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This supplementary document contains proofs of the theorems and lemmas in the paper “Uniform Consistency
of Cross-Validation Estimators for High-Dimensional Ridge Regression.” All section and equation numbers in
this document begin with the letter “S” to differentiate them from those appearing in the main paper.

The content of this supplement is organized as follows. In Section S.1, we provide proofs of the constituent
Lemmas 5.1 to 5.4 related to Theorem 4.1 in the main paper, along with the remaining steps to complete the
proof of Theorem 4.1. In Section S.2, we provide proof of the constituent Lemma 5.6 related to Theorem 4.2 in
the main paper, along with the remaining steps to complete the proof of Theorem 4.2. In Section S.3, we list
and prove auxiliary lemmas that we need in other proofs. Finally, in Section S.4, we list useful concentration
results that are used in the proofs throughout.

A table of content for this supplement is collected below for ease of referring.
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S.1 Proofs related to Theorem 4.1

S.1.1 Proof of Lemma 5.1

Recall from Equation (2) that the expected out-of-sample prediction error of the ridge estimator B \ is defined as
Exr(Br) = Eaggo | (0 — 2 B)* | X,y -
Under a well-specified linear response yo = 3 8y + €0, the prediction error can be decomposed as

Err(B)) = E (B0 — Ba) w0 (B0 — B) | Xoy] +E | (80 — Br)Twoso | X,y| +E [ | X,
= (B0 — B\)"(Bo — Br) + 0. (S.1)

Here we used the fact that E[xoeo} = 0 as ¢ is independent of zy. Using the expression of B \ from Equation (1),

the deviation 8y — B can be expressed as
Bo — Bx = o — (XTX/n+ A1) X"y /n
=Bo— (XTX/n+ M) XT(XBy+y— XBo)/n
= (I, — (XTX/n+ ML) " X" X/n)Bo — (X" X/n + A,) " X"e/n.

Note that the first component depends on the signal parameter 3y and the second depends on the error vector €.
Plugging this into (S.1), and denoting X7 X/n by & and Err(ﬂ()\)) by err()), we have the following decomposition
of the prediction error for any A € R:

err(A) = errp(N) + erre(A) + erry (), (5.2)
where erry (), err, (), and err.(\) are the bias, variance, and cross components in the decomposition given by
erry(\) = B (I, — S(E + A,) ) (L, — B(E + A,) 1) bo,
erro(A) = =268 (I, = (5 + ML) V) S(E + ML) X e /n,
erry(A) = €T(X(§3 + )\Ip)JrE(i + ML) XT /n)e/n+ 0.

For any A € (Amin, 00), we establish below that
err.(A) 225 0 (S.3)

under proportional asymptotic limit. The desired decomposition in Lemma 5.1 then follows by plugging conver-
gence in (S.3) into (S.2).

To establish the convergence in (S.3), let us write err.(A) = ale/n where a,, € R™ is a function of X and S,
given by R L
n="2X(E+M)TS(L, — E(E 4+ M) 1) Bo.

We note that for A € (Apin, 00),

lan|?/n = 48T (I, = (& + M) )B(E + ML) P E(E 4+ AL)TS(L, — (8 + A,) ) Bo
< 0||(5 ~ SE+ ALY EE + ML) EE + AL, - SE+ AL
<C,

where the first inequality uses bound on the signal energy from Assumption 4 and the second inequality holds
almost surely for large n by using the facts that |X]| < C(\/7 + 12|, [|[(Z + M) || < (A = Amin) ™! almost
surely for n large enough from Assumption 2 and ||3|| < 7pax from Assumption 3. In addition, € has i.i.d. entries
satisfying Assumption 1. The desired result then follows from application of Lemma S.4.1.
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S.1.2 Proof of Lemma 5.2

We start by writing the GCV risk estimate gev()\) for the ridge estimator from Equation (5) as

yT(In — LA)QZJ/”
(1= tr[Ly]/n)?

gev(N) = (S4)

where Ly is the ridge smoothing matrix. Note that (S.4) is of the form I when Ly = I,, (which happens when

A =0 and X has rank n). In this case, we define the GCV risk estimate as the corresponding limit as A — 0.
We handle this case separately below.

The denominator of (S.4) can be expressed as

1—tr[Ly]/n=1—tr [X(XTX/n+AL,)" X" /n]/n
=1—tr [(XT"X/n+ AL,)* X" X/n]/n.

The numerator of (S.4) can be expressed as

y (I, — Ly)*y/n = (XBo + )" (I, — Ly)*(XBo +¢)/n
= BIYXT(I, — L\)?XBo/n + 288 XT(I,, — Ly)?c/n + T (I, — Ly)*¢/n.

Consider the first term of the numerator expression. The factor X7 (I, — Lx)2X can be expressed as

XT(I, — L))*X = XT (I, = X(XTX/n+ AL,)* X7 /n)* X
= (X" - XTX/n(XTX/n+ M) XT) (X = X(XTX/n+ AL,)TXTX/n)
= (I, - X"X/n(X"X/n+ MX)T)XTX (I, - (XTX/n+ AL,) X" X/n).

Consider the second term of the numerator expression. The factor X7 (I,, — Ly)? can be expressed as

XT(I, — L)) = XT(I, = X(X" X/n + AL,)t X7 /n)?
= (X" = X"X/n(XT"X/n+ M) T XT) (L, - X(X"X/n+ AL,)T X" /n)
= (I, - X" X/n(X"X/n+ AL,) ") X" (I, - X (X" X/n+ A[,)" X" /n)
= (I, - X"X/n(XTX/n+AL,)") (X" = XTX/n(XTX/n+ \,)"TXT)
= (I, - X" X/n(X"X/n+ A,) ") (I, — X" X/n(XTX/n + A ,) ") X™

Consider the third term of the numerator expansion. The factor (I,, — Ly)? can be expressed as

(I — L))? = (In — X(XTX/n+ AL)* XT /n)®

Case when A # 0. The GCV denominator 1 —tr [(X7X/n+AIL,)" X7 X/n]/n # 0 when A # 0. Thus plugging

the denominator and numerator expansions into (S.4) and denoting X7 X/n by &, the GCV risk estimate can
be decomposed as
A A A
gCV(A) — gCVb( ) + gCVc( ) + gCVU( )’ (85)
gevg(A)
where gevy(A), gev, (), and gev,. (M) are the bias-like, variance-like, and cross components in the decomposition
given by

gevy(N) = 8L (1, — £(E + A,) ") E(L, — £ + ML) ") o,
gev,(\) = 267 (I, = S(E + A1) ") X e /n,
gev,(\) = €T (I, = X (8 + ML) XT /n)’e/n,

and gev,(A) is the normalization factor given by

gevy(N) = (1= e[S + AL)T]/n)>.



