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A Notations, definitions and other useful facts

In this section, we define certain standard notations and state some facts that were used in the main paper.

Policy of an algorithm. In PAC-MDP models, an algorithm is considered to be a non-stationary policy A
which, at any instant t, takes as input the path taken so far pt := s0, a0, . . . , at−1, st and outputs an action. More
formally, A : {S ×A}∗ × S → A. Note that since the algorithm is already given the true reward function, we do
not provide rewards as input to this non-stationary policy. Then the value of the policy is formally defined as
given below.
Definition 7. For any pt, we define the value of the non-stationary policy A of our algorithm on the MDP M as:

V AM (pt) = E

[ ∞∑
t′=t

R(st′ , at′)

∣∣∣∣∣ pt,A
]
.

For any H > 0, we denote the truncated value function of A as:

V AM (pt, H) = E

[
t+H∑
t′=t

R(st′ , at′)

∣∣∣∣∣ pt,A
]
.

Following π ∈ Π(Z). Below we state the fact that for a closed set Z, by following π ∈ Π(Z), the agent always
remains in Z with probability 1.
Fact 1. For any closed set of state-action pairs Z, and for any policy π ∈ Π(Z) and for any initial state s0 ∈ Z:

P[∀t, st ∈ Z | π, s0 ∈ Z] = 1

Proof. For any t, if st ∈ Z (and this is true for t = 0), we have that (st, π(st)) ∈ Z since π ∈ Π(Z). Since Z is
closed, this means that st+1 ∈ Z. Hence, by induction the above claim is true.

Communicatingness. We now discuss the standard notion of communicating and argue that it is equivalent
to the notion defined in the paper (Definition 2). Recall that the standard notion of communicatingness of an
MDP (Puterman, 2014) is that, for any pair of states in the MDP, there exists a stationary policy that takes the
agent from one to the other with positive probability in finite steps. This can be easily generalized to a subset of
closed states as follows:
Definition 8. A closed subset of state-action pairs, Z ⊂ S × A is said to be communicating if for any two
states, s, s′ ∈ Z, there exists a stationary policy πs→s′ ∈ Π(Z) such that for some n ≥ 1

P[sn = s′ |πs→s′ , s0 = s] > 0

There are two key differences between this definition and Definition 2. (1) Recall that in Definition 2, we defined
communicating to mean that for a particular destination state, there exists a single stationary policy that can
take the agent from any state inside Z to that destination state, whereas in Definition 8 there is a specific policy
for every pair of states. (2) Definition 8 only requires the probability of reaching s′ to be positive as opposed to 1.
Below, we note why these definitions are equivalent:
Fact 2. Definition 2 and Definition 8 are equivalent.

Proof. Informally, we need to show that “for any pair of states in Z, there exists a policy that takes the agent from
one to the other with positive probability” if and only if “there exists a single policy that reaches a destination
state from anywhere in Z with probability 1”.

The sufficient direction is clearly true: if such a πs′ and t from Definition 2 exist, then we know that for any
s ∈ S, we can set πs→s′ and n in Definition 8 to be πs′ and t to prove communicatingness (since if it holds with
probability 1, it also holds with positive probability).

For the necessary direction, we will show that for a communicating Z = S ×A, for any s′ ∈ Z, the optimal policy
of another MDP satisfies the requirements of πs′ . For a communicating Z with Definition 8, we know that for
any s, s′ ∈ S, there exists a policy πs→s′ and n ≥ 1 such that P[sn = s′|πs→s′ , s0 = s] > 0.
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Now we construct the MDP. For a given s′, define an MDP Ms′ = 〈S,A, T,Rs′ , γs′〉 where γs′ = 1, R(s) = 1{s =
s′}, and s′ is terminal. Note that, since R(s′) = 1 and is zero everywhere else and s′ is terminal, for any policy π,
the state value function V πMs′

(s) = P[∃ t, s.t. st = s′|π, s0 = s]. Now define πs′ to be the optimal policy of this
MDP, i.e. the policy that maximizes this value function. This implies that for any s, V πs′

Ms′
(s) ≥ V πs,s′

Ms′
(s). Then,

P[∃ t, s.t. st = s′|πs′ , s0 = s] = V
πs′
Ms′

(s)

≥ V πs,s′

Ms′
(s)

= P[∃ t, s.t. st = s′|πs,s′ , s0 = s]

≥ P[sn = s′|πs,s′ , s0 = s]

> 0.

Thus, P[∃ t, s.t. st = s′|πs′ , s0 = s] > 0. Since this condition is satisfied for all starting states s ∈ S and since we
know that Z is closed, we can use Lemma 5 to show that in fact P[∃ t, s.t. st = s′|πs′ , s0 = s] = 1, proving the
existence of πs′ as claimed.

Zsafe is safe. Below, we prove that the set Zsafe defined in Definition 5 is indeed a safe set.
Fact 3. Zsafe is a safe set.

Proof. For any (s, a) ∈ Zsafe, we have by definition that R(s, a) ≥ 0. Now, if for some s′ for which T (s, a, s′) > 0,
consider a′ = πreturn(s′). Then, by definition, if the agent were to start at (s′, a′) and continue following πreturn,
with probability 1, it would reach Z0 while experiencing only positive rewards. Hence, (s′, a′) ∈ Zsafe. Thus, Zsafe
is closed.

B Methodology

In this section, we provide detailed definitions of our algorithms and the notation used for our proofs. We start
by giving detailed a description of the main algorithm and the algorithms which it calls. We then detail how our
confidence intervals are computed and how we use these confidence intervals to construct the set of all candidate
transition functions. The next section details how these candidate transition functions are used for computing
optimistic policies πgoal, πexplore and πswitch. Specifically, we define new MDPs for each of these policies and
define how an optimistic policy is computed on an arbitrary MDP. Finally, we formalize the discounted state
distribution and discuss how this is computed in practice.

Here we provide a useful reference for some of the notation used throughout the proofs.

True MDP M = 〈S,A, T,R, γ〉
True safe, optimal goal policy π∗safe
Empirical transition probability T̂

Empirical L1 confidence interval width ε̂T
Arbitrary MDP M† = 〈S,A, T †, R†, γ†〉

Optimal Q-function on the optimistic MDP Mgoal Qgoal
Optimal Q-function on the optimistic MDP M explore Qexplore
Optimal Q-function on the optimistic MDP M switch Qswitch

Optimistic goal policy (defined by Qgoal) πgoal

Optimistic explore policy (defined by Qgoal) πexplore

Optimistic switching policy (defined by Qswitch) πswitch

Analogy-based empirical probabilities and confidence intervals
∆

T ,
∆
εT

Optimal value function for some MDP M† V ∗M†

B.1 Algorithms

We first restate Algorithm 1, the full overview of our algorithm, with a bit more detail (most notably including
Ẑunsafe). Next, Algorithm 2 details how the agent computes the current estimate of the safe set while ensuring
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Algorithm 1 Analogous Safe-state Exploration (α,∆,m, δT , R, γ, γexplore, γswitch, τ)

Initialize: Ẑsafe ← Z0; n(s, a), n(s, a, s′)← 0; Zgoal ← S ×A; s0 ← sinit.
Initialize: Ẑunsafe ← {(s, a) ∈ S ×A : R(s, a) < 0}.
Compute confidence intervals,

∆

T and ∆
εT , using Alg 6 (Appendix B) with

state-action-state counts n, parameter δT , and analogy function α,∆.
Compute πgoal, Zgoal, Zexplore, Ẑunsafe using Alg 3 and 4 with parameters γ, τ

and reward function R.
Compute πexplore, πswitch using value iteration (Appendix B.4) with parameters γexplore, γswitch.
for t = 1, 2, 3, . . . do

at ←


πgoal(st) if st ∈ Zgoal & Zgoal ⊂ Ẑsafe

πexplore(st) if Zgoal 6⊂ Ẑsafe

πswitch(st) otherwise.
Take action at and observe next state st+1.
if n(st, at) < m then

n(st, at) += 1, n(st, at, st+1) += 1.
Recompute confidence intervals, then expand Ẑsafe using Alg 2 with parameter τ .
Recompute πgoal, Zgoal, Zexplore, Ẑunsafe, πexplore, πswitch as above.

reachability, returnability, and closedness. The correctness and efficiency of this algorithm is proven in Section
D.1. Algorithms 3, 4, and 5 together provide an overview of how ASE computes the goal and explore policies.

B.2 Confidence intervals

We let T̂ denote the empirical transition probabilities. We then let ε̂T (s, a) denote the width of the L1 confidence
interval for the empirical transition probability T̂ (s, a). As shown in Strehl and Littman (2008), by using the
Hoeffding bound, we can ensure that if

ε̂T (s, a) =

√
2[ln (2|S| − 2)− ln (δT )]

n(s, a)
(1)

where n(s, a) is the number of times we have experienced state-action (s, a), our L1 confidence interval hold
with probability δT . Using the given analogies, we can then derive tighter confidence intervals of width ∆

εT
(centered around an estimated

∆

T ), especially for state-action pairs we have not experienced, as in Algorithm 6.
The algorithm essentially transfers the confidence interval from a sufficiently similar, well-explored state-action
pair to the under-explored state-action pair, using analogies.

Given these analogy-based L1 confidence intervals, we now define a slightly narrower space of candidate transition
probabilities than the space defined by these confidence intervals in order to fully establish the support of certain
transitions. Specifically, we take into account Assumption 4, to rule out candidates which do not have sufficiently
large transition probabilities. We also make sure that a transition probability is a candidate only if Z0 is closed
under it, as assumed in Assumption 1.

Definition 9. Given the transition probabilities
∆

T and confidence interval widths ∆
εT : S ×A→ R, we say that

T † is a candidate transition if it satisfies the following for all (s, a) ∈ S ×A:

1. ‖T †(s, a)−
∆

T (s, a)‖1 ≤
∆
εT (s, a).

2. if for some s′,
∆

T (s, a, s′) = 0 and ∆
εT (s, a) < τ , then T †(s, a, s′) = 0.

3. if (s, a) ∈ Z0, then ∀s′ /∈ Z0, T †(s, a, s′) = 0

Furthermore, we let CI(
∆

T ) denote the space of all candidate transition probabilities.
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Algorithm 2 Compute Safe Set (R, τ)

Require: Estimated safe set Ẑsafe and confidence intervals
∆

T ,
∆
εT .

Zcandidate ← {(s, a) ∈ (S ×A) \ Ẑsafe s.t.
∆
εT (s, a) < τ/2, R(s, a) ≥ 0}.

while Zcandidate 6= Zclosed in the last iteration do
Zreachable ← {(s, a) ∈ Zcandidate : s ∈ Ẑsafe}.
while Zreachable changed in the last iteration do

for (s, a) ∈ Zreachable ∪ Ẑsafe do
Add {(s′, a′) ∈ Zcandidate s.t.

∆

T (s, a, s′) > 0} to Zreachable.
Zreturnable ← ∅.
while Zreturnable changed in the last iteration do

for (s, a) ∈ Zreachable do
if ∃ (s′, a′) ∈ Zreturnable ∪ Ẑsafe s.t.

∆

T (s, a, s′) > 0 then
Add (s, a) to Zreturnable.

Zclosed ← Zreturnable.
while Zclosed changed in the last iteration do

for (s, a) ∈ Zclosed do
if ∃ s′ ∈ S s.t.

∆

T (s, a, s′) > 0 and ∀ a′ ∈ A, (s′, a′) 6∈ Zclosed ∪ Ẑsafe then
Remove (s, a) from Zclosed.

Zcandidate ← Zclosed.
Ẑsafe ← Zclosed ∪ Ẑsafe.

Algorithm 3 Compute πgoal, Zgoal and Zexplore (α,∆, τ)

Require: Estimated safe and unsafe sets Ẑsafe, Ẑunsafe and confidence intervals
∆

T ,
∆
εT .

Initialize: Zexplore ← ∅.
for i = 1, 2, . . . do

Compute πgoal using Eq 5.
Compute Zgoal using Alg 5.
if Zgoal ⊂ Ẑsafe then

Break.
Zedge ← {(s, a) ∈ Zgoal \ Ẑsafe |s ∈ Ẑsafe}.
Compute Zexplore using Alg 4.
if Zexplore = ∅ then

Add Zedge to Ẑunsafe.
else

Break.

B.3 Discounted future state distribution.

Below we define the notion of a discounted future state distribution (originally defined in Sutton et al. (2000)),
and then describe how we compute it in practice. We will need this notion in order to compute Zgoal (discussed
in the section titled “Goal MDP”).

Given an MDP M†, policy π, and state s, the discounted future state distribution is defined as follows:

ρM
†

π,s (s′, a′) = (1− γ)

∞∑
t=0

γtP (st = s′, at = a′|π, s0 = s) (2)

In words, for any state action pair (s′, a′), ρπ,s(s′, a′) denotes the sum of discounted probabilities that (s′, a′) is
taken at any t ≥ 0 following policy π from s in M†.

Computing discounted future state distributions. We use a dynamic programming approach to approxi-
mate the discounted future state distribution. Note that we are assuming that the policy π is deterministic.
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Algorithm 4 Compute Zexplore (α,∆, τ)

Require: Sets of state-action pairs on the edge of the safe set, Zedge, and on the goal path, Zgoal,
along with Ẑsafe, Ẑunsafe and

∆

T ,
∆
εT .

