

ri 6=0 x
2
i . So |Rx|22 ≤ O(logN)

∑

i,j:Ri,j 6=0 x
2
i = O(logN)k|x|22.

If s, d are more than 1 the same reasoning holds at a block level. Note that if sk ≥ Ω(d) then xi is a block on a
node on the left side of the bipartite graph and sends blocks Rt

1xi, ., R
t
kzk to different hash buckets – and the

total norm of these blocks |Rt
1xi|22 + ..+ |Rt

kxi|22 depends on the norm xi and the condition number of the matrix

Rina Panigrahy, Xin Wang, Manzil Zaheer

[Rt
1, R

t
2, .., R

2
k] obtained by stacking the individual matrices vertically – if sk = Ω(d) this stacked matrix is well

conditioned. The rest of the argument is same as before except that we replace scalar entries in x to a block of
entries in the vector x.

So from back propagation chain rule ∇zBL = Rt
B∇eBL. So ∇ZL is 0 iff ∇EL is 0.

D Experiment Implementation Details

In this section, we provide implementation details. We use Tensorflow/Keras as the deep learning framework.
We use random separating hyper-planes as the LSH function, with random hyper-planes chosen from standard
normal distribution. In all experiments, for simplicity we chose the width of the fully connected dense layer to be
equal to the sketch dimension (which is set to be 50 for most experiments, unless otherwise mentioned). The
modification from standard neural networks to incorporate external memory is mostly minimal. As an example,
the network used for tasks in Section 4.1 is given in Listing 1. Basically the output from each layer is augmented
with retrievals from the memory using the output as the key, before feeding into the next layer. Finally, for all
experiments to train the network, we use Yogi optimizer (Zaheer et al., 2018) with a learning rate of 0.001. We
use β1 = 0.9 for dense parts of the network, but β1 = 0 for the memory block. This makes the gradient update on
the learnable part of memory to be sparse, i.e. only occurs for indices accessed in the current example. Because if
β1 > 0, we might have non-zero momentum even for indices which are not used in the current training example
and would need updating. But updating all of the memory block would slow down training as the memory size
is large. Our choice of β1 = 0 makes the update to be constant time. (Note the second order statistics in Yogi
optimizer has sparse updates even for β2 > 0, unlike Adam. So we can keep β2 > 0 for the memory block.)

1 class SketchMem(tf.keras.Model):
2 def __init__(self , hidden_size , sketch_dim , num_layers =1):
3 super(MemNet , self).__init__ ()
4 self.hidden_size = hidden_size
5 self.sketch_dim = sketch_dim
6 self.layer_list = [tf.keras.layers.Dense(hidden_size) for _ in range(num_layers)]
7 self.memory = SimpleLSHMemory(hidden_size=hidden_size , log_num_buckets =20,

num_hash_fn =5)
8

9 def call(self , x):
10 for l in self.layer_list:
11 x = self.memory(x)
12 x = tf.nn.elu(l(x))
13 return x

Listing 1: Memory network implementation

E Using min-hashes to get a Knowledge graph

So far we assumed that the memory table is indexed by a dense vector. However the key could also be a set (of
objects or sketches). In this case it makes more sense to use min-hash to obtain the bucket id. Further in each
bucket we could store a list of top k most frequent buckets that are accessed with this bucket; thus the similarity
hash table with list now becomes an adjacency list graph which can essentially be viewed as a knowledge-graph.
Now lets say a certain pair of objects (A,B) have been frequently seen together. Now when the object A arises it
would make sense to look up the sketch of the pair (A,B) that would be stored in the bucket corresponding to A
and B and vice versa.