Similar to the proof of Lemma 5.1, we now establish that
gev, (A) 2250 (S.6)

under proportional asymptotic limit. Let us write gev,.(\) = ble/n where b, € R™ is a function of X and f3
given by
by = 2X (I, — (S + A,)TE)*Bo.
As argued in the proof of Lemma 5.1, for A € (Apin, 00),
bn % /n = 48T (I, — (£ + AL)TE)*S(1, — (£ + AL)TE)* B,
<0||(fp = E+ L))’ T(1, - E+A) )
<C

almost surely for large n, and since ¢ has i.i.d. entries satisfying Assumption 1, the convergence in (S.6) follow
from application of Lemma S.4.1.

Limiting case when A = 0. To handle the case when gcv,(\) can be zero, we note that when A # 0 using
Lemma S.3.2 the components in the decomposition (S.5) can be alternately expressed as

gevy(A) = B3 A2(E + ML) TE(E + M)t o,
gevy(A) = 20281 (S 4+ ML) (S + M) T X e /n,
gev,(\) = el (XXT /n+ ML) T (XXT /n+ A\,) e
gevy(\) = A2 (6[(XXT /n+ AL) ") /n)’.
We can then cancel the factor of A\? and take the limit A — 0 to get the limiting GCV decomposition as

gevy(0) + 8evy (0) + gev, (0)

sev(0) = 20v,(0)

: (S.7)

where the limiting bias-like, variance-like and cross components in the decomposition are given by
gevy, (0) = OTflJrff)Jrﬂo = gi*ﬂo,
gev,(0) = 287 £ 2 X e /n,
gev, (0) = (XX /n)*% /n,
and the limiting normalization can be written as
geva(0) = (tr[S4)/n)”

by noting that tr[(X X7 /n)*] = tr[(XT X /n)*]. As before, let us establish that

gev,(0) 225 0 (S.8)
under proportional asymptotics. We write gcv,.(0) = bl'e/n where b,, € R is a function of X and S, given by

by = 2X 5123,

We note that ||b,[|?/n is almost surely bounded for large n and € contains i.i.d. entries satisfying Assumption 1.
Using Lemma S.4.1, we conclude the convergence.

The desired decomposition in Lemma 5.2 then follows by using the convergences in (S.6) and (S.8) into (S.5)
and (S.7), respectively.
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S.1.3 Proof of Lemma 5.3
We start with gevy (M) and first establish that

BT (I, = S(E+M)NE(L, = (S + M) M) 6o as.

BT (I, = SE+ AN E (L, — S(E + M) H) By — 5 2250. (S.9)
(1 i1 [(Z 4+ AL)TE] /n)

To that end, let B := Byl and break the left-hand side into sum of quadratic forms evaluated at the n
observations as follows:

87 (I = SC+ ML) ) (L, = SC+ M) o = tr [B(I, =SS+ AL)HS (1, = S8 + L) +)
I (I =22+ 2

tr| (I, — S+ M,,)")B(I, - Z(E

= tr [(Ip —BE+ M) B(I, - (S + ALy) Zx.xf/n]
=1

n

- % Ztr [(Ip - i(f} + AIP)+)B(IP - i(f} + >\Ip)+)$¢fﬂ?:|
i=1

1 ~ ~ ~ ~
==Y 2l (1, -S(E+ ML) )B(IL, — S8 + ML) )

n -
=1

The summands z; (I, — S+ M) T)B(I, — sS4+ M) T)a; are quadratic forms where the point of evaluation
z; and the matrix (I, — S(E+ A,)T)B(I, — S(E+ AI,)T) are dependent. To break the dependence, we use the

standard leave-one-out trick and the Sherman-Morrison-Woodbury formula with Moore-Penrose pseudo-inverse
(Meyer, 1973). Let us temporarily call w; := B(I,, — X(X + A,)")z; and proceed as follows:
el (I, = S5 + M\, ") B(I, = S + M) 1)
= w!'(I, = S(E + A\,
=w! (I, — (5= + izl /n)(E_i + M, + zial /n)t)a
a a S 4 ML) Faal 2 )T
— ol (1= St il (S - EoE M Bin W ALY ),
1+ 27 (S_; + AL)* i /n

(E + ML) Tl n(S_; + AL) ) ‘

1+af (S, i+ Al,)txi/n i

_ u}T.T,L —w; (Z + xix; /’I’L) ((il + )\Ip>

(S_i 4 A) Tz —

. +poqT +o
= !z —w] (S +zia] /n) Eos M) wisf IS+ AL,) mz)

( 1+af (S_i+ AL ) ta/n
(S_i + ML) T + (S + ML) T aiaT (S + ML) T /n — (5 + AL) TaiaT /n(S_; 4+ M) T
1+ (Z,Z + M)t /n

— wT:rZ —w; (E,l + z; xT/n)

= T wiT(fJ,-—l—xxT/n)(fJ,z—i—)\I) x
v 1+ 27(S_ + AL)*z;/n
wlz; + wlzx (E—i—)\I Yra/n—wlS_i(S_; + AL )"‘xl—w;fxixf/n(i,i—l—)\fpﬁxi
1+a] (E i + M)t /n

wlT:r—wlTi (§,Z+)\I)
1+a] (Z,Z—i-)\f Yta;/n
Wl (I, = S_4(Si 4+ M) P
142l (S, + AL ») Tz /n
el (I, = S(E+ ML) ) B(L, = (S + AL) D
1+af (S_i + AL p)txi/n




By carrying our similar leave-one-out strategy on the other side, we can further simplify