Initialize: Zexplore, Zreturn ← ∅, Zcandidate ← {(s, a) ∈ Zgoal : s ∈ Ẑsafe}, L← 0, Z0
next ← Zedge.

while Zexplore = ∅ and ZLnext 6= ∅ do
ZL+1

next ← ∅ .
for (s, a) ∈ ZLnext do

Add (s, a) to Zreturn
if ∆
εT (s, a) > τ/2 then
Add {s̃, ã ∈ Ẑsafe : ∆((s, a), (s̃, ã)) < τ/4} to Zexplore.

else
Add {s′, a′ ∈ S ×A :

∆

T (s, a, s′) > 0} \ (Zreturn ∪ Ẑsafe ∪ Ẑunsafe) to ZL+1
next .

L← L+ 1.

Algorithm 5 Compute Zgoal (α,∆, τ)

Require: Confidence intervals
∆

T ,
∆
εT .

For convenience, denote ρMgoal
πgoal,sinit

as ρgoal.
Initialize: Zgoal ← ∅, ρgoal(·, ·, 0) as in Eq 3.
Using dynamic programming, compute ρgoal(·, ·, t) as in Eq 4 for t = 1, 2, . . . , |S| .
Add all s, a ∈ S ×A where ρgoal(s, a, |S|) > 0 to Zgoal

First, for all s̃ ∈ S and ã ∈ A, we set:

ρM
†

π,s (s̃, ã, 0) =

{
1− γ s̃ = s and ã = π(s)

0 otherwise
(3)

Then, at each step, t+ 1, we will set:

ρM
†

π,s (s̃, ã, t+ 1) = ρM
†

π,s (s̃, ã, t) + γ
∑
s̃′∈S

T (s̃′, π(s̃′), s̃)ρM
†

π,s (s̃′, π(s̃′), t) (4)

B.4 Computing optimistic policies

πgoal, πexplore, and πswitch are the optimisitc policies for three different MDPs, Mgoal, Mexplore, and Mswitch
(described below). For the theory, we assume that these policies are the true optimistic policy, but in practice
this is computed using finite-horizon optimistic form of value iteration introduced in Strehl and Littman (2008).
Here we describe this optimistic value iteration procedure.

Optimistic Value Iteration Let M† be an MDP that is the same as M but with an arbitrary reward function
R† and discount factor γ†. Then, the optimistic state-action value function is computed as follows.

Q
†
(s, a, 0) = 0

Q
†
(s, a, 1) = R†(s, a)

Q
†
(s, a, t) = R†(s, a) + γ† max

T †∈CI(
∆
T )

∑
s′∈S

T †(s, a, s′) max
a′∈A

Q
†
(s′, a′, t− 1), ∀t > 0. (5)

As t→∞, Q
†
(s, a, t) converges to a value Q

†
(s, a) since the above mapping is a contraction mapping. For our

theoretical discussion, we assume that we compute these values for an infinite horizon i.e., we compute Q
†
(s, a).

We then let T
†
denote the transition probability from CI(

∆

T ) that corresponds to the optimistic transitions that
maximize Q

†
in Equation 5. Also, we let M

†
denote the ‘optimistic’ MDP, 〈S,A, T †, R†, γ†〉.
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Algorithm 6 Compute Analogy-based Confidence Intervals (α,∆)

Require: State-action and state-action-state counts n(·, ·), n(·, ·, ·).
Construct T̂ (the empirical transition probabilities) using n(·, ·), n(·, ·, ·).
Compute ε̂T (s, a) with Eq 1 using δT .
for (s, a) ∈ S ×A do

(s̃, ã)← arg min{ε̂T (s, a), mins̃,ã εT (s̃, ã) + ∆((s, a), (s̃, ã))}.
∆
εT (s, a) := ε̂T (s̃, ã).
for s′ ∈ S do

s̃′ ← α((s, a, s′), (s̃, ã)).
∆

T (s, a, s′) := T̂ (s̃, ã, s̃′).

Goal MDP. We defineMgoal to be an MDP that is the same asM , but without the state-action pairs from Ẑunsafe
(which is a set of state-action pairs that we will mark as unsafe). More concretely, Mgoal = 〈S,A, T,Rgoal, γgoal〉,
where:

Rgoal(s, a) =

{
−∞ (s, a) ∈ Ẑunsafe

R(s, a) otherwise.

We then define Qgoal to be the finite-horizon optimistic Q-value computed on Mgoal, and πgoal the policy dictated
by the estimate of Qgoal. Also, let T goal denote the optimistic transition probability and Mgoal the optimistic
MDP.

Using the above quantities, we now describe how to compute Zgoal (which we also summarize in Alg 5). Recall
that we want Zgoal to be the set of all state-actions that would be visited with some non-zero probability by

following πgoal under the optimistic MDP Mgoal. More concretely, for convenience, first define ρgoal := ρ
Mgoal
πgoal,sinit

,

where ρMgoal
πgoal,sinit

is as defined in Equation 2. Then, we would like Zgoal to be the set {(s, a) ∈ S×A : ρgoal(s, a) > 0}.

However, directly computing this infinite-horizon estimate in practice is impractical. Instead, here we make use
of Lemma 11 and Corollary 3, which allow us to exactly compute Zgoal through a finite-horizon estimate of ρgoal.

Specifically, consider the finite-horizon estimate of ρgoal (i.e., the finite horizon estimate of ρMgoal
πgoal,sinit

as defined in
Equation 3 and Equation 4) which can be computed using dynamic programming. In Lemma 11, we show that if
we set the horizon H ≥ |S|, then ρgoal(s, a,H) > 0 if and only if ρgoal(s, a) > 0. Hence, we fix H to be any value
greater than or equal to |S| and then compute

Zgoal := {(s, a) ∈ S ×A : ρgoal(s, a,H) > 0.} (6)

As stated in Corollary 3, this will guarantee what we need, namely that Zgoal = {(s, a) ∈ S ×A : ρgoal(s, a) > 0}.
We summarize this algorithm in Algorithm 5

Explore MDP. We define Mexplore = 〈S,A, T,Rexplore, γexplore〉 to be an MDP with the same states, actions,
and transition function as M , but with a different reward function, Rexplore (computed in Algorithm 4), and
discount factor, γexplore. Rexplore is defined as follows:

Rexplore(s, a) =


1 (s, a) ∈ Zexplore

0 (s, a) ∈ Ẑsafe \ Zexplore

−∞ otherwise.

Switch MDP. We define Mswitch = 〈S,A, T,Rswitch, γswitch〉 to be an MDP with the same states, actions,
and transition function as M , but with a different reward function, Rswitch, and discount factor, γswitch. More
specifically, Rswitch is defined as follows:
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Rswitch(s, a) =


1 (s, a) ∈ Zgoal

0 (s, a) ∈ Ẑsafe \ Zgoal

−∞ otherwise.

B.5 Regarding Safe Islands

Here, we elaborate on the motivation behind involving the notion of returnability (a) in Assumption 5 and (b) in
the definition of Zsafe in Definition 5.

Returnability in Assumption 5. Recall that a key motivation behind Assumption 5 was that in order to
add a safe subset of state-actions to the current safe set, it is necessary for the agent to establish that subset’s
returnability i.e., establish a return path from the to-be-added subset to the current safe set. Here we explain why
this is necessary. Consider a hypothetical agent that tries to expand its safe set without ensuring that whatever it
adds to the safe set is returnable. Such an agent might venture into a safe island: although the agent knows that
the subset of state-action pairs it has entered into is safe, the agent does not know of any safe path from that
subset back to the original safe set. There are two distinct kinds of such safe islands. The first is where there is
truly no safe return path; the second is where there does, in fact, exist some safe return path, but the agent has
not yet established that this path is indeed safe. We will refer to these islands as True Safe Islands and False Safe
Islands.

Although entering into a True Safe Island is not a problem for ensuring optimality in the PAC-MDP sense,
entering into a False Safe Island creates trouble. More concretely, in a True Safe Island, since there is no safe way
to leave such an island, even the safe-optimal policy must remain on this True Safe Island. Thus, the agent that
has ventured into a True Safe Island, can potentially find the ε-optimal policy, even though it may be forever
stuck in this island. However, in a False Safe Island, since there is indeed a safe path to leave this island, it
can be the case that the safe-optimal policy from this island will leave the island (and then achieve far higher
future reward, than a policy confined to the False Safe Island). Hence, for the agent to be PAC-MDP optimal, it
must first establish safety of this path. However, for an agent stuck inside this island, there may be no means to
establish safety of that path simply by exploring that island – unless the island is rich enough with analogous
states like Z0 is (which may not be the case if this happens to be a tiny island). Thus, the agent could be forever
stuck in the False Safe Island and even worse, it might act ε-sub-optimally forever (by choosing to remain instead
of exiting). Hence, it’s necessary for the agent to establish returnability of any state-action pair before adding it
(and Assumption 5 enables us to do this).

Returnability in Definition 5. Next, we explain the motivation behind defining Zsafe in Definition 5 to be
a “returnable” set. Specifically, recall that Zsafe is a safe subset of state-actions, and we would like to compete
against the optimal policy on this subset; more importantly, we defined this in a way that any state-action pair in
this set is returnable, meaning that it has a return path to Z0.

Consider the hypothetical scenario where Zsafe is defined to allow non-returnable state-actions. Here, we argue
that the agent will have to navigate some impractical complications. To begin with, this alternative definition of
Zsafe could mean that the safe-optimal policy may lead one into True Safe Islands i.e., safe subsets of state-actions
from which there is no safe path back to Z0. This in turn could potentially require the agent to enter into a True
Safe Island in order to be PAC-MDP-optimal. Therefore, when the agent expands its safe set, it is necessary for
it to find True Safe Islands and add them to the safe set; while doing so, crucially, as discussed earlier, the agent
must also avoid adding False Safe Islands to the safe set. Then, in order to meet these two objectives, the agent
should consider every possible safe island and consider all its possible return paths, and establish their safety. If
it can be established that no safe return paths exist for a particular safe island, the agent can label the island as
a True Safe Island and add it to its safe set.

Thus, in theory, the above fairly exhaustive algorithm can address the more liberal definition of Zsafe; however, in
many practical settings, it may be expensive to fully determine the safety of every state-action pair. Hence, we
choose to ignore this situation by enforcing that Zsafe is returnable. With this framework, our algorithm can
grow the safe set by establishing return paths from the edges of the safe set (as against having to also look for
safe islands and establish safety of all their possible return paths).
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B.6 MDP metrics and our analogy function

State-action similarities have been used outside of the safety literature in order to improve computation time of
planning and sample complexity of exploration. Bisimulation seeks to aggregate states into groupings of states
that have similar dynamics or similar Q-values (Givan et al., 2003; Taylor et al., 2009; Abel et al., 2017; Kakade
et al., 2003). These state aggregations allow for more efficient planning and exploration (Kakade et al., 2003).
Other work has used pseudo-counts to learn approximate state aggregations (Taïga et al., 2018). The reason we do
not use state-aggregation methods for transferring dynamics knowledge is that we want to include environments
where similarities cannot easily partition the state space, such as situations where the similarity between two
states is proportional to their distance.

C Proof Outline

The following subsections describe the overall techniques and intuition, and serve as a rough sketch of the proof
of Theorem 1.

C.1 Establishing Safety

We now highlight the key algorithmic aspects which ensure provably safe learning, in other words, that (w.h.p) the
agent always experiences only non-negative rewards. Recall that our agent maintains a safe set Ẑsafe, and in order
to add new state-action pairs to Ẑsafe while ensuring that Ẑsafe is closed, we must be able to determine a “safe
return policy” to Ẑsafe. However, doing this in a setting with unknown stochastic dynamics poses a significant
challenge: we must be able to find a return policy where, for every state-action pair in the return path, we know
the exact support of its next state; furthermore, all these state-action pairs should return to Ẑsafe with probability
1. Below, we lay out the key aspects of our approach to tackling this.

“Transfer” of confidence intervals. As a first step, we start by establishing confidence intervals on the
transition distributions of all state-action pairs as described below. Let T̂ denote the empirical transition
probabilities. Just as in Strehl and Littman (2008), we can compute L1 confidence intervals of these estimates
using the Hoeffding bound (details in Appendix B.2). Let ε̂T (s, a) denote the L1 confidence interval for the
empirical transition probability T̂ (s, a). Using the provided distance and analogy function ∆ and α, and using
simple triangle inequalities, we can then derive tighter confidence intervals ∆

εT (centered around an estimated
∆

T ) as in Alg 6. The idea here is to “transfer” the confidence interval from a sufficiently similar, well-explored
state-action pair to an under-explored state-action pair, using analogies.

Learning the next-state support. Crucially, we can use these transferred confidence intervals to infer the
support of state-action pairs we have not experienced. More concretely, in Lemma 2 we show that, when a
confidence interval is sufficiently tight, specifically when ∆

ε (s, a) ≤ τ/2 for some (s, a) (where τ is the smallest
non-zero transition probability defined in Assumption 4), we can exactly recover the support of the next state
distribution of (s, a). This fact is then exploited by Algorithm 2 to expand the safe set whenever the confidence
intervals are updated.

Correctness of Ẑsafe. To expand Ẑsafe while ensuring that it is safe and communicating, Algorithm 2 first
creates a candidate set, Zcandidate, of all state-action pairs (s, a) with sufficiently tight confidence intervals and
non-negative rewards (and so, we know their next state supports). The algorithm then executes three (inner)
loops each of which prunes this candidate set. To ensure communicatingness, the first loop eliminates candidates
that have no probability of reachability from Ẑsafe, and the second loop eliminates those from which there is no
probability of return to Ẑsafe. In order to ensure closedness, the third loop eliminates those that potentially lead
us outside of Ẑsafe or the remaining candidates. We repeat these three loops until convergence. We prove in
Lemmas 4 and 3 that Algorithm 2 correctly maintains the safety and communicatingness of Ẑsafe and in Lemma 1
that the algorithm terminates in polynomial time. Note that in Theorem 1, we prove that (w.h.p.) our agent
always picks actions only from Ẑsafe.