2T (L, - SE+ M) T)B(L, — S (S, + M) ey al (I, =S (S + ML) D) B(L, — (5, + AL) D,
1427 (S_; + \,) Tz /n (1+2T (S + ML)t ai/n)’ '

We now split the error to the target in (S.9) as follows:

tr [ (I = SC+ M) B(L, - S(E + ML) )3

tr [ (I = SC+ L)) B(L, - S + ML) 1) S| - _ :
(146 [(B+ L) =] /n)

~

(1, ~ S+ AL B, — S (S + L) e |1~ SE L)) BT, ~ SE +L,) )3
(1427 (S, + A\) i /n)’ (1 + 1 [(S 4 ML)+ /n)2

-1y

= e1 + ey, where

P aT (L~ SiEni ALY B(L — Soi(Smi + M) ) B [(Ip—i-i(i-i+Mp)+)B(1p—i—i(i—ﬁﬂp)*)z]

1 7 P —1i —1 P i
€1 = E —
n

i=1 ( + z? T(S_; + AL )+x1/n) (1 + tr [(i_l + A,) T /n)2

1 Zn: tr [(Ip S CL AN B(I, - S (S + Mp)+)z] tr [(Ip —SE+ M) B(I, - S5 + ,\1,,)+)2}
9 = 5 _
- =

= (1 Ftr [(Si + ML) Y] /n) (1 Ftr [(S+ ML) Y] /n)2

In Section S.1.6, we show that both terms e; and es; almost surely approach 0 under proportional asymptotics.

Let us provide some intuition as follows. On one hand, in the error term ey, conditional on X_;, expected value
of T (I, =S _i(S_i + M) T) B(L,— S i (Ss+ ML) T ) is tr [(Ip—fl,i(fl,i+)\Ip)+)B(Ip—i,i(i,ﬁ—)\lp)*)E}
and the expected value of z7 (S_;+ M)z, /n is tr [(ﬁ_i—l—)\l)“‘Z} /n. Because of concentration of these quantities
around their respective expectations rapld enough, the error term e; is almost surely 0. On the other hand, for
€2, tr (L= Si(S i+ ML) ") B(L =S i(Si+ ML) ) %) and tr [ (L, — S(S+AL) ) B(I, - S(S+AL,) ")z, and
tr [(i,l +AI,)TE]/n and tr [(Z + AI,)TX]/n, the matrices involved differ by rank-1 component. The difference
is almost surely 0 in the proportional asymptotic limit. We note that this strategy is similar to the ones used
by, for example, Rubio and Mestre (2011); Ledoit and Peche (2009) to obtain expressions for certain functionals

involving 3 and ¥ in terms of X. The main difference is that the eventual target in our case is defined solely in
terms of ¥ rather than X.

We have so far established that

tr[(Ip = SE+ M) B(L, - SE+ ML) )3

— 0,

e [(1 — SE - M) ) B, - S + 48] - (14 (€ + A0 ] /m)
1+tr|[(Z+A)TE|/n

which after expressing B in terms of Sy and moving the denominator across yields

(1+tr [(§+,\1)+2]/n) BE (I, =SS+ DS (I, = SE ML) ) Bo— AL (I = S(S+AL) S (1, — S(E+ M) ) Bo 255 0.
(S.10)

Case when \ # 0. We now use the A # 0 case of Lemma S.3.1 to get

BT (I, = SE+ AN E(I, — S5+ AL)T) Bo

= B8 (1 = SE 4 M) )20, — SE + M) ) o 225 0
(1 —tr [(E + )\]p)+2] /n)

under proportional asymptotics as desired.
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Limiting case when A = 0. To handle the A = 0 case, we first express I, — Z(E + AT (i +AI,)T when
A # 0 using Lemma S.3.2. We can then move factor of \? from g (I, — E(E + A)T)E(L, — (2 + A,)T) Bo

~ 2
0 (1 4t [(5 4 A)TE] /n) such that

/N

1+tr[(2+M)+z]/n) B (L, — S8 + ALY S(I, — S5 + A,) ) 6o

1+t [( 2+M)+2}/n) A2BT (S + ML) S(E + ML) Bo

(
(A + At [E+ A0ty /n) BT (S + AL)S(E + ALY 5o
()\ +tr [AS + ANt ]/n) BT(S + ML) FE(E + ML) By

- (A +tr [(Ip ~SE+ Mp)+)z] /n)ZﬁoT(i +AL)TS(E + ML) Bo.
Using the above expression in (S.10) and sending A — 0 thus yields

(tr [, ~ SS)5])/n) BYSTEE* 4y - B (1, - ST9)5(L, - £55)8 25 0,

or in other words,

(tr (I, - S54)5)] /n)Qﬂ()TZA]+BO — BL(I, - SSHYS(I, — S5)8, 225 0.
Using Lemma S.3.1 for this case, we then have

BT By
(tr[S+]/n)?

under proportional asymptotics, completing both the cases in Lemma 5.3.

— B3 (I, = E=T)%(I, — £F)80 %5 0

S.1.4 Proof of Lemma 5.4

Case when A # (0. Under proportional asymptotic limit, our goal is to show that

T (In — X(E+ ML) XT /n)’e/n oy

EN(XE+ M) TEE + ML) X n)e/n+ o® — (1t [+ \L,)* 5] /n)” =5 0.

We first note that e”c/n almost surely approaches o from the strong law of large numbers. Thus we can slightly
rephrase our goals to show as

(In = X(S +AL,)* X" /n)*
(1—tr [(S+ AL)*S] /n)?

(X (E+ ML) TEE + ML) XT n) + 1, ] e/n 2 0.

Our main strategy is to show that under proportional asymptotic limit

tr [(In XS+ )J,,)JFXT/n)?} /n
(1—tr [(£ 4 AL)*E]/n)?

tr [X (2 4+ AL)TS(E + ML) XT /n] o4+ 1 — 2550. (S.11)

The desired convergence then follows by using Lemma S.4.2.
We proceed by decomposing the first component of (S.11) as follows:

tr [X(Z 4+ ML) TS(E + ML) XT /n] /n = tr [(
= [z(

L)Y (S + ML) ] /n

A
S+ M) /n—tr [(I, = SE + AN SE + ML) /n.



For the numerator of the second component of (S.11), we note that

(I, — X(S+ AL)* XT /n)®

L = X(E+ M) XT /n) (I, — X(E + M,) T XT /n)

) = X(E+ ML) XT (I, — X(E+ ML) XT /n)

+XT/n) X(XTX/n+ ML) X" /n(L, — X(X"X/n+ A,)* X" /n)

)X n) = X(XTX/n+ M) (X7 /n— XTX/n(XTX/n+ M,)T X" /n)
)= X(XTX/n+ ML) (I, — X" X/n(XTX/n+ A,) ") X7 /n.

&
|
b
™
+
>
=~

+
<
}ﬂ
~
3

Thus we have

tr [I, — X5+ ML) XT /n)* /n
(1= tr [(S+ L) 5] /n)?
1=t [E4AL) ] /n -t [SE + M) (L, - SE + AL) )] /n
(1—tr [(E+A >+2]/n>
1 tr [S(E 4+ M) (L, — (S + ML) Y] /n
EEREHSES VAT (1= tr[(S +AL)S] /n)?

To establish the desired equivalence, we now use the following two individual equivalences:

~ 1
tr [(Z + A,)TE]/n — ~ — + 12
H[EH A TE] = T (S A,) 5] /n

0,
which follows from Lemma S.3.1, and

tr {(Ip —SE AT EE + Alpﬂ /n

tr [ (1, = S(E+ ML) S(E + AL |/ PSRVINESTAY
(1=t [(E+AL,)*S] /n)

which follows analogously from the equivalence established in the proof of Lemma 5.3 with B = I,.
Limiting case when A\ = 0. To handle the case when A = 0, we observe that when A # 0, we can write
tr[(I, = SE+ADNEE + A /=1 tr [(S+ ML) YE] /n+ A2 tr [(XXT /n+ A,) 2] /n,
along with
1—tr [(S+M)TE]/n= e [(XXT /n+ ML) Y] /n,

which follow from Lemma S.3.2. This allows us to cancel the factor of \2 to write

b [(XXT/nt M) 2]/n o as,
(tr [(XXT/n—I—/\In)‘*‘]/n)2 7

tr [S(S 4+ AL)YE(E + ML) o —

which in the limiting case by sending A — 0 provides the equivalence

- tr[S+2)/n

tr[2+2]/n — [,\7]/2 + 1 i} 0
(tr[X+]/n)

under proportional asymptotic limit. Note that we have written the final expression in terms S instead of

X X7 /n simply for consistency with the A # 0 case. Combining the two cases, we have the desired limiting
equivalences in Lemma 5.4.
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S.1.5 Completing the proof of Theorem 4.1

Lemmas 5.1 to 5.4 establish the almost sure pointwise convergence of gcv(A) to err(A\) under proportional
asymptotics for A € (Apin,00). To complete the proof of Theorem 4.1, we now show that the convergence
holds uniformly over compact subintervals of (Apnin, o0) and subsequently show the convergence of tuned risks
over such intervals.

The strategy is show that, on any compact subinterval I C (Apin, 00), gev(A) and err(\), and their derivatives, as
functions of A are bounded over I. This provides equicontinuity of family as functions of A over I. The Arzela-
Ascoli theorem then provides the desired uniform convergence. The convergence of tuned risks subsequently
follows from a standard argument.

We start by writing the GCV estimate (S.4) for the ridge estimator as

y' (I — Ly )*y/n
(tr[L, — Ly]/n)?

gev(A) =

It is convenient to first assume A\ # 0 and express I,, — Ly as A(X X7 /n + A,,)" using Lemma S.3.2 and then
cancel the factor of A\? from both the numerator and denominator, which also covers the limiting A — 0 case.

This lets us write the GCV estimate as
Un ()‘)

v (A)’

2
where u,(\) = yT (XXT /n + AI,,)"2y/n, and the denominator v, (\) = (tr [(XXT/n+ )\In)+]/n) . We first

bound the numerator and denominator appropriately. Let spin and Spax denote the minimum non-zero and
maximum eigenvalues of X X7 /n, respectively. We can upper bound the numerator as

lyl> 1
n (Smin + A2’

gev(A) = (5.12)

lun(A)] < (5.13)

and we can lower bound the denominator as

on (V)] > ——

[yl (S.14)

Using the two bounds in (S.13) and (S.14) into (S.12), we have the following upper bound on the GCV estimate:

lgev(V)| < llyl* (smaxﬂf

n Smin + A

From the strong law of large numbers we note that ||y||?/n is almost surely upper bounded for sufficiently large n.
From Bai and Silverstein (1998), we have that spa.x < C(1+ ﬁ)Qrmax for any C' > 1 and Sy > ¢(1— \ﬁ)Qrmin
for any ¢ < 1 almost surely for sufficiently large n, where r,;n and 7,2 denote the bounds on the minimum and
maximum eigenvalues of ¥ from Assumption 3. Thus, over any compact subinterval I of (Apin,00), gcv(A) is
bounded almost surely for sufficiently large n.

We next bound the derivative of gev(\) as a function of A. We start with the quotient rule of the derivatives to
write:
L (N (A) = un (Aol ()
() = v AL S.15
ey CoRE (5.15)
We now upper bound the derivatives of u,(\) and v,()), and additionally obtain an upper bound on v, (X).
From short calculations, we can upper bound the derivative of the numerator as

2yl | 1
TN < S.16
e e (5.16)
and the derivative of the denominator as
W] < | — (8.17)
" - (smin+>\)3 . '




In addition, we can upper bound the denominator as
(S.18)

Combining the bounds in (S.16) to (S.18), along with the bounds in (S.13) and (S.14), into (S.15), we get the
following upper bound on the derivative:

(smax + >\)4
(Smin + )\)5

Ayl
n

lgev' (M) < (5.19)

As before, we note that ||y||?/n is almost surely upper bounded for sufficiently large n, and spax is upper bounded
and Spiy lower bounded above (/7 — 1)27min for sufficiently large n. Thus, over any compact subinterval I of
(Amin; 00), |gev’(A)] is almost surely upper bounded for sufficiently large n.