Completeness of Ẑsafe. While the above aspects ensure correctness of Algorithm 2, these would be satisfied
even by a trivial algorithm that always only returns Z0. Hence, it is important to establish that for given set of
confidence intervals, Ẑsafe is “as large as it can be”. More concretely, consider any state on the edge of Ẑsafe for
which there exists a return policy to Ẑsafe which passes only through (non-negative reward) state-action pairs
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with confidence intervals at most τ/2; this means that we know all possible trajectories in this policy, and all of
these lead to Ẑsafe. In such a case, we show in Lemma 6 that Algorithm 2 does indeed add this edge action and
all of the actions in every possible return trajectory to Ẑsafe.

C.2 Guided Exploration

To be able to add a state-action pair to our conservative estimate of the safe-set, Ẑsafe, we not only need to tighten
the confidence intervals of that state-action pair but also that of every state-action in all its return trajectories to
Ẑsafe. Observe that this can be accomplished by exploring state-action pairs inside Ẑsafe that are similar to this
return path, and using analogies to transfer their confidence intervals. However, this raises two main algorithmic
challenges.

Selecting unexplored actions for establishing safety. First, for which unexplored state-action pairs outside
Ẑsafe do we want to establish safety? Instead of expanding Ẑsafe arbitrarily, we will keep in mind the objective
mentioned in our outline of ASE: we want to expand Ẑsafe so that we can get to a stage where every possible
trajectory when following the optimistic goal policy, πgoal, is guaranteed to be safe, allowing the agent to safely
follow πgoal. By letting Zgoal denote the set of all state-action pairs on any path following πgoal from the initial
state sinit, this condition can be equivalently stated as Zgoal ⊂ Ẑsafe.

So, to carefully select such unexplored state-action pairs, ASE calls Algorithm 3, which is an iterative procedure:
in each iteration, it first (re)computes the optimistic goal policy πgoal and the set Zgoal. Using this, it then creates
a set Zedge, which is the intersection of Zgoal and the set of all edge state-action pairs of Ẑsafe. We then hope to
establish safety of Zedge, so that, intuitively, we can expand the frontier of our safe set only along the direction of
the optimistic path. To this end, Algorithm 3 calls Algorithm 4 to compute a corresponding Zexplore ⊂ Ẑsafe to
explore (we will describe Algorithm 4 shortly).

Now, in the case Zexplore is non-empty, Algorithm 3 returns control back to ASE, for it to pursue πexplore – and
Lemma 12 shows that πexplore indeed explores Zexplore in poly-time. But if Zexplore is empty, Algorithm 3 adds all
of Zedge to Ẑunsafe; in the next iteration, πgoal is updated to ignore Ẑunsafe. In Lemma 9, we use Assumption 5,
to prove that the elements added to Ẑunsafe are indeed elements that do not belong to Zsafe (and so we can
confidently ignore Ẑunsafe while computing πgoal). In Lemma 10, we show that this iterative approach terminates
in poly-time and either returns a non-empty Zexplore that can be explored by πexplore, or updates πgoal in a way
that Zgoal ⊂ Ẑsafe. In the case that Zgoal ⊂ Ẑsafe, using Lemma 12, we show that the agent first takes πswitch to
enter into Zgoal in finite time, so that the agent can pursue πgoal.

Selecting safe actions for exploration. To establish safety of an unexplored (s, a) ∈ Zedge, we must explore
state-action pairs from Ẑsafe that are similar to state-actions along an unknown return policy from (s, a) in order
to learn that unknown policy. While such a policy does exist if (s, a) ∈ Zsafe (according to Assumption 5), the
challenge is to resolve this circularity, without exploring Ẑsafe exhaustively.

Instead, Algorithm 4 uses a breadth-first-search (BFS) from (s, a) which essentially enumerates a superset of
trajectories that contains the true return trajectories. Specifically, it first enumerates a list of state-action
pairs that are a 1-hop distance away and if any of them have a loose confidence interval, it adds to Zexplore a
corresponding similar state-action pair from Ẑsafe (if any exist). If Zexplore is empty at this point, Algorithm 4
repeats this process for 2-hop distance, 3-hop distance and so on, until either Zexplore is non-empty or the BFS tree
cannot be grown any further. Lemma 9 argues that this procedure does populate Zexplore with all the state-action
pairs necessary to establish the required return paths; Lemma 7 demonstrates its polynomial run-time. Although
we cannot guarantee that this method does not explore all of Ẑsafe, we do see this empirically, as we show in our
experiments (see Section 6).

D Proofs

This section details our proof of Theorem 1, that ASE is guaranteed to be safe with high probability and is
optimal in the PAC-MDP sense. We start by restating Theorem 1 and proving it. We then examine proofs for
the correctness and polynomial computation time of Algorithm 2. Specifically, we show that the computed Ẑsafe
is closed and communicating. Next we show that Algorithms 4 and 3 correctly compute the desired Zexplore and
an estimate of Zgoal in polynomial time. The following section shows that the computed estimate of Zgoal is in
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fact correct, under certain conditions. Subsection D.4 provides the key lemmas for proving PAC-MDP, namely
that that our agent, following πgoal, πexplore, or πswitch either performs the desired behavior (acting optimally
or reaching certain state-action pairs) or learns something new about the transition function. By bounding
the number of times our agent learns something new, we can show that the agent follows the optimal after a
polynomial number of steps. The final subsection provides and proves additional supporting lemmas.

Theorem 1. For any constant c ∈ (0, 1/4], ε, δ ∈ (0, 1], MDP M = 〈S,A, T,R, γ〉, for δT = δ/(2|S||A|m),
γexplore = γswitch = c1/H , and m = O

(
(|S|/ε̃2) + (1/ε̃2) ln (|S||A|/ε̃)

)
where ε̃ = min

(
τ, ε(1− γ)2, 1/H2

)
and

H = O (max {Hcom logHcom, (1/(1− γ)) ln(1/ε(1− γ))}) ASE is Safe-PAC-MDP with a sample complexity
bounded by O (Hm|S||A|(1/ε(1− γ)) ln(1/δ)).

Proof.

Proof of admissibility. We first establish the probability with which our confidence intervals remain admissible
throughout the entire execution of the algorithm. Note that we only calculate each confidence interval m times
for every state-action pair. Thus, by the union bound and our choice of δT , the confidence intervals defined by
T̂ and ε̂T hold with probability 1− δ/2. Then, by the triangle inequality, even the tighter confidence intervals
computed by Algorithm 6 – defined by

∆

T and ∆
εT – are admissible.

Proof of safety. Next we will show that, given that the confidence intervals are admissible, the algorithm never
takes a state-action pair outside of Zsafe. Corollary 2, Lemma 3 and 4 together show that Ẑsafe is a safe (which
also implies, closed), communicating subset of Zsafe. Using this, we will inductively show that the agent is always
safe under our algorithm. Specifically, assume that at any time instant, starting from s0, the agent has so far
only taken actions from Ẑsafe. Since Ẑsafe is closed and safe, this means that the agent has so far been safe, and
is currently at st ∈ Ẑsafe. We must establish that even now the agent takes an action at such that (st, at) ∈ Ẑsafe.

Now, at each step, recall that according to Algorithm 1, the agent follows either πexplore, πswitch, or πgoal. Consider
the case when the agent follows either πexplore or πswitch.

In this case, for all (s, a) /∈ Ẑsafe the rewards are set to be −∞, and for all (s, a) ∈ Ẑsafe the rewards are set to be
non-negative. To address both πexplore and πswitch together, let the assigned rewards be R†.

Now, for any t ≥ 0, recall that Q
†
(s, a, t) denotes the estimate of Q

†
(s, a) after t iterations of dynamic programming

(not to be confused with the finite-horizon value of the optimistic policy). We first claim that, for all (s, a) ∈ Ẑsafe

and for all iterations t ≥ 1, the resulting optimistic Q-values are such that Q
†
(s, a, t) ≥ 0 if (s, a) ∈ Ẑsafe and

Q
†
(s, a, t) = −∞ otherwise.

We prove this claim by induction on t, assuming that Q
†
(s, a, t) is initialized to some non-negative value for t = 0.

For t = 1, our claim is satisfied because the Q-values equal to the sum of the reward function and some positive
quantity.

Consider any t > 1 and (s, a) ∈ Ẑsafe. We know from Equation 5 that the Q-value for this horizon can be
decomposed into a sum of the reward and the maximum Q-value of the next states (with a positive, multiplicative
discount factor). For (s, a) ∈ Ẑsafe, in Equation 5, we will have that the first term, which is the reward function,
is non-negative. The second term is an expectation over the maximum Q-values (for a horizon of t− 1), where
the expectation corresponds to the probability distribution of T

†
(s, a, ·) over the next states. Since (s, a) ∈ Ẑsafe

and since T
†
is a candidate transition function, by Corollary 1, all the next states according to this transition

function, belong to Ẑsafe. Now, for any s′ ∈ Ẑsafe, there exists a′ such that (s′, a′) ∈ Ẑsafe. By induction, we
have Q

†
(s′, a′, t− 1) ≥ 0, and hence maxa′′ Q

†
(s′, a′′, t− 1) ≥ 0. Hence, even the second term in the expansion

of Q
†
(s, a, t) is non-negative, implying that Q

†
(s, a, t) ≥ 0. Now, for any (s, a) /∈ Ẑsafe, it follows trivially from

Equation 5 that Q
†
(s, a, t) = −∞ since the reward is set to be −∞.

Thus, for any state s ∈ Ẑsafe, we have established that there exists a such that (s, a) ∈ Ẑsafe and Q
†
(s, a) ≥ 0 .

Furthermore, for any action a′ such that (s, a′) /∈ Ẑsafe, Q
†
(s, a′) = −∞. Therefore, π†(s) must be an action a

such that (s, a) ∈ Ẑsafe. This proves that π† ∈ Π(Ẑsafe). In other words, this means that at s ∈ Ẑsafe the agent
takes an action a such that (s, a) ∈ Ẑsafe. This completes our argument for πexplore and πswitch.



Melrose Roderick, Vaishnavh Nagarajan, J. Zico Kolter

As the final case, consider a time instant when the agent follows πgoal. By design of Algorithm 1, we know that
this happens only if Zgoal ⊂ Ẑsafe and s ∈ Zgoal. Now, by definition of Zgoal, since s ∈ Zgoal, we know that
(s, πgoal(s)) ∈ Zgoal. Then, since Zgoal ⊂ Ẑsafe, (s, πgoal(s)) ∈ Ẑsafe, implying that the algorithm picks only safe
actions, even when it follows πgoal.

Proof of PAC-MDP. Now we will show that ASE is PAC-MDP. To do this, we will show that at any step of
the algorithm, assuming our confidence intervals are admissible, the agent will either act ε-optimally or reach a
state outside of the known set K = {(s, a) ∈ S ×A : n(s, a) ≥ m} in some polynomial number of steps with some
positive polynomial probability. To prove this, recall the agent follows either πexplore, πswitch, or πgoal in three
mutually exclusive cases; let us examine each of these three cases.

Case 1: Zgoal 6⊂ Ẑsafe. If Zgoal 6⊂ Ẑsafe, then the agent follows πexplore. In this case, we will show that
the agent will experience a state-action pair from Kc (the complement of K) in the first H1 steps, where
H1 = O(H2/c).

First note that the condition Zgoal 6⊂ Ẑsafe can only change if Zgoal or Ẑsafe are modified, which can only happen
if the agent experiences a state action pair outside K; so, if before the agent takes its H1th step, this condition
changes, we know that the agent has experienced a state-action pair outside K, and hence, we are done.

Consider the case when the agent does not experience any element of Kc in the first H1 − 1 steps; hence the
agent follows a fixed πexplore for these steps. By Lemma 10, since Zgoal 6⊂ Ẑsafe, there must exist some element in
Zexplore (where Zexplore ⊂ Ẑsafe by design of Algorithm 4). Now, recall that πexplore is computed using rewards
Rexplore, which are set to 1 on Zexplore, and either 0 or −∞ otherwise, depending on whether the state-action pair
is in Ẑsafe or not. If we define Mexplore = 〈S,A, T,Rexplore, γexplore〉, then we can invoke Lemma 12 for Mexplore
to establish that the agent reaches Zexplore or Kc.

To do this, we must establish that all requirements of Lemma 12 hold. In particular, we have Zexplore ⊂ Ẑsafe

by design of Algorithm 4. We also have Ẑsafe is communicating (Lemma 4) and closed (Lemma 3) and
that πexplore ∈ Π(Ẑsafe) (from our proof for safety of Algorithm 1). Finally, since m is sufficiently large,
by Lemma 12, the agent will reach Zexplore or Kc in H1 = O(H2/c) steps with probability at least 1/2 as long
as H ≥ Hcomlog 16Hcom

c /log 1
c . Note that although Lemma 12 guarantees this for the behavior of the agent on

Mexplore, the same would apply for M as well, since both these MDPs share the same transition. Finally, note
that since Zexplore /∈ K (by Lemma 8), this means that the agent escapes K in H1 steps.

Case 2: Zgoal ⊂ Ẑsafe, st 6∈ Zgoal. Now consider the next mutually exclusive case where Zgoal ⊂ Ẑsafe but
the current state s 6∈ Zgoal. In this case our agent will attempt to return to Zgoal by following πswitch. In this case,
we argue that, in the next H2 = O(H2/c) steps, the agent either does reach Zgoal or experiences a state-action
pair in Kc. To see why, note that the current condition can only change if Zgoal or Ẑsafe change or if the agent
reaches a state s ∈ Zgoal. As noted before, Zgoal or Ẑsafe are modified only if the agent experiences a state action
pair outside K; so, if before the agent takes its H2th step, this condition changes, we know that the agent has
either experienced a state-action pair outside K or has reached Zgoal, and hence, we are done.