By similar arguments, we can bound the err(\) and its derivative as a function of A\. Together, we have that
the function err(A) — gev(A) forms an equicontinous family of functions of A over any compact subinterval of
(Amin, 00). Applying the Arzela-Ascoli theorem, we conclude uniform convergence for a subsequence, and since
the difference converges pointwise to 0, the uniform convergence holds for the entire sequence.

Finally, we use the uniform convergence to establish the convergence of the tuned risks by a standard argument.
We start with the observation that gev(A;™) < gev(A) for any A € I using the optimality of A%°". Using the

specific A = A}, we thus have that gcv(X%CV) < gev(Af). We next note that

err(A57) — err(Af) = err(Af™) — gev(A57) + gev(AY) — gev(A]) + gev(Af) — err(Af)
< err(M™) — gev (A7) + gov(Af) — err(A})

a.s.

— 0,

where the inequality follows from the optimality of X%GV for gev(A) and the two almost sure convergences follow
from the uniform convergence. This concludes the proof of Theorem 4.1.

S.1.6 Error terms in the proof of Lemma 5.3

It is convenient to further split e1 = e11 + e12 where the suberror terms e1;1 and ej are defined as follows:

(I =SB 4 ML) ) By — Si(Bs 4 M) ar 1 (I = SiEmi 4 M) ) B = Soi(Smi + M) )T

4 k3
en ::—§ -

(1+aT (S5 4 AL, )+xl/n) (1+aT (S + A, )ﬂvl/n)

tr [ (I = Soi(Cmi + M) By = Si(Emi 4 M) )T e[ (I = SilSi + M) ) Bl = Soi(Si 4+ M) )3

n
1
el = — E -
n -
i=1

(1+ 27 (S_;i + ML)t ai/n)? (14 tr [(Bi + ML)+ =] /n)?

We similarly split e2 = e21 + e22 where the suberror terms ez; and e2s are defined as follows:

tr [(Ip S ALY B, - S (5 + )\Ip)+)2] tr [(Ip S LE L+ AL ) B(I, — S5 + AL) )z]

n
1
€21 ‘= — E
n“
i=1

(14 tr [(S—i + AL,) =] /n) - (14 tr [(S + AL)+2] /)’

I i tr [(Ipff)_i(f]_zdr)\[ Y B(I, fi_i(i_iJrMp)ﬂz} tr [(Ip — S+ L)) B(I, ffl(f)Jr)\Ip)*')E}
e (It [(5+ )= /n)’ 1+t [+ A)ts]/n)’ '
Below we show that for A € (Amin, 00) all the suberror terms almost surely approach 0 as n,p — oo with p/n — v € (0, 00).

Note that we use a generic letter C' to denote a constant (that does not depend on n or p) whose value can change from
line to line and the inequality sign is used in an asymptotic sense which holds almost surely for sufficiently large n.



Pratik Patil, Yuting Wei, Alessandro Rinaldo, Ryan J. Tibshirani

Error term eq;

‘We bound the error term eq; as follows:

1
lenn| = |~
i (1—|—x (E_i+ A, )+:cz/n)
<C % 2l (I, =SS+ ML) DBl = S_i(Boi + ML) ) as — tr [(1,, S LCL A DB, - S (E o+ ,\1,,)+)2]
=1
2250,

where the first inequality follows by noting that from Lemma S.4.2 the quadratic form 2T (S + ML) T /m converges
almost surely to tr[(X 4+ AI,)T¥]/n (as operator norm of (X_; + AI,)" is almost surely bounded for large n) and the
fact that {1/(1+ tr[(S + /\Ip)+2]/n)’ is bounded by viweing tr[(S + AI,)"X]/n as a Stieljes transform of a measure with
bounded total mass (see, for example, Paul and Silverstein (2009); Couillet and Hachem (2014)). The convergence in the
final step follows from application of Lemma S.4.4 since (I, — S (S + M) T)B(I, — S LS+ AIp)T) has trace norm

almost surely bounded for large n (as trace norm of B is bounded and the operator norm of (Ip — f],i(i,i + )J,,)*) is
almost surely bounded for large n).

Error term eq-

‘We bound the error term eq2 as follows:

N N P - _S 5 + 1 _ 1
|612|_’n;t [(]f’ Doi(Boi + Mp) ) B(Ip — Boi (B 4 M) )Z} ((1+m T(S_i+ AL)tzi/n)®  (1+tr [(i_i+A1p)+E]/n)2>‘

“c 72 1 1 ]
1+x E i+ Al )*xz/n) (1+tr [(E,i—&-)\lp)*E]/n)

1 Z (14 tr [(S—i + AL)YE]/n)? = (1+ 2T (S + ML) Tai/n)?

n (14 2T (S + M) a/n) (1 + tr [(S_i + ML) +E] /n)?

=C

<C %zn: (1+tr [(i,i +/\I,,)+E}/n) (1+az (S0 + M) ml/n)Q

<C max |(1+; TEi+ M) ai/n)? — (14t [(Soi + ML) TS /n)Q‘

<O max |2l (S + ML) ai/n - tr (B +AL) Y] /n‘ ‘2 ol G+ AL 2/ 4t [(Sos + L) TS /n‘
< ngl,a}in el (S + M) Twi/n —tr [(i\)_l + A\p) Y] /n’

2250

where the first inequality bound follows from noting that the matrix (I, — S (S + L)t )B(I, — S(E+ M) TS

almost surely has bounded trace norm for large n (since trace norm of (I, — S_i(S_; + M) T)B(Ip, — S—i(S—; + M) )
is bounded almost surely for large n as argued for the error term ei1 above and the operator norm of ¥ is bounded) and

the final convergence follows from using Lemma S.4.3 by noting that the operator norm of (f],z + Mp)* is almost surely
bounded for large n.



Error term eo

We bound the error term es; as follows:

e:lnr . SE O + SO + L - L
le21 ‘n;t [(IP Hot B AT BTy = BB M) )E] ((l-l-tr [(S_i+AL)*S]/n)? (1+tr [(E+A1p)+2]/n)2>‘

N (T4t (S 4+ A )‘*‘E}/n) (1+tr (X4 Ap)+%]/n)
i (1+tr [(E+ A)TE] /) (1+tr [(S_i + A, )+Z]/n)
= (l-l-tr[(E + A,)tX|/ n) (1+tr[2+)\1)+2]/n)

_¢

n

n

C

>
C n
"

n

% 3 ‘tr (S +AL) 5] /n — tr [(Si + AL) 'S /n‘

i=1

) -
]
(1+tr[(z+n ) /n) (1+tr (S + A, )+E]/n) ’

IN

IN

tr [(5 4+ AL) TS /n — tr [(Bs + AL) 'S /n‘ ‘2 4+t [(S 4 AL) TS /n+ tr [(Boi + ML) TS /n)

IN

where the final convergence follows by noting that

(S + ML) Tzl /n(S_i + )T
14T (E i + M)tz /n

(fl + /\Ip)+ - (i—l + /\Ip)7L ==

which after multiplying by X, taking the trace, and normalizing by n gives

tr [(f)_l + ML) TziaT /n(S s + AL ») Y]
1+ T (E_i + M)tz /n
I (S i+ M) TES(E i 4+ M) Tai/n
1+ aF (S04 Ap)tmi/n

’tr [(i + )\Ip)+2] /n —tr [(f}_z + AIp)J’_E} /n’ _ %

IA
3|Q 3=

where the last bound follows by noting that operator norm of (f)_l + \,)TY is almost surely bounded for large n.
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Error term eos

‘We bound the error term es> as follows:

|5 (I = SiBei 4 ALY B(Ip = Si(Si + M) )T = tr (1 = D+ ALY B, — S+ AL) 3]
i (1 + tr [(i + Al) 1] /n)2

<= f:tr (1 = S-iCmi 4 ML) ) By = Si(Smi + M) )] = tr (1 =SS + ML) ") B(L — S8 + ML) )z

< % Zn:tr (1o = SoiSi ALY ) B(Iy = Soi(Si + AL) ) S = tr (1 = S-S + ML) ") B(L = SCE + ML) )3
+ % itr (I = SiCmi 4 M) ) Bl = SE + M) )T = tr [(1 = SE +AL) ) B(L - S8+ AL) ')z

< % itr [2(1,, ~SCn 4 AL ) B{(I ~ S+ L)) — (- S(E + Mp)+)}} ’
+ % zn:tr [{ (I = S_i(Soi + ML) = (I, - S + Mp)+)}3(1,, —SE+ M,,)*)z:]

=250,

where the last inequality bound follows by noting that

SE+ AT S (S + L) T
=i +za!l n)E i +zal n+ AT =S (S 4+ ML) T
S+ M) Tzl (S + AL)T
1+ %mZT(iﬂ + A) Tz,
zixl /n(S_i + AL,) " S (S 4 M) Tzl /n(E s + ML) T
- 1+ 27 (S + AL,)ta /n B 1427 (S + M)t /n
(I — S_i(Eoi + Mp) D aial /(S + M)+
1+2T(S_i + M)t ai/n

= (S_i +zizl /n) ((i_i + AL — ( ) —SL(Ei+ L)t

)

which after multiplying by $(I, — £ _;(3_; + AL,)")B and taking the trace can be bounded as follows:

tr {z(fp B SENG Sp Mp)+)B{§(i FAL)T S+ Mp)+}} ‘

tr {E (I, = Si(Eci + M) N B(Ip — S_i(Soi + M) ) zaaT /n(E: + Mpﬁ}

1+ 2T(S_i + AL,)Tai/n

2T (S + ALY (L, — (S + ML) Y B(I, — (5 + ML) )
1+2T(S_i + ML) Tai/n

IA
3l 3=

where the last bound follows by noting that the matrix (£_; + M) S(I, — S_i(S_i + ML) ) Bl — S _i(S_i + A,) )T
has almost surely bounded trace norm for large n (since trace norm of B is bounded and the operator norm of the
remaining matrix component is almost surely bounded for large n). The second term can be bounded analogously.




S.2 Proofs related to Theorem 4.2

S.2.1 Proof of Lemma 5.6
We start by writing the leave-one-out risk estimate loo(\) from Equation (4) as
loo(A) = y" (I — Lx)Dy *y/n,

where Ly is the ridge smoothing matrix and D, € R™*" is a diagonal matrix with entries 1—[L,];; fori =1,...,n.
Under proportional asymptotic limit, we show below that for any A € (Apin, ),

loo(\) — y”'(I,, — Ly)? (1 it [(Z+ AL)TE] /n)2y/n 2250, (S.20)

which after substituting back for L) proves the desired convergence.
Observe that for any i = 1,...,n,

DL 1
Dyl = 1= Lo 1— [X(XTX/n+ A,)*XT /n]
1

1ol [Va(XTX o+ M) Fa /v

Denoting X7 X/n by S and using the Woodbury matrix identity as explained in the proof of Lemma S.3.1, we

have that )

1—2T(S + ML) z;/n
2 p

=1+ J:ZT(il_z + AL,) Y /n.

The diagonal entries of the matrix Dy ' are thus 1 + TS + Mp)ta/nfori=1,...,n.

We proceed to bound the difference in the two quantities of (S.20) as follows:

loo(\) — y* (I,, — Ly)? (1 + tr [(i + A,) "] /n) 2y/n

= IyT(In — L))*D5%y/n—y" (I, — L,\)2(1 +tr [(EAI + AL,) T Y] /n)Qy/n

<y"(In — Ly)y/n max

=1,....n

(1 +aT (S, + )\Ip)+xi/n)2 - (1 +tr [(5 4 ML) Y /n)Q‘

2

(1 v aT (S, + )\Ip)eri/n) (1 4t [(5+ ALY /n>2 :

< (C max
i=1,..