Consider the case when the agent does not experience any element of Kc in the first H2 − 1 steps, and hence
follows a fixed πswitch for these steps. Since Zgoal 6= ∅ (which is trivially true since s0 ∈ Zgoal always), using the
same reasoning as the previous case, we can again use Lemma 12 to show that the agent will reach a state-action
pair in Zgoal or outside of K in H2 = O(H2/c) steps with probability at least 1/2, since m is sufficiently large
and H ≥ Hcomlog 16Hcom

c /log 1
c .

Case 3: Zgoal ⊂ Ẑsafe, st ∈ Zgoal. Finally, we consider the last case where Zgoal ⊂ Ẑsafe and the current
state s ∈ Zgoal. In this case, we argue that the agent either takes an action that is near-optimal, or in the next H
steps, it reaches Kc with sufficiently large probability.

Let P(AM ) be the probability that starting at this step, the Algorithm 1 leads the agent out of K in H steps,
conditioned on the history pt. Now, if P(AM ) ≥ ε(1− γ)/4, the agent will escape K in H steps with sufficient
probability. Hence, consider the case when P(AM ) ≤ ε(1− γ)/4.

Then, assuming H ≥ O
(

1
1−γ ln 1

ε(1−γ)

)
and sufficiently large m, we can use the above probability bounds and



Provably Safe PAC-MDP Exploration Using Analogies

Lemma 14 to show that in this case the state st that the agent currently is in satisfies:

V AM (pt) ≥ V ∗Mgoal
(st)− ε. (7)

To complete our discussion of this case, we need to lower bound the right hand side in terms of the value of the
safe-optimal policy π∗safe on the true MDP M . Recall that π∗safe is a policy that maximizes V π

?
safe

M subject to the
constraint that π∗safe ∈ Π(Zsafe). Now, consider an MDP M∗goal with the same transitions as M . However it has
rewards R∗goal such that for all (s, a) /∈ Zsafe, R∗goal(s, a) = −∞ and everywhere else R∗goal(s, a) = R(s, a). Now,
since π∗safe ∈ Π(Zsafe), from Fact 1, we have that following π∗safe from any s ∈ Zsafe, the agent would never exit
Zsafe. Hence, for any s ∈ Zsafe, V

π∗safe
M∗goal

(s) = V
π∗safe
M (s). Note that this equality applies to the current state st since

it is inside Zgoal, and we know that Zgoal ⊂ Ẑsafe and Ẑsafe ⊂ Zsafe (by Corollary 2).

Now, let us compare M∗goal and Mgoal. Recall that Mgoal has its rewards set to −∞ only on Ẑunsafe (and
everywhere else, it equals R(s, a)). By Lemma 9, we know that Ẑunsafe ∩ Zsafe = ∅, and therefore Ẑunsafe ⊂ Zcsafe.
Thus, both Mgoal and M?

goal have the same rewards as M , except Mgoal has the rewards set to −∞ on a set
Ẑunsafe, while M?

goal has rewards set to −∞ on a superset of Ẑunsafe, Zcsafe. In other words, the rewards of Mgoal
are greater than or equal to the rewards of M∗goal. Thus, the value of the optimal policy on Mgoal cannot be less

than that of M∗goal. Formally, for all s, V ∗Mgoal
(s) ≥ V π

∗
safe

M∗goal
(s). Since we also have V π

∗
safe

M∗goal
(st) = V

π∗safe
M (st), we get:

V ∗Mgoal
(st) ≥ V

π∗safe
M (st). (8)

Thus, from Equations 7 and 8, we get that at this state, V AMgoal
(pt) ≥ V

π∗safe
M (st)− ε.

In summary, the agent does at least one of the following at any timestep:

1. reach Kc in H1 steps (starting from Case 1) with probability at least 1/2

2. reach Kc in H2 steps (starting from Case 2), with probability at least 1/4

3. reach Kc in H steps (starting from Case 3) with probability at least Ω(ε(1− γ)).

4. reach Zgoal in H2 steps (starting from Case 2) with probability at least 1/4.

5. take a nearly-optimal action (in Case 3).

Note that in the above list, we have slightly modified the guarantee from Case 2. In particular, Case 2 guaranteed
that with a probability of 1/2 the agent would reach either Kc or Zgoal; from this we have concluded that at
least one of these events would have a probability of at least 1/4.

We first upper bound the number of sub-optimal steps corresponding to the first three events. Observe that the
agent can only experience a state-action pair outside of K a total of m|S||A| times. Now, by the Hoeffding bound,
we have that it takes at most O

(
m|S||A| 1

ε(1−γ) ln 1
δ

)
independent trials to see m|S||A| heads in a coin that has a

probability of at least Ω(min (1/4, ε(1− γ))) = Ω(ε(1− γ)) as turning out to be heads. Hence, these trajectories
would correspond to at most O

(
max(H1, H2, H) ·m|S||A| · 1

ε(1−γ) ln 1
δ

)
many sub-optimal steps.

Next, we upper bound the number of sub-optimal steps corresponding to the fourth event. Consider two successful
occurrences of this event. That is, in both instances, the agent did indeed reach Zgoal. In such a case, there
must be at least one time instant between these two occurrences when the agent experienced Kc; if not, after
the first occurrence, by design of Algorithm 1, the agent would have remained in Zgoal, thereby precluding the
second occurrence of the event from happening. Thus, there can be at most as many successful occurrences of
this event as m|S||A|+ 1. Again, by a Hoeffding bound, this corresponds to O

(
H2 ×m|S||A| 1

ε(1−γ) ln 1
δ

)
many

sub-optimal steps, with probability 1− δ/2.
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Combining the above two bounds and plugging in the bound on m gives our final bound on the number of
sub-optimal steps.

D.1 Proofs about Algorithm 2

Recall that Algorithm 2 expands the set of safe state-action pairs Ẑsafe (by making use of an updated set of
confidence intervals) by first creating a candidate set and then iteratively pruning the set until it stops changing.

First, in Lemma 1, we establish this procedure terminates in polynomial time. In the lemmas that follow after
that, we prove soundness and completeness. In particular, in Lemma 3, we establish that the updated Ẑsafe is
indeed safe. In Lemma 4, we establish that Ẑsafe is communicating and as a result of which in Corollary 2, we
establish that Ẑsafe ⊂ Zsafe. Finally, in Lemma 6 we prove completeness in that, if there exists a state-action pair
on the edge of Ẑsafe, and if there exists a return path from that edge that only takes state-action pairs whose
confidence intervals are sufficiently small, then that state-action pair and all of that return path is added to Ẑsafe.
Lemma 1. Algorithm 2 terminates in poly(|S|, |A|) time.

Proof. The algorithm begins with a set Zcandidate with |S| · |A| many elements. Now in each outer iteration,
Zcandidate either ends up losing some elements, or remains the same. If it does remain the same, then we break
out of the outer loop. Thus, there can be at most O(|S| · |A|) many iterations of the outer loop.

Next, consider the first inner while block. In each iteration of the while loop, we either add an element to
Zreachable or break out of the loop if Zreachable does not change. Thus, there can be at most O(|S| · |A|) many
iterations of this while loop. As for the time complexity of the inner while loops, since Ẑsafe ∪Zreachable is a finite
set, it is easy to see that these iterations terminate in polynomial time. A similar argument holds for the next
while block too. For the third while block, we must apply a slightly different version of this argument where we
make use of the fact that in each run of the while loop, we either remove a state-action pair from Zclosed or break
out of the loop. From the above arguments, it follows that the algorithm terminates in polynomial time.

Note: In the following discussions, unless otherwise specified, Zclosed denotes the set as it is in the last step of
Algorithm 2.

Before we prove our other lemmas about Algorithm 2, we first establish a result about Algorithm 6 that computes
the tighter confidence intervals. Specifically we show that these confidence intervals are computed in a way that
if a particular interval is sufficiently tight, then every candidate transition probability in that interval has the
same support of next state-action pairs as the true support.
Lemma 2. Assume the confidence intervals are admissible. Then, for any (s, a) such that ∆

εT (s, a) < τ/2, for
all s′ ∈ S,

∆

T (s, a, s′) > 0 if and only if T (s, a, s′) > 0.

Proof. First consider the case when T (s, a, s′) = 0; we will show that
∆

T (s, a, s′) = 0. To see why, consider the
(s̃, ã) that contributed to this confidence interval as computed in the step of Algorithm 6. Since ∆

εT (s, a) < τ/2,
from Algorithm 6, we have that ∆((s, a), (s̃, ã)) ≤ τ/2. This implies that if s̃′ := α((s, a, s′), (s̃, ã)), then
|T (s̃, ã, s̃′)− T (s, a, s′)| ≤ τ/2. Since we assumed T (s, a, s′) = 0, we have that |T (s̃, ã, s̃′)| ≤ τ/2. However, by
Assumption 4, we have that the range of T lies in [0] ∪ [τ, 1], therefore, to satisfy the above inequality, we must
have that T (s̃, ã, s̃′) = 0. This would imply that the empirical probability T̂ (s̃, ã, s̃′) too is zero, which then is
assigned to

∆

T (s, a, s′) in Algorithm 6. Thus,
∆

T (s, a, s′) = 0.

Now consider the case when T (s, a, s′) > 0. We will show that
∆

T (s, a, s′) > 0. First, since T (s, a, s′) > 0, by
Assumption 4, it means that T (s, a, s′) ≥ τ . As argued in the previous case, since |T (s̃, ã, s̃′)− T (s, a, s′)| ≤ τ/2,
we will also have T (s̃, ã, s̃′) > τ/2. Again, by Assumption 4, this would imply T (s̃, ã, s̃′) ≥ τ . Note that, from
Algorithm 6, we have that, since ∆

εT (s, a) < τ/2, ε̂T (s̃, ã) < τ/2. And since confidence intervals are admissible,
this means that |T (s̃, ã, s̃′)− T̂ (s̃, ã, s̃′)| ≤ τ/2. This, together with the fact that T (s̃, ã, s̃′) > τ/2, means that
T̂ (s̃, ã, s̃′) > τ/2. In Algorithm 6, we would assign this value to

∆

T (s̃, ã, s̃′), thus, resulting in
∆

T (s, a, s′) > 0.

This lemma allows us to compute the support of state-action pairs we have never experienced. Algorithm 2 uses
this idea to expand Ẑsafe in a way that retains closedness, thus, safety.
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Lemma 3. Assume our confidence intervals are admissible. Whenever Algorithm 1 calls Algorithm 2, in the
final step of Algorithm 2, Ẑsafe ∪ Zclosed is a safe set.

Proof. We will prove this statement using induction. That is we assume that, before every call to Algorithm 2,
Ẑsafe is a safe set. As the base case, this is satisfied in the first call because then, Ẑsafe = Z0 and we have assumed
Z0 to be a safe set in Assumption 1.

Since we populate Zcandidate with only those state-action pairs with non-negative rewards, it follows directly from
the run of the algorithm that all state-action pairs that are eventually found in Zclosed have non-negative rewards.
Thus, to show that Zclosed ∪ Ẑsafe is safe, we only need to show that Zclosed ∪ Ẑsafe is a closed set. That is, we
need to show that for any (s, a) ∈ Zclosed ∪ Ẑsafe, every possible next state has an action in Ẑsafe ∪ Zclosed i.e.,
for all s′ ∈ {s′ ∈ S : T (s, a, s′) > 0}, there exists an a′ ∈ A where (s′, a′) ∈ Ẑsafe ∪ Zclosed. From the induction
assumption (that Ẑsafe is closed), this trivially holds for all (s, a) ∈ Ẑsafe.

Hence, consider any (s, a) ∈ Zclosed. From our choice of Zcandidate in the first step of the algorithm, we know that
∆
εT (s, a) < τ/2. Then from Lemma 2, we know that the set

∆

S
′
= {s′ ∈ S :

∆

T (s, a, s′) > 0} is identical to the true
support of the next state-action pairs of (s, a). But from the third inner while loop of our algorithm, we have that
for all s′ ∈

∆

S
′
, we ensure that there exists an a′ ∈ A where (s′, a′) ∈ Zclosed ∪ Ẑsafe, implying that all possible next

states of (s, a) have a corresponding action in Zclosed ∪ Ẑsafe. Thus, Zclosed ∪ Ẑsafe is closed, and also, safe.

As a corollary of the above result, we can also show that Ẑsafe is closed even if we replaced the true transitions by
some candidate transition.
Corollary 1. Assume the confidence intervals are admissible. During the run of Algorithm 1, we always have that,
for any T † ∈ CI(

∆

T ) and for any (s, a) ∈ Ẑsafe, if there exists s′ ∈ S such that T †(s, a, s′) > 0, then s′ ∈ Ẑsafe.

Proof. By design of Algorithm 2, we know that for any (s, a) ∈ Ẑsafe, either (s, a) ∈ Z0 or ∆
ε (s, a) < τ/2.

Consider the case where (s, a) ∈ Z0. Since the confidence intervals are admissible, by the third requirement in
the definition of the candidate transition set (Definition 9), we have that if T †(s, a, s′) > 0, then s′ ∈ Z0. Since
Z0 ⊂ Ẑsafe, s′ ∈ Ẑsafe.

Consider the case where ∆
ε (s, a) < τ/2. Since the confidence intervals are admissible, we have from Lemma 2 that

if T †(s, a, s′) > 0, then T (s, a, s′) > 0. Since we have established in Lemma 3 that Ẑsafe is closed, this means that
s′ ∈ Ẑsafe.

In order to make sure that our agent can continue exploring without ever getting stuck, we must ensure that
whenever Algorithm 2 expands Ẑsafe, it remains communicating.
Lemma 4. Assume our confidence intervals are admissible. Whenever Algorithm 1 calls Algorithm 2, in the
final step of Algorithm 2, Ẑsafe ∪ Zclosed is communicating.

Proof. We will prove this statement using induction. We first assume that, before every call to Algorithm 2, Ẑsafe
is an communicating set, and using this, prove that the updated safe set, namely Ẑsafe ∪ Zclosed computed at the
end of Algorithm 2, is also communicating. As the base case, this is satisfied in the first call because Ẑsafe = Z0

and we have assumed Z0 to be an communicating set in Assumption 1.

Informally, to show that Ẑsafe is communicating, we will first show that for every state in Ẑsafe, the agent has a
return policy which ensures that from anywhere in Ẑsafe∪Zclosed, it can reach that state with non-zero probability.
As a second step, we will show that for every state in Zclosed, the agent has a ‘reach’ policy which ensures that
from anywhere in Ẑsafe ∪ Zclosed it can reach that state with non-zero probability. Finally, we will put these
together to establish communicatingness.

Proof that Zclosed is returnable. As the first part of the proof, we will show that,

∀s̃ ∈ Ẑsafe ∃πreturn ∈ Π(Ẑsafe ∪ Zclosed), s.t. ∀s ∈ Ẑsafe ∪ Zclosed P [∃t, st = s̃|πreturn, s0 = s] > 0. (9)

Fix an s̃ ∈ Ẑsafe. We will prove the existence of a suitable πreturn by induction. Consider the last outer iteration
of our algorithm during which we know that Zreturnable at the end of the second inner while block is identical to



Melrose Roderick, Vaishnavh Nagarajan, J. Zico Kolter

Zclosed at the end of the third inner while block. In this round, consider some (s, a) that is about to be added to
Zreturnable. For the induction hypothesis, we will consider a hypothesis that is stronger than the one above. In
particular, assume that there exists πreturn such that for every initial state s′ currently in Ẑsafe ∪Zreturnable, there
is non-zero probability of returning to s̃, while visiting only those states in Ẑsafe ∪ Zreturnable on the way to s̃.
Formally, assume that ∃πreturn ∈ Π(Ẑsafe ∪ Zclosed) such that:

∀s′ ∈ Ẑsafe ∪ Zreturnable, P
[
∃t, st=s̃,

∀t′<t st′∈Ẑsafe∪Zreturnable

∣∣∣πreturn, s0 = s′
]
> 0. (10)

This assumption is of course true initially when Ẑsafe ∪ Zreturnable = Ẑsafe, by communicatingness of Ẑsafe.

Now, by the manner in which the second while block works, we know that there exists an s′ such that
∆

T (s, a, s′) > 0
and there exists a′ such that (s′, a′) ∈ Ẑsafe ∪ Zreturnable. Note that since ∆

εT (s, a) < τ/2 (by our initial choice of
Zcandidate) and since

∆

T (s, a, s′) > 0, it follows from Lemma 2 that T (s, a, s′) > 0.

Next, consider π′return that is identical to π everywhere, except π′return(s) = a. Note that since (s, a) ∈ Ẑsafe∪Zclosed,
π′return ∈ Π(Ẑsafe ∪ Zclosed).

First, we have that the induction assumption still holds for every s′ ∈ Ẑsafe ∪ Zreturnable. That is, for every
s′ ∈ Ẑsafe ∪ Zreturnable, with non-zero probability, π′return starts from s′ to return to s̃, without visiting any state
outside Ẑsafe ∪ Zreturnable. This is because, for a given random seed, if the agent were to follow πreturn from s to
return to s′′, without visiting any states outside of Ẑsafe ∪ Zreturnable, the agent would do the same under π′return
since the two policies would agree on all the visited states.

Next, we have the following when starting from s:

P
[
∃t, st=s̃

∀t′<t st′∈Ẑsafe∪Zreturnable

∣∣∣π′return, s0 = s
]
≥ T (s, a, s′)P

[
∃t, st=s̃

∀t′<t st′∈Ẑsafe∪Zreturnable

∣∣∣π′return, s0 = s′
]

≥ T (s, a, s′)P
[
∃t, st=s̃

∀t′<t st′∈Ẑsafe∪Zreturnable

∣∣∣πreturn, s0 = s′
]

> 0.

Here, the first inequality simply follows from the fact that one possible way to reach s̃ from s, is by first taking a
step to s′. In the second step, we were able to replace π′return with πreturn by a similar logic as before. Specifically,
for a given random seed, if an agent starts from s′ to reach s̃ following πreturn without ever visiting s, it should
do the same under π′return too.

Finally, we have that both the above terms are strictly positive. Hence, we establish that π′return, with non-zero
probability, allows the agent to return to s̃, while never visiting any state outside Ẑsafe ∪ Zreturnable ∪ {(s, a)}.

Proof for Zclosed is reachable. For the second part of the proof, we will show that ∀s ∈ Zclosed,

∃πreach ∈ Π(Zclosed ∪ Ẑsafe), s.t.∀s̃ ∈ Ẑsafe ∪ Zclosed P[∃t, st = s|s0 = s̃, πreach] > 0. (11)

We will prove this by induction. Consider the last outer iteration of the algorithm and consider the first inner
while loop where we populate Zreachable. Note that since this is the last outer iteration, at the end of this while
block, Zreachable is exactly equal to Zclosed that is output at the end of the algorithm. (Thus, during the run
of this while loop, we always have that Zreachable ⊂ Zclosed.) In this while loop, consider the instant at which
some (s′, a′) is about to be added to Zreachable. We will assume by induction that for all s̃ that are currently in
Ẑsafe ∪ Zreachable, Equation 11 holds i.e., ∃πreach such that from anywhere in Ẑsafe ∪ Zreachable, we can reach s
with non-zero probability.

As the base case, because of how we have initialized Zreachable, we have that for all s ∈ Ẑsafe ∪Zreachable, s ∈ Ẑsafe.
Thus, for this case, the induction assumption holds from the fact that we have proven returnability to Ẑsafe.

Now, let us turn to the point when the algorithm is about to add (s′, a′) to Zreachable. Then, note that this means
that there exists (s, a) ∈ Ẑsafe ∪Zreachable such that

∆

T (s, a, s′) > 0. Since ∆
εT (s, a) < τ/2 (by our initial choice of

Zcandidate) and since
∆

T (s, a, s′) > 0, by Lemma 2, we have that T (s, a, s′) > 0.
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Next, consider the policy πreach guaranteed by our induction assumption, to reach s from anywhere in Ẑsafe∪Zclosed.
Then, define a policy π′reach which is identical to πreach on all states, except that π′reach(s) = a. Note that since
(s, a) ∈ Ẑsafe ∪Zreachable ⊂ Ẑsafe ∪Zclosed, and since πreach ∈ Π(Ẑsafe ∪Zclosed), we have π′reach ∈ Π(Ẑsafe ∪Zclosed).

Now, we can show that π′reach reaches s′ from any s̃ ∈ Ẑsafe ∪ Zclosed because of the following:

P [∃t, st = s′|π′reach, s0 = s̃] ≥ T (s, a, s′)Pr [∃t, st−1 = s|π′reach, s0 = s̃]

≥ T (s, a, s′)Pr [∃t, st−1 = s|πreach, s0 = s̃]

> 0.

Here, the first inequality comes from the fact that one way to reach s′ is by traveling to s and then taking the
action a. In the next inequality, we make use of the fact that, for a given random seed, if the agent follows
πreach from s̃ to visit s for the first time, it would follow the same steps to reach s even under π′reach, since the
policies would agree until then. Finally, we have from our induction assumption that the probability term in the
penultimate line is strictly positive; since the transition probability is strictly positive too, the last inequality
holds.

This proves that π′reach ∈ Π(Ẑsafe ∪ Zclosed) reaches s′ from anywhere in Ẑsafe ∪ Zclosed with non-zero probability.

Proof for communicatingness. Finally, we will wrap the above results to establish communicatingness. From
the above results, we have that ∀s′ ∈ Ẑsafe ∪ Zclosed:

∃πvisit ∈ Π(Ẑsafe ∪ Zclosed), s.t.∀s ∈ Ẑsafe ∪ Zclosed P [∃t, st = s′|πvisit, s0 = s] > 0.

To establish communicatingness, we need to show that this probability is in fact 1. To do this, we will first note
that πvisit ∈ Π(Ẑsafe ∪ Zclosed) and since Ẑsafe ∪ Zclosed is closed (as proven in Lemma 3), then use Lemma 5 to
establish communicatingness.

Corollary 2. Assume our confidence intervals are admissible. Whenever Algorithm 1 calls Algorithm 2, in the
final step of Algorithm 2, Ẑsafe ∪ Zclosed ⊂ Zsafe.

Proof. Note that Z0 ⊂ Ẑsafe ∪ Zclosed by construction. Then, since we have established communicatingness of
Ẑsafe ∪ Zclosed in Lemma 4, for every (s, a) ∈ Ẑsafe ∪ Zclosed, there should exist a policy πreturn that travels from
(s, a) and goes to any states in Z0 with probability 1. Furthermore since we established safety in Lemma 3, this
also means that every state-action pair visited in this path has non-negative reward. Thus, by definition of Zsafe,
the claim follows.

Although our definition of communicating, Def 2, seems strict since its guarantee must hold with probability
1, we show here that this is no stronger than having the guarantee simply hold with positive probability. This
lemma helps us prove that our definition of communicating is equivalent to that of the standard definition (see
Fact 2) as well as help prove that the safe set we construct is indeed communicating (see Lemma 4).

Lemma 5. If there exists a closed set of state-action pairs Z such that ∀s′ ∈ Z:

∃ πvisit ∈ Π(Z), s.t.∀s ∈ Z P [∃t, st = s′|πvisit, s0 = s] > 0

then it must be the case that this probability is, in fact, equal to 1; specifically, ∀s′ ∈ Z:

∃ πvisit ∈ Π(Z), s.t.∀s ∈ Z P [∃t, st = s′|πvisit, s0 = s] = 1

Proof. From the above, we have that for a given s′ ∈ Z, there must exists a constant H ≥ 0 and a constant p > 0
such that:

∀s ∈ Z P [∃t ≤ H, st = s′|πvisit, s0 = s] ≥ p. (12)
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We will start by equating the probability of never visiting s′ by decomposing the trajectory into a prefix of H
steps and the rest, and then applying the Markov property, as follows:

P[∀t, st 6= s′ |πvisit, s0 = s] =
∑
s′′∈S

P[∀t, st 6= s′ |πvisit, s0 = s′′]P
[
∀t≤H,st 6=s′
sH=s′′

∣∣∣πvisit, s0 = s
]
.

Note that since πvisit ∈ Π(Z) and since Z is closed, we have from Fact 1 that s′′, which is the Hth state in the
trajectory, satisfies s′′ ∈ Z. Therefore, we can restrict the summation to Z (the remaining terms would zero out).
Hence,

P[∀t, st 6= s′ |πvisit, s0 = s]

=
∑
s′′∈Z

P[∀t, st 6= s′ |πvisit, s0 = s′′]P
[
∀t≤H,st 6=s′
sH=s′′

∣∣∣πvisit, s0 = s
]

≤
(

max
s′′∈Z

P[∀t, st 6= s′ |πvisit, s0 = s′′]

)(∑
s′′∈Z

P
[
∀t≤H,st 6=s′
sH=s′′

∣∣∣πvisit, s0 = s
])

=

(
max
s′′∈Z

P[∀t, st 6= s′ |πvisit, s0 = s′′]

)
(P [∀t ≤ H, st 6= s′ |πvisit, s0 = s])

≤
(

max
s′′∈Z

P[∀t, st 6= s′ |πvisit, s0 = s′′]

)
(1− p)

Since the above inequality holds for any s ∈ Z, we can apply a maxs∈Z on the left hand side and rearrange to get:

max
s′′∈Z

P[∀t, st 6= s′ |πvisit, s0 = s′′] · p ≤ 0

Since p > 0 (see Equation 12), this means that the first term here is equal to zero. In other words, with probability
1, ∃t such that st = s′ when the agent starts from any s and follows πvisit, as claimed.

Finally, we want to show that Algorithm 2 computes the largest possible Ẑsafe that still retains safety and
communicatingness. This is necessary since, if this were not true, we could get into a situation where we know
enough to ensure we can perform the optimal policy, but our agent remains trapped in Ẑsafe forever.

Lemma 6. Assume that the confidence intervals are admissible. Consider some call of Algorithm 2 while executing
Algorithm 1. Consider (s̃, ã) /∈ Ẑsafe such that s̃ ∈ Ẑsafe. Let ∃πreturn such that starting at (s̃, ã), πreturn reaches a
state in Ẑsafe with probability 1. Let Z̃ be the set of state-action pairs visited by the agent starting (s̃, ã) following
πreturn before reaching Ẑsafe. Formally, let:

Z̃ = {(s, a) ∈ S ×A : P
[
∃t ≥ 0

(st,at)=(s,a)

∀t′<t st′ /∈Ẑsafe

∣∣∣ (s0, a0) = (s̃, ã), πreturn

]
> 0}.

In the final step of Algorithm 2, if ∀(s, a) ∈ Z̃ \ Ẑsafe,
∆
εT (s, a) < τ/2, then Z̃ ⊂ Ẑsafe ∪ Zclosed.