Ln
where the bound in the last inequality holds almost surely for sufficiently large n by noting that y” (I, — L)y /n
is almost surely bounded for sufficiently large n as explained in the proof of Theorem 4.1 Note that we do not
require that the response y is well-specified. Finally, similar to the proof of Lemma 5.3, we decompose the error
as

max
1=1,...,n

(1o S ALY ai/n) — (Lt (€4 )] /n)Q\ <&+,

where the error terms & and &, are defined as follows:

& = max

i=1,....,n

(1 +aT (S + )\Ip)+xi/n)2 - (1 i [(S 4 ALY /n)2‘ : (S.21)

©

& = max
i=1,...,n

(1 +tr [(Bi + M) Y /n)2 - (1 i [(B 4+ AL)TE] /n)2’ . (S.22)

Both of the error terms approach 0 under proportional asymptotic limit using the final parts of the arguments
used for e and es; in the proof of Lemma 5.3.
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S.2.2 Completing the proof of Theorem 4.2

Case when A # 0. Recall from Equation (S.4) that the GCV risk estimate gev(\) in this case can be expressed
as
y"(In — Lx)*y/n

B = (1 —tr [(5 4 AL)*S] /n)Q.

On the other hand, from Lemma 5.6, under proportional asymptotics we have that
Fa 2
P (5 535 20

The result then follows by noting that

y" (I, — Ly)? (1 +tr [(i + A,) TS /n)Qy/n - gcv()\)’

y'' (I, — Ly)?y/n
(1 —tr [(5 4 AL) S /n)2

= lyT (I, — Ly)? (1 +tr [(i + A,) T Y] /n)Qy/n -

1
(1 —tr [+ AL)*E] /n)2

<yT(I, — L)\)*y/n (1 +tr [(i + M) T3] /n>2 -

1
(1 —tr [(Z 4 A,) ] /n)2

<C (1 +tr [(S+ M) TS /n)2 -

1 1

<C (1 +tr (5 4 ALY /n) - (1 +tr [(5+ ALY /n) +

(1 —tr [(S 4 M) 5 /n) (1 — tr [(S 4 A+ 5] /n)

1
(1 —tr [(i + /\Ip)"'f}] /n)

<C (1 i[5+ M) TS /n) -

a.s. 0

under proportional asymptotics using the first part of Lemma S.3.1. Note that the bound in the second inequality
in foll f he f: 2/n i i

again follows from the fact that ||y||*/n is almost surely upper bounded for sufficiently large n, and the operator

norm of I,, — Ly is bounded almost surely for large n for A € (Apin, 00).

Limiting case when A = 0 Similar to the proofs of Lemma 5.3 and Lemma 5.4, to handle the case when A\ = 0,

~ 2
we observe that for A # 0, we can extract a factor of A% from (I,, — L)? and absorb into (1+tr [(E+A,) "] /n)
and take A — 0 to write the limiting LOOCYV risk estimate under proportional asymptotics as

loo(0) — yT(XXT/n>+2(tr (I, - S54)5)] /n)Qy/n 25,

while the limiting GCV estimate is given by

yT(XXAT/n)“y/n.
(tr[S+]/n)?

gev(0) =



As above, we can then bound the difference to get

R R IR iae o s 1L
e e O e ) R e s
1
< Clor [(1,~SE+ AR )]/ x5+ /n
=20,

where the convergence follows from the second part of Lemma S.3.1.

Putting things together, this establishes the almost sure pointwise convergence of loo(\) to gev(A). To show
uniform convergence and the convergence of tuned risks, we similarly bound the estimate loo(A) and its derivative
as a function of A to establish equicontinuity as done in the proof of Theorem 4.1. We omit the details due to
similarity.

S.3 Auxiliary lemmas

In this section, we state and prove auxiliary lemmas that we often make use of in other proofs. Note that
Lemma 5.5 in the main paper is a special case of Lemma 5.3 and its proof follows analogous steps as the proof
of Lemma 5.3 in Section S.1.3 and is omitted.

Lemma S.3.1 (Basic GCV denominator lemma). Under Assumption 2 and Assumption 3, for A € (Amin, 20) \

{03,
]- a.s

1—tr [(Z+A,)*E] /n 0 (5.23)

1+t [(E+AL)TE] /n -

as n,p — oo with p/n — v € (0,00). In the case when A =0,

o [(I, — ST /n tr[ilﬂ/n LI (S.24)

as n,p — 0o with p/n — v € (0,00).

Proof. We start with the the GCV denominator (the denominator of the second term of (S.23)) and establish
that under proportional asymptotics
1 a.s

L [E M S e s S e

To that end, we use the standard leave-one-out trick to break the trace functional 1 — tr [(i + /\Ip)+§)] /m into
random quadratic forms where the point of evaluation is independent of the inner matrix as follows:

1—tr[(f§—|—)\1—p)+§]}/n:1—%tr[XH—)\I le T/n}

=1- %Ztr [(f] + )Jﬁ*xw?/n]

i=1

1 & o
=1-= TE + 1) ey
=Yl (S ML) i/

i=1

= % i (1 — 2T (Z + AL) i /n)

i=1

1
B ZlJr:c E,lJr)\I)*xl/n.
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Here the last equality follows from the following simplification using the Sherman-Morrison-Woodbury formula

with Moore-Penrose inverse (Meyer, 1973):
1—a] (Z+)\I) xi/n
=1—af (E i + A, + @ T/n) xi/n
i+ AL el /(S + A1, >+> zi/m
14 2T (S + ML) T2 /n
r(Esi + ML) Twal /(S + ML)t
1+ T(S_;+ A, p)txi/n

=1—al ((Z_Z—&-)\I)

—1—2l (S + M) Tz /n+aT

xi/n

2T (S + ML) Ty /n— 2T (S5 + ML) T /nal (S + AL) i /n + 2T (S_s + M) Tzl /n(S_; + AT

:1—
1+aT (S + AL ) txi/n

(f) i+ ML) Tx/n
1+aF (S_; 4+ AI p)tai/n
1+af =, i+ ML) Y /n — aT S, i+ ML) Tx/n

1+af (S + AL p)Tai/n
1

1+af (S + ] )T/
We now break the error in (S.23) as

=1-

~ ~ 1 - 1 1
1—tr [(S+A)TS]/n— _ _ Z _
it P/ L+tr [(E+AL)E]/n 1<

+x E i+ AL )+xl/n 1+ tr [(Z+ M) tE]/n

1=

61 +52;

where the error terms d; and do are defined as follows:

5 .,lzn: 1 1
" 1+ a2l (S + M) tai/n 1+tr[(S_;+AL)S]/n )

1< 1 :
09 := ﬁ; (1 " or [(i_z +)\Ip)+2]/n B 1+ tr [(§]+AIP)+E]/R> )

1
l n 1
ni= \1+ar (S_i+ AL )+331/n 1+ tr [(fH—)\Ipﬁ'

)

In Section S.3.1, we show that both the error terms ¢; and Jo almost surely approach 0 under proportional

asymptotics for A € (Apin, 00) under Assumption 2 and Assumption 3.

We now finish the final step by considering the two cases of A # 0 and A = 0.

Case when A # (0. We so far have that
1 a.s.

L—tr [(S+AL)YE] /n— 1+t [(E+ M) 2] /n o

which we can rewrite as

(1 —tr [(E+ A,)TE] /n) (1 +tr [(B 4+ AL)TE] /n) —1 &30,

When A # 0, the GCV denominator 1 — tr [(i + )\Ip)Jrf]] /n # 0, and we can safely take the inverse to get

1 a.s.

Lt (54 M) 2] /- 1—tr [(S+A,)*E] /n 0

under proportional asymptotic limit as desired.



Limiting case when A = 0. In this case, 1 — tr [(i + )\Ip)‘*i} /m can be zero (in particular, it is zero when
p > n and X has rank n). As before, we start with A # 0 and using Lemma S.3.2; express

1—tr [(S+ M) E] /o= Mr [(XXT /n+ ML) Y] /n,
along with
Atr [(Z+ AL)TE] = tr {(Ip —S(E+ AI,,)UE} /n.
This allows us to move A across to write
(tr [(XXT /n+ A,) "] /n) ()\ + [, - SE + M) 7)Y /n) —1 250,
Sending A — 0, writing tr[(X X7 /n*)]/n = tr[S+]/n, and inverting safely, we have

tr [(I, — S£7)%] /n - tr[;}/n 250

under proportional asymptotic limit as desired. O

Lemma S.3.2 (Gram and sample covariance matrix simplifications). Suppose X7 X/n+ A, and X X7 /n+ I,
are invertible. Then it holds that

L — X(XTX/n+ M) TXT /n = N(XXT /n+ AT,
I, — (XTX/n+ L) XTX/n = AXTX/n+ AI,)*.

Proof. Recall the Woodbury matrix identity
ATl ATl U(VATIT U+ YT lvAT = (UCV + A) L
Letting A = I,,, U = X//n, C =1/, V = XT /\/n, we get
L, — X(XTX/n4+ ML) ' X  jn = (X/V/n 1N, XT )\/n+1,)7!
= NXXT/n+21,)" "
On the other hand, letting A =1,, U = I,, V = XTX/n, C = 1/AI,, we get
I, — (X"X/n+ L) XTX/n= (1)\, X"X/n+1,) "
— A (XTX/n+AL) .

S.3.1 Error terms in the proof of Lemma S.3.1

Below we show that for A € (Apin, 00) both the error terms §; and d2 almost surely approach 0 as n,p — oo with
p/n — v € (0,00). The arguments mirror parts of the error analysis for terms e and es; in Section S.1.6.

Error term 6;

|61] =

1< 1 1

n Z; 1+ 2T (S + AL) ai/n L+tr[(S_; +AL)TE]/n
1 zn: tr [i,l + AL,) TS| /n — 2T (S + ML) Ty /n

n s 1 (1 + $?(i—z + )\Ip)“‘xi/n) (1 + tr [(i_i + /\Ip)+2] /n)

1 <& ~ ~
<C|=> tr [(Bo+ ML) TE] /= 2l (S + M) Tai/n
n
=1
<C max |tr[(Ss+ L) ] /n— ol (S + ML) /n‘
i=1,...,n
a.s. 0

where the final convergence follows from using Lemma S.4.4 as argued for the suberror term ejo in Section S.1.6.
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Error term 6,

n

1 3 1 - 1
N4t (B + ML) TS /n 14+t (B4 AL)YE] /e
" tr [(Z + ML) TS] /n — tr [(S_; + M) TE] /n

Z (14 tr [(Bs + AL)FE]/n) (1 + tr [(S + ML)+ 2] /n)

=1

|62

1
n

IN

3|Q 31Q

itr [Z(g + A,) ] /n —tr [Z(iﬂ' +A,) ] /n

<

a.s.
S 0’

where the last inequality follows analogous simplification as done for the suberror term es; in Section S.1.6.

S.4 Useful concentration results

The following lemma is a standard concentration of linear combination of i.i.d. entries.

Lemma S.4.1 (Concentration of linear form with independent components). Let € be a random wvector in R™
that satisfy conditions of error vector in Assumption 1. Let b, be a sequence of random vectors in R™ independent
of € such that sup,, ||b,||?/n < oo almost surely. Then as n — oo,

bfs/n L5000,

The following lemma is adapted from Dobriban and Wager (2018, Lemma 7.6).

Lemma S.4.2 (Concentration of quadratic form with independent components). Let € € R™ be a random vector
that satisfy conditions of error vector in Assumption 1. Let D, be a sequence of random matrices in R™*™ that
are independent of € and have operator norm uniformly bounded in n. Then as n — oo,

el Dype/n — o tr[D,)/n L2 0.

The following lemma is adapted from an argument in Hastie et al. (2019, Theorem 7) using union bound along
with a lemma from Bai and Silverstein (2010, Lemma B.26).

Lemma S.4.3 (Concentration of maximum of quadratic forms with independent components). Let x1,...,xz, be
random vectors in RP that satisfy Assumption 2 and Assumption 3. Let Gy, ...,G, be random matrices in RP*P
such that G; is independent of x; (but may depend on all of X_;) and have operator norm uniformly bounded in
n. Then as n — oo,

nax |2} Gizi/n — tr[GiX] /n| =2 0.

The following lemma is adapted from Rubio and Mestre (2011, Lemma 4).

Lemma S.4.4 (Concentration of sum of quadratic forms with independent components). Let x1,...,2, be
random vectors in RP that satisfy Assumption 2 and Assumption 8. Let Hy, ..., H, be random matrices in RP*P
such that H; is independent of x; (but may depend on all of X_;) that have trace norm uniformly bounded in n.
Then as n — o0,

n
ZxZTHlxl/n — tr[H; %] /n| =25 0.
i=1
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