Proof. Informally, we will show that in each iteration of the algorithm, after the first inner while block, we
have Z̃ ⊂ Ẑsafe ∪ Zreachable; and using this, we will show that after the second inner while block, we have
Z̃ ⊂ Ẑsafe ∪ Zreturnable; and finally, because of this, after the third inner while block, Z̃ ⊂ Ẑsafe ∪ Zclosed. Below,
we prove these three statements, and finally wrap them up to prove the main claim.

Proof for Z̃ ⊂ Ẑsafe ∪ Zreachable. Assume there exists (s̃, ã) as specified in the lemma statement. Then,
formally, we will show that if Z̃ ⊂ Ẑsafe ∪ Zcandidate before the beginning of the first inner while loop, then
Z̃ ⊂ Ẑsafe ∪ Zreachable at the end of the loop.

We will prove this by contradiction. Assume for the sake of contradiction that there exists a non-empty Z̃bad ⊂ Z̃
such that Z̃bad has no intersection with Ẑsafe ∪ Zreachable. Let Z̃good = Z̃ \ Z̃bad. First we note why Z̃good is
non-empty. Since Z̃ \ Ẑsafe ⊂ Zcandidate (from our initial assumption), since (s̃, ã) ∈ Z̃ \ Ẑsafe, and since s̃ ∈ Ẑsafe
(from lemma statement), when initializing Zreachable with {(s, a) ∈ Zcandidate : s ∈ Ẑsafe}, we would add (s̃, ã) to
Zreachable. Thus, Z̃good must contain at least (s̃, ã).
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Next, we argue that there must exist some (s′, a′) ∈ Z̃bad such that there exists an (s, a) ∈ Z̃good for which
T (s, a, s′) > 0 and s /∈ Ẑsafe. If not, then starting from (s̃, ã) ∈ Z̃good, the agent can never hope to reach Z̃bad

before visiting a state Ẑsafe, contradicting the fact that Z̃bad is a subset of state-action pairs that it visits before
reaching Ẑsafe.

Now, consider such an (s′, a′) (which was not added to Zreachable) and its predecessor (s, a), which belongs to
Ẑsafe ∪ Zreachable because it belongs to Z̃good. In some iteration of this while loop, we must have examined
(s, a) ∈ Ẑsafe ∪ Zreachable. Since s /∈ Ẑsafe, we also have (s, a) /∈ Ẑsafe. Since (s, a) ∈ Z̃good, and Z̃good ⊂ Z̃, this
further means that (s, a) ∈ Z̃ \ Ẑsafe. From our lemma statement, we then have that the confidence interval
of (s, a) is less than τ/2. Hence ∆

εT (s, a) < τ/2. Then, from Lemma 2, since T (s, a, s′) > 0, we have that
∆

T (s, a, s′) > 0. Then, since (s′, a′) ∈ Zcandidate, we would have added (s′, a′) to Zreachable in this iteration,
contradicting the fact that we never added it to Zreachable in the first place. Thus, Z̃bad must be empty, implying
that Z̃ ⊂ Ẑsafe ∪ Zreachable.

Proof for Z̃ ⊂ Ẑsafe ∪ Zreturnable. Formally, we will show that if Z̃ ⊂ Ẑsafe ∪ Zreachable before the beginning
of the second while block, then Z̃ ⊂ Ẑsafe ∪ Zreturnable at the end of the block.

At the end of the second block, let us define Z̃bad := Z̃ \ (Ẑsafe ∪Zreturnable). We want to show that Z̃bad is empty,
but assume on the contrary it is not. First we argue that there must exist (s, a) ∈ Z̃bad such that one of its next
states belongs to Ẑsafe ∪Zreturnable. If this was not the case, then whenever the agent enters Z̃bad, it will never be
able to return to Ẑsafe. This is however in contradiction to the definition of Z̃.

For the rest of the discussion, consider such an (s, a) ∈ Z̃bad such that ∃(s′, a′) ∈ Ẑsafe ∪ Zreturnable for which
T (s, a, s′) > 0. Since (s, a) ∈ Z̃bad and Zbad ⊂ Z̃ \ Ẑsafe, it means that (s, a) ∈ Z̃ \ Ẑsafe. Then, from our lemma
statement we have ∆

εT (s, a) ≤ τ/2. Now, from Lemma 2, we have that since the confidence intervals are admissible
and since T (s, a, s′) > 0, it must be the case that

∆

T (s, a, s′) > 0. Then, in the iteration of the while loop during
which (s′, a′) is present in Ẑsafe∪Zreturnable, (s, a) would in fact be added to Zreturnable. This, however, contradicts
our assumption that (s, a) ∈ Z̃bad. Therefore, Z̃bad should in fact be empty. Thus, Z̃ ⊂ Ẑsafe ∪ Zreturnable at the
end of this while block.

Proof for Z̃ ⊂ Ẑsafe ∪ Zclosed. Formally, we will show that if Z̃ ⊂ Ẑsafe ∪ Zreturnable before the beginning of
the third while block, then Z̃ ⊂ Ẑsafe ∪ Zclosed at the end of the block.

Assume on the contrary that there exists (s, a) ∈ Z̃ such that (s, a) /∈ Ẑsafe ∪ Zclosed at the end of the third block.
Since Zclosed is initialized with all of Z̃ contained in it, consider the first such (s, a) that is removed from Zclosed
during the course of this second inner iteration. Now, just before the moment at which (s, a) is removed, by
design of the algorithm, we would have that there exists s′ such that

∆

T (s, a, s′) > 0 and s′ /∈ Ẑsafe ∪ Zclosed.
Note that at this point, we also still have Z̃ ⊂ Ẑsafe ∪ Zclosed. Therefore, this means that s′ /∈ Z. Now, we have
that (s, a) ∈ Z̃ \ Ẑsafe, which means, by the lemma statement, ∆

εT (s, a) ≤ τ/2. Then, since
∆

T (s, a, s′) > 0, from
Lemma 2, we have T (s, a, s′) > 0. However, this contradicts the fact, if (s, a) ∈ Z̃, then every next state of (s, a)
must lie in Z̃. Thus, no (s, a) belonging to Z̃ must have been removed from Ẑsafe ∪Zclosed during this while block,
implying that Z̃ ⊂ Ẑsafe ∪ Zclosed at the end of this block.

Proof of main claim. From the above arguments, we have that whenever the outer iteration begins with
Z̃ ⊂ Zcandidate ∪ Ẑsafe it ends with Z̃ ⊂ Zcandidate ∪ Zclosed. Now, at the beginning of Algorithm 2, we must have
Z̃ \ Ẑsafe ⊂ Zcandidate due to the fact that all elements of Z̃ have confidence intervals at most τ/2. In other words,
Z̃ ⊂ Zcandidate ∪ Ẑsafe. Then, from the above arguments, we have that Z̃ ⊂ Ẑsafe ∪ Zclosed at the end of the first
iteration. Since Zcandidate at the beginning of the second outer iteration is equal to Zclosed from the end of the
previous outer iteration, we again have Z̃ ⊂ Zcandidate ∪ Ẑsafe at the beginning of the second iteration. Thus, by a
similar argument we have that the algorithm preserves the condition that Z̃ ⊂ Zclosed ∪ Ẑsafe at the end of every
outer iteration, proving our main claim.
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D.2 Proofs about Algorithm 4 and Algorithm 3

In the next few lemmas, we prove results about Algorithm 4 and Algorithm 3. Recall that Algorithm 4 takes as
input a set of edge state-action pairs (which are state-action pairs that do not belong to Ẑsafe but whose state
belongs to Ẑsafe) and outputs a set of elements from Ẑsafe which need to be explored in order to learn the return
paths from the edges. Also recall that the idea of Algorithm 3 is to return an updated Zgoal (the set of states in
the optimistic goal path) and Zexplore (by making a call to Algorithm 4).

In Lemma 7 we demonstrate that Algorithm 4 terminates in polynomial time.

Lemma 8 helps establish that running Algorithm 4 allows the agent progress without getting stuck. More
concretely, in Lemma 8 we argue that the elements of Zexplore do not belong to K. That is, the elements of
Zexplore are those that have not already been explored (as otherwise, the agent may be stuck perpetually in
exploring what has already been explored).

In Lemma 9, we establish that Algorithm 4 works correctly (and hence, so does Algorithm 3). In particular, we
show that Algorithm 4 does not terminate with an empty Zexplore when some of the edge state-action pairs of
Ẑsafe are indeed safe. If we did not have this guarantee, then it’s possible that even though there are some edge
state-action pairs are safe, our agent may be stuck without exploring any state-action pair within Ẑsafe. On the
other hand, with this guarantee, we can be confident that our agent will explore to learn the return path of such
edge states, and then establish their safety, using which it can then expand Ẑsafe in the future. As a corollary of
this guarantee, we show that Algorithm 3 always ensures that Ẑunsafe contains no element that actually belongs
to Zsafe.

Finally, in Lemma 10, we prove that Algorithm 3 terminates in polynomial time, guaranteeing that either Zexplore

is non-empty (which means the agent can explore Ẑsafe to learn a return path and expand Ẑsafe) or that Zgoal

has been updated in a way that Zgoal ⊂ Ẑsafe (which means that the agent can stop exploring, and instead, start
exploiting).

Below, we prove our result about the run-time complexity of Algorithm 4.

Lemma 7. Algorithm 4 terminates in poly(|S|, |A|) time.

Proof. Recall that Algorithm 4 executes an iteration of a while loop whenever ZLnext 6= ∅ and Zexplore = ∅. Also
recall that inside the while loop, the algorithm executes a for loop that iterates over all elements of ZLnext. Hence,
during the while loop, since ZLnext is non-empty, we must also execute at least one iteration of the inner for loop.
Now, note that, by design of the algorithm, ZLnext is populated only with elements that do not belong to Zreturn.
Since the for loop adds all these elements to Zreturn, every call to the for loop corresponds to increasing the
cardinality of Zreturn by at least one. Thus, there can be at most as many executions of the for loop as there are
state-action pairs, |S| × |A|. By extension, the while loop can be executed at most |S| × |A| times, after which it
should terminate.

Next, we show that the state-action pairs marked for exploration by Algorithm 4 have not already been explored
well before.

Lemma 8. Algorithm 4 returns Zexplore such that for every (s̃, ã) ∈ Zexplore, (s̃, ã) ∈ Kc where K = {(s, a) ∈
S ×A : n(s, a) ≥ m} when m ≥ O

(
|S|
τ2 + 1

τ2 ln |S||A|τ2δ

)
.

Proof. Assume on the contrary that there exists (s̃, ã) ∈ Zexplore such that (s̃, ã) ∈ K. By design of Algorithm 4,
we have that there exists (s, a) /∈ Ẑsafe which resulted in the addition of (s̃, ã) to Zexplore. In particular, we would
have that ∆

εT (s, a) > τ/2 and ∆((s, a), (s̃, ã)) < τ/2. Since (s̃, ã) ∈ K, we also have ε̂T (s̃, ã) ≤ τ/4 (and this
follows from Lemma 16). Then, we would have ∆

εT (s, a) ≤ ε̂T (s̃, ã) + ∆((s, a), (s̃, ã)), implying ∆
εT (s, a) ≤ τ/4

which is a contradiction. Thus, the above claim is correct.

Below, we show that as long as there is a edge to Ẑsafe with a safe return path to Ẑsafe, Algorithm 4 will return
with a non-empty Zexplore.
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Lemma 9. Assume our confidence intervals are admissible. During a run of Algorithm 1, at the end of every
call to Algorithm 4, we will have Zexplore = ∅ only if ∀ (s̃, ã) ∈ Zedge, (s̃, ã) /∈ Zsafe. As a corollary of this, we
always have that Ẑunsafe ∩ Zsafe = ∅.

Proof. We will prove this by induction. Specifically, since Algorithm 3 is the only block where we call Algorithm
4 and modify Ẑunsafe, we will consider a particular iteration of the while loop in Algorithm 3. Then, we will
assume that in all the previous iterations of this while loop, when Algorithm 4 was called, it satisfied the above
guarantee. Additionally, we will assume that Ẑunsafe satisfies Ẑunsafe ∩ Zsafe = ∅ in the beginning of this loop.
Then, we will show that the guarantee about Algorithm 4 is satisfied even when we call it in this loop, and that,
by the end of this loop, Ẑunsafe continues to satisfy Ẑunsafe ∩ Zsafe = ∅.

As the base case, in the first iteration, since we have never called Algorithm 4 before, the induction hypothesis
about Algorithm 4 is trivially satisfied. Furthermore, since Ẑunsafe is initialized to be empty set, we again trivially
have Ẑunsafe ∩ Zsafe = ∅ in the beginning of this loop.

Now, consider any arbitrary iteration of the while loop of Algorithm 3. Through the next few paragraphs below,
we will argue why the call to Algorithm 4 in this loop, satisfies the above specified guarantee. In the final
paragraph, we provide a simple argument showing why Ẑunsafe ∩ Zsafe = ∅ at the end of the loop.

Proof for claim about Algorithm 4. Assume that during this particular call to Algorithm 4, there exists
(s̃, ã) ∈ Zedge such that (s̃, ã) ∈ Zsafe. To prove the above claim, we only need to show that in this case Algorithm
4 will result in a non-empty Zexplore. So, for the sake of contradiction, we will assume that Zexplore is empty after
the execution of Algorithm 4.

The outline of our idea is to make use of the fact that by Assumption 5 we are guaranteed a return path from
(s̃, ã) that is sufficiently similar to state-action pairs in Ẑsafe. We will then show that we can pick a particular
trajectory from this return path which visits a ‘bad’ state-action pair – a state-action pair whose counterpart in
Ẑsafe has not been explored sufficiently. Then, under the assumption that Zexplore remains empty, we will argue
that Algorithm 4 will visit all the state-action pairs in this trajectory, and finally, when it encounters the bad
state-action pair, the algorithm will add the counterpart of this bad pair to Zexplore, reaching a contradiction.

First, let us apply Assumption 5 to (s̃, ã) which guarantees a return path from (s̃, ã) because it is an edge
state-action i.e., s̃ ∈ Ẑsafe and (s̃, ã) /∈ Ẑsafe. But to apply this assumption, we must establish that Z0 ⊂ Ẑsafe.
This is indeed true as it follows from how Algorithm 1 initializes Ẑsafe with Z0 and every call to Algorithm 2 only
adds elements to Ẑsafe.

Now, consider the πreturn guaranteed by Assumption 5. Starting from (s, a), and following πreturn, the agent
returns to Z0 with probability 1. Furthermore, if we define the set of state-action pairs visited by πreturn on its
way to Ẑsafe as:

Z̃ = {(s, a) ∈ S ×A : P
[
∃t ≥ 0

(st,at)=(s,a)

∀t′<t st′ /∈Ẑsafe

∣∣∣ (s0, a0) = (s̃, ã), πreturn

]
> 0},

then we are given that every element of Z̃ \ Ẑsafe corresponds to an element (s′, a′) ∈ Ẑsafe such that
∆((s, a), (s′, a′)) ≤ τ/4.

To make our discussion easier, let us partition the elements of Z̃ \ Ẑsafe into two sets Z̃good and Z̃bad as follows,
depending on whether or not the corresponding (s′, a′) has been explored sufficiently well or not:

Z̃good = {(s, a) ∈ Z̃ \ Ẑsafe | ∃(s′, a′) ∈ S ×A s.t. ∆((s, a), (s′, a′)) + ε̂T (s′, a′) ≤ τ/2}

and
Z̃bad = {(s, a) ∈ Z̃ \ Ẑsafe | ∀(s′, a′) ∈ S ×A s.t. ∆((s, a), (s′, a′)) + ε̂T (s′, a′) > τ/2}.

Note that every element of Z̃ \ Ẑsafe belongs to exactly one of Z̃good and Z̃bad. Also note that for all (s, a) ∈ Z̃good,
∆
εT (s, a) ≤ τ/2 since ∆((s, a), (s′, a′)) + ε̂T (s′, a′) ≤ τ/2. However, for all (s, a) ∈ Z̃bad, since there exists no
sufficiently explored (s′, a′) that is also sufficiently smaller, ∆

εT (s, a) > τ/2.

Next, we argue that there must exist at least one element in Z̃bad. If this was not the case, then we would have
that all elements in Z̃ \ Ẑsafe belong to Z̃good and therefore have a confidence interval at most τ/2. Then, from
Lemma 6, we will have that when Algorithm 1 executed Algorithm 2 just before calling Algorithm 3, Ẑsafe is
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updated in a way that Z̃ ⊂ Ẑsafe, which would imply that (s̃, ã) ∈ Ẑsafe. However, this contradicts our assumption
in the beginning that that (s̃, ã) is an edge state-action pair that does not belong to Ẑsafe.

Since Z̃bad is non-empty, and since Z̃bad ⊂ Z̃, there should exist a trajectory of πreturn starting from (s̃, ã) that
passes through an element of Z̃bad before visiting Ẑsafe. Let (s0, a0), (s1, a1), . . . , (sn, an) be one such trajectory,
where (s0, a0) = (s̃, ã). Let (sn, an) be the first element in this trajectory that belongs to Z̃bad. Since all the
elements in this trajectory preceding (sn, an) belong to Z̃ but not Ẑsafe or Z̃bad, all these elements must belong
to Z̃good.

We will now use the fact that, under our initial assumption, Algorithm 4 returns with an empty Zexplore to argue
by induction that, during that run of Algorithm 4, all state-action pairs in this trajectory up until and including
(sn, an) are added to Zreturn. (After this, we will reach a contradiction).

For the base case, consider (s, a). When the while loop condition is executed the first time, Zexplore = ∅ by
initialization, and ZLnext 6= ∅ because it is equal to Zedge which has at least one state-action pair, namely (s, a).
Thus, the while loop will be executed, and every element in ZLnext will be added to Zreturn. Since ZLnext = Zedge at
this point, this implies that (s, a) will be added to Zreturn.

Next, for some i ∈ [1, n], assume by induction that all state-action pairs preceding (sk, ak), where k < i, have been
added to Zreturn; we must prove the same happens to (si, ai). Consider the loop when (si−1, ai−1) is examined
and added to Zreturn. Since (si−1, ai−1) ∈ Z̃good, its confidence interval is at most as large as τ/2; thus, in this
loop, we would execute the else branch of the if-condition. As a result of this, we can argue that (si, ai) is added
to ZL+1

next from the following four observations.

First, since the considered trajectory has non-zero probability, we have T (si−1, ai−1, si) > 0. Furthermore, since
∆
εT (si−1, ai−1) ≤ τ/2, and since the confidence intervals are admissible, by Lemma 2, we have

∆

T (si−1, ai−1, si) > 0.
Second, if (si, ai) was part of Zreturn at this point, we are already done; so let us consider the case that currently
(si, ai) /∈ Zreturn. Thirdly, since (si, ai) ∈ Z̃ \ Ẑsafe, (si, ai) /∈ Ẑsafe. Finally, from our induction assumption, we
have that Ẑunsafe ∩ Zsafe = ∅; and since πreturn is a safe policy, it follows that (si, ai) /∈ Ẑunsafe. As a result of
these four observations, in this else branch, we would add (si, ai) to ZLnext.

Now, consider the instant when the algorithm evaluates the while condition after exiting the for loop that
examined (si−1, ai−1). At this point, by our initial assumption, Zexplore is still empty while ZLnext is not as it
contains (si, ai). Thus the algorithm would proceed with executing this while loop (as against exiting from it
then). Now since (si, ai) ∈ ZLnext, inside the inner for loop, there must be an iteration when (si, ai) is examined
and added to Zreturn, proving our induction statement.

Thus, consider the for loop iteration when (sn, an) is added to Zreturn. Since (sn, an) ∈ Z̃bad,
∆
εT (sn, an) > τ/2.

Hence, we would enter the if-branch of the if-else condition. Again, since (sn, an) ∈ Z̃ \ Ẑsafe, from Assumption 5,
we know there must exist (s, a) ∈ Ẑsafe such that ∆((s, a), (sn, an)) ≤ τ/4. As a result, (s, a) will be added to
Zexplore contradicting the fact that Algorithm 4 exited the while loop without adding any element to Zexplore.
Thus our initial assumption must be wrong, proving the main claim about Algorithm 4.

Proof for Ẑunsafe∩Zsafe = ∅. From the induction assumption, we have that Ẑunsafe∩Zsafe = ∅ in the beginning
of this while loop. During this loop, Ẑunsafe is modified by Algorithm 3 only when the call to Algorithm 4 returns
with an empty Zexplore. In such a case, Ẑunsafe is modified by adding Zedge to it. Fortunately, from the above
discussion, we know that when Zexplore is empty, Zedge contains no element from Zsafe. Thus, Ẑunsafe ∩ Zsafe = ∅
even at the end of the while loop.

Finally, we show that Algorithm 3 terminates in finite time ensuring that Zgoal has been updated in a way that
all of it has been established to be safe, or Zexplore is non-empty.

Lemma 10. Algorithm 3 terminates in poly(|S|, |A|) time, after which either Zgoal ⊂ Ẑsafe or Zexplore 6= ∅.

Proof. First, we show that, in Algorithm 3, whenever the condition Zgoal ⊂ Ẑsafe fails, the subsequently computed
Zedge is non-empty. Assume for the sake of contradiction that even though Zgoal 6⊂ Ẑsafe, Zedge is empty. Now,
recall that Zgoal is the set of all state-action pairs visited starting from s0 following πgoal in the MDP Mgoal, with
transition probabilities T goal.
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Then, consider any trajectory (s0, a0), (s1, a1), . . . of non-zero probability under this corresponding policy and
transition function. Since s0 ∈ Ẑsafe and Zedge is empty, (s0, a0) ∈ Ẑsafe. Then, since T goal ∈ CI(

∆

T ), and since the
confidence intervals are admissible, we have from Corollary 1 that s1 ∈ Ẑsafe. Since Zedge is empty, by a similar
argument, we can establish that (s1, a1) ∈ Ẑsafe, and so on for all (st, at). Since this holds for any trajectory
under this policy and transition function, it would mean that Zgoal ⊂ Ẑsafe, which is a contradiction. Thus, Zedge
is indeed non-empty.

Next, we show that Algorithm 3 terminates in polynomial time. Whenever Algorithm 3 does not break out of a
loop, then by the design of the algorithm, Zgoal 6⊂ Ẑsafe and Zexplore = ∅. In addition to this, Zedge must have
been added to Ẑunsafe. Furthermore, from the above argument, since Zgoal 6⊂ Ẑsafe, Zedge must be non-empty. In
other words, in each loop that does not break, we take a non-empty subset of Zgoal, namely Zedge and add it to
Ẑunsafe. Note that since we computed Zgoal in a way that it does not include any of Ẑunsafe, this also means that
Zedge ∩ Ẑunsafe 6= ∅. Thus, by the end of this loop, we increase the cardinality of Ẑunsafe. Since Ẑunsafe cannot be
any larger than the finite quantity |S| × |A|, we are guaranteed that no more than O(|S| × |A|) for loops are run
when Algorithm 3 is executed. (In fact, we can say something stronger: no more than O(|S| × |A|) for loops are
run, across multiple calls to Algorithm 3 during the whole run of Algorithm 1).

Finally, observe that, by design of the algorithm, whenever the algorithm terminates, it must have broken out of
the for loop. This is possible only if either Zgoal ⊂ Ẑsafe or Zexplore 6= ∅, thus proving all of our claim.

D.3 Proofs about computing the set of state-actions along the goal path

Recall that Zgoal is intended to be the set of state-action pairs visited by the optimistic goal policy under
optimistic transitions. To compute this set, we need to know which states have a positive probability of being
reached from sinit following πgoal, or equivalently the state-actions (s, a) for which ρgoal(s, a) > 0. Formally, we
must enumerate the set

{(s, a) ∈ S ×A : ρgoal(s, a) > 0}.

However, computing this as defined is not feasible in finite time (as we must enumerate infinite length trajectories).
Instead, recall from Equation 6 that we can approximate the above set by only computing the finite-horizon
estimate ρgoal(·, ·, H) for some horizon H. Fortunately, computing Zgoal does not require a good estimate of
ρgoal(·, ·), but only requires knowing when the ρgoal(·, ·) is positive or 0. Lemma 11 shows that as long as H ≥ |S|,
ρgoal(·, ·, H) > 0 if and only if ρgoal(s, a) > 0; as a corollary of which we have that Zgoal is exactly what we intend
it to be.

Lemma 11. For any policy π, starting state s ∈ S, and state-action pair (s′, a′) ∈ S ×A, ρMπ,s(s′, a′, H) > 0 if
and only if ρMπ,s(s′, a′) > 0 as long as H ≥ |S|.

Proof. First we establish sufficiency. That is, if the finite-horizon estimate is positive, then, so is the infinite
horizon estimate. Consider the following inequality relating these two quantities:

ρMπ,s(s
′, a′, H) = (1− γ)

H∑
t=0

γtP (st = s′, at = a′|π, s0 = s)

≤ lim
H→∞

(1− γ)

H∑
t=0

γtP (st = s′, at = a′|π, s0 = s)

= ρMπ,s(s
′, a′)

The second step uses the fact that γ > 0 and P (st = s′, at = a′|π, s0 = s) ≥ 0 for all t. Thus, if ρMπ,s(s′, a′, H) > 0,
then ρMπ,s(s′, a′) > 0, establishing sufficiency.

Now we will establish necessity i.e., if the infinite horizon estimate was positive, then the same must hold for the
finite-horizon estimate. If ρMπ,s(s′, a′) > 0, then there exists at least one sequence of states (s0, s1, . . . sn) where
s0 = s, sn = s′, and T (si, π(si), si+1) > 0 for all 0 ≤ i < n. Without loss of generality, consider the shortest such
sequence. Now, for the sake of contradiction, assume that n > |S|. By the pigeonhole principle, there exists
at least one state that is repeated at least twice. That is, for two indices j, k (j < k), we have sj = sk. Since
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sj = sk and T (sk, π(sk), sk+1) > 0, then T (sj , π(sj), sk+1) > 0. Thus, we can construct a shorter sequence by
removing all indices i such that j < i ≤ k and this sequence still satisfies the fact that every transition observed
has non-zero probability. This contradicts our assertion that this is the shortest such sequence. Thus, n ≤ |S|.
Given H ≥ |S| ≥ n, we have ρMπ,s(s′, a′, H) > 0, establishing necessity.

As a straightforward corollary of the above, we have:

Corollary 3. Zgoal as computed in Equation 6 satisfies:

Zgoal = {(s, a) ∈ S ×A : ρgoal(s, a) > 0}.

when H ≥ |S|.

D.4 Proofs about goal, explore, and switching policies

This subsection details the key lemmas for proving that ASE is PAC-MDP. The main idea is to show that,
under these policies, our agent either will perform the desired behavior, i.e. act ε-optimally or reach a desired
state-action set, or reach an insufficiently explored state-action pair (i.e., not in K). Since a state-action pair that
is experienced m times is added to K, we can bound the number of times we reach a state-action pair outside of
K. With this bound and the following lemmas, we can bound the number of times the agent performs undesired
behaviors, e.g. acting sub-optimally. We start by proving this claim for πexplore and πswitch (Lemma 12), then for
πgoal (Lemma 13 and Lemma 14).

Recall that the πexplore is based on a reward system where the rewards are non-zero only on state-action pairs
that are in Ẑsafe and are not sufficiently explored (i.e., not in K). We first show that if we were to follow the
πexplore policy, in polynomially many steps, we are guaranteed to obtain a non-zero reward i.e., we are guaranteed
to reach a state-action pair not in K. In other words, if we were to follow πexplore, we will definitively obtain a
useful sample and learn something new. Similarly, if we were to follow πswitch, we will definitively return to Zgoal
or learn something new.

Lemma 12. Assume that the confidence intervals are admissible. Consider an MDPM† = 〈S,A, T,R†, γ†〉, which
is the same as the true MDP but with different rewards and discount factor. Let Z be a closed, communicating
subset of S ×A and Z† a non-empty subset of Z. Let R† be defined such that:

R†(s, a) =


1 (s, a) ∈ Z†

0 (s, a) ∈ Z \ Z†

−∞ (s, a) /∈ Z

Let H = Hcomlog 16Hcom
c /log 1

c and let γ† = c1/H where c ∈ (0, 1/4] is a constant. Let H̃ = max
(
H 1√

8c
, 1√

τ

)
.

Let Q
†
denote the optimistic value function of this MDP, and π† be the optimistic policy i.e., π†(s, a) =

arg maxa∈AQ
†
(s, a).

Then, for any δ > 0 and ε ∈ (0, c/8], starting from any state in Z and following π†, the agent will reach a state-
action pair either in Z† or outside of K = {(s, a) ∈ S×A : n(s, a) ≥ m}, where m ≥ O

(
H̃4|S|+ H̃4 ln |S||A|H̃

2

δ

)
,

in at most O(H
2

c ) time steps, with probability at least 1/2, provided π† ∈ Π(Z).

Proof. Consider any s ∈ Z. We will first upper bound the optimistic value V
†
(s) and then derive a lower bound

on it, and then relate these two bounds together to prove our claim. Note that if we let M
†
be the same MDP as

M†, but with the optimistic transitions (the transitions T
† ∈ CI(

∆

T ) which maximize the optimistic Q-values),

then V
†
(·) = V

π†

M
†(·).

We will begin by upper bounding the finite-horizon value of π† on M† (and then relate it to its value on M
†
).

Let s0, s1, s2, . . . , denote the random sequence of states visited by the agent by following π† from s0 = s on M†.
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Then, we have:

V π
†

M†(s,H) = E

[
H∑
i=0

(γ†)iR†(si, π
†(si))

]

≤ E

[
H∑
i=0

R†(si, π
†(si))

]
≤ P(∃ i ≤ H : (si, π

†(si)) ∈ Z†) ·H

The first inequality follows from the fact that γ† < 1. The second inequality follows from the fact that every
trajectory of π† that experiences a positive cumulative reward, must experience some state-action pair in Z†; and
such a trajectory can at best experience a reward of 1 at each timestep.

In the next step we will upper bound the finite-horizon optmistic value of following π† in M
†
. To do this, define

M ′ to be an MDP that is identical to M† on (s, a) ∈ K, and identical to M
†
everywhere else. Then,

V π
†

M
†(s,H) ≤ V π

†

M ′(s,H) +
c

8

≤ V π
†

M† (s,H) +HP(∃ i ≤ H : (si, π
†(si)) 6∈ K) +

c

8

≤ HP(∃ i ≤ H : (si, π
†(si)) ∈ Z†) +HP(∃ i ≤ H : (si, π

†(si)) 6∈ K) +
c

8

≤ 2HP(∃ i ≤ H : (si, π
†(si)) ∈ Z† ∪Kc) +

c

8
.

Here, the first inequality follows from Lemma 15 and 16. Specifically, from Lemma 16, we have when m ≥
O
(
H̃4|S|+ H̃4 ln |S||A|H̃

2

δ

)
, the width of the confidence interval of (s, a) ∈ K is at most 1/H̃2 ≤ c/(8H2). Then,

Lemma 15 can be used to bound the difference in their value functions by c/8.

Note that to apply Lemma 15 we must also ensure that for all (s, a) ∈ K, the support of the next state distribution
is the same under M ′ and M

†
. To see why this is true, observe that for all (s, a) ∈ K, the confidence interval

is at most 1/H̃2 ≤ τ/2. Then, since the transition probabilities for (s, a) ∈ K in M
†
and M ′ correspond to

T
† ∈ CI(

∆

T ) and T respectively, Lemma 2 implies that the support of these state-action pairs are indeed the same
for these two transition functions. Also note that Lemma 15 implies that these value functions are either close to
each other or both equal to −∞; even in the latter case, the above inequalities would hold (although, we will
show in the remaining part of the proof that these quantities are lower bounded by some positive value).

The second inequality follows from Lemma 17. Note that in order to apply Lemma 17, we must establish that,
with probability 1, the agent experiences only non-negative rewards, when it starts from s and follows π† for H
steps. This is indeed true because we know that Z is closed and π† ∈ Π(Z). Then, we know from Fact 1 that the
agent always remains in Z, which means it experiences only non-negative rewards.

The third inequality above uses the upper bound on V πM†(s,H) that we derived previously.

Having established the above inequalities, we are now ready to upper bound the optimistic value using Lemma 18
as follows:

V
π†

M
†(s) ≤ V π

†

M
†(s,H) +

(γ†)H+1

1− γ†

≤ 2HP(∃ i ≤ H : (si, π
†(si)) ∈ Z† ∪Kc) +

c

8
+

(γ†)H+1

1− γ†
(13)

Next, as the second part of our proof, we will derive a lower bound on the optimistic value using Assumption 3.
Choose some (s′, a′) ∈ Z† (which is given to be non-empty). Since Z is given to be communicating, by Assumption
3, we know that there exists a policy πcom which has a probability of at least 1

2 of reaching s′ from s in Hcom
steps, while visiting only state-action pairs in Z. Without loss of generality, let us assume that πcom(s′) = a′

(since, regardless of what the action at s′ is, it guarantees reachability of s′ from everywhere else.).
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Let us lower bound the value of this policy. Let s0, s1, s2, . . . , denote the random sequence of states visited by
the agent by following πcom from s0 = s on M†. Then:

V πcom
M†

(s) ≥ V πcom
M†

(s,Hcom)

= E

[
Hcom∑
i=0

(γ†)iR†(si, πcom(si))

]

≥ (γ†)HcomE

[
Hcom∑
i=0

R†(si, πcom(si))

]
≥ (γ†)HcomP(∃ i : (si, πcom(si)) ∈ Z†)

≥ (γ†)Hcom
1

2
.

Here, the first step follows from Fact 1 which says that, since πcom ∈ Π(Z) and Z is closed, πcom only visits
state-action pairs in Z, all of which have non-negative R† reward; as a result, truncating the value function to
Hcom steps only maintains/decreases the value.

The third step follows from the fact that γ† < 1. The fourth step comes from the fact that, since πcom takes
only state-action pairs in Z, R†(si, πcom(si)) ∈ {0, 1}; then, every trajectory with a total non-zero reward has a
reward of at least 1. The last step follows from the guarantee of Assumption 3.

Now, as the final step in our proof we note that if our confidence intervals are admissible, by Lemma 19, we know
that V π

†

M
†(s) ≥ V ∗M†(s). Furthermore, V ∗M†(s) must be lower bounded by the value of πcom on M†, which we just

lower bounded. Now, equating this with the upper bound from Equation 13, we get:

2HP(∃ i ≤ H : (si, π
†(si)) ∈ Z† ∪Kc) +

c

8
+

(γ†)H+1

1− γ†
≥ (γ†)Hcom

1

2

P(∃ i ≤ H : (si, π
†(si)) ∈ Z† ∪Kc) ≥ 1

2H

(
(γ†)Hcom

1

2
− c

8
− (γ†)H+1

1− γ†

)
≥ 1

2H

(
3c

8
− (γ†)H+1

1− γ†

)
(14)

Here, in the last step, we make use of the fact that γ† = c1/Hcom . Next, we will upper bound the last term by
making use of the inequality: if c < 1, then ∀x > 0, cx ≤ 1− x(1− c). Then, we get:

1

1− γ†
=

1

1− c1/Hcom
≤ Hcom

1− c
Furthermore, since log(16Hcom/c) = (H/Hcom) log(1/c), by applying exp(·) on both sides, we have:

c

16Hcom
= cH/Hcom = (γ†)H

From the above two inequalities, we have:

(γ†)H+1

1− γ†
≤ (γ†)H

1− γ†
≤ c

16(1− c)
≤ c

8

In the first step above, we make use of γ† < 1 and in the second step, c < 1/2. Plugging this back in Equation 14,
we get:

P(∃ i ≤ H : (si, π
†(si)) ∈ Z† ∪Kc) ≥ c

8H
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In other words, following policy π† for H steps in M†, the agent will reach a state-action pair either in Z†

or outside K with probability at least c/(8H). Then, by the Hoeffding bound applied to multiple subsequent
trajectories each of H timesteps, we would have that with probability at least 1/2, following policy πgoal for
O(H · Hc ) timesteps, the agent will reach an element either in Z or outside K.

In Lemma 13, we show that once our algorithm begins following the optimistic goal policy πgoal, it will continue
to do so until it learns something new. (Since we can bound the number of times the agent learns something new,
observe that this also means that, eventually, the agent will follow πgoal for all time.)

Lemma 13. Assume the confidence intervals are admissible. Then, during the run of Algorithm 1, if the
agent is currently following πgoal, then it will continue to do so until it experiences a state-action pair outside
K = {(s, a) ∈ S ×A : n(s, a) ≥ m} when m ≥ O

(
|S|
τ2 + 1

τ2 ln |S||A|τ2δ

)
.

Proof. Assume that during a run of Algorithm 1, the agent is currently at s and takes the action πgoal(s). By
design of Algorithm 1, we have s ∈ Zgoal. Recall that Zgoal is the set of all state-action pairs that can be visited
by the agent if it were to following πgoal starting from s0 under the optimistic transitions T goal. More formally,
we have from Corollary 3 that Zgoal = {(s, a) ∈ S ×A : ρgoal(s, a) > 0}.

Now, to prove our claim, we only need to argue that if (s, πgoal(s)) ∈ K, then the next state s′ belongs to Zgoal.
Then, by design of Algorithm 1, the agent will take πgoal even in the next state, proving our claim. To argue
this, observe that since (s, πgoal(s)) ∈ K and m ≥ O

(
|S|
τ2 + 1

τ2 ln |S||A|τ2δ

)
, by Lemma 16, the confidence interval of

(s, πgoal(s)) has width at most τ/2. Then, from Lemma 2, since T (s, πgoal(s), s
′) > 0 and since T goal ∈ CI(

∆

T ), we
have T goal(s, πgoal(s), s

′) > 0. Thus, since we know that s ∈ Zgoal, by definition of Zgoal, s′ should also belong to
Zgoal.

In the following lemma, we show that in the MDP Mgoal (which is the same as the original MDP but with the
unsafe state-action pairs set to −∞ rewards), when we follow the optimistic goal policy πgoal, we either take a
near-optimal action (with respect to Mgoal) or we experience an action outside of K with sufficient probability in
the next H steps.

Lemma 14. Assume the confidence intervals are admissible. Consider any instant when the agent has taken
a trajectory pt and is at state st, and the Algorithm 1 instructs the agent to follow πgoal. Let P(AM ) be the
probability that starting at this step, the Algorithm 1 leads the agent out of K = {(s, a) ∈ S × A : n(s, a) ≥
m} in H steps, conditioned on pt. Then, for any ε, δ ∈ (0, 1), and for H = O

(
1

1−γ ln 1
ε(1−γ)

)
and m ≥

O
(

1
ε2(1−γ)4

(
|S|
ε̃ + 1

ε̃2 ln |S||A|ε̃2δ

))
, where ε̃ = O

(
min

(
τ
2 ,

ε(1−γ)2

3

))
, we have:

V AM (pt) ≥ V ∗Mgoal
(st)−

ε

2
− 2

P(AM )

1− γ
.

Proof. While we follow the general outline of the proof of Theorem 1 from Strehl and Littman (2008), we note
that there are crucial differences for incorporating safety (such as dealing with rewards of −∞).

At the outset, we establish two useful inequalities. First, since H = O
(

1
1−γ ln 1

ε(1−γ)

)
, by Lemma 18, we have

that:
V
πgoal

Mgoal
(st, H) ≥ V πgoal

Mgoal
(st)−

ε

3
(15)

Secondly, let M ′goal be an MDP that is equivalent to Mgoal for all state-action pairs in K and equal to Mgoal
otherwise. (Note that all these MDPs have the same reward function, namely Rgoal.) We claim that for all a:

Q
πgoal
M ′goal

(st, a,H) ≥ Qπgoal

Mgoal
(st, a,H)− ε

3
(16)
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Let us see why this inequality holds. From Lemma 16, we have when m ≥ O
(

1
ε2(1−γ)4

(
|S|
ε̃ + 1

ε̃2 ln |S||A|ε̃2δ

))
, the

width of the confidence interval of (s, a) ∈ K is at most O(ε̃) = ε
3

(1−γ)2

γ . Then, Lemma 15 can be used to bound
the difference in the value functions by ε/3 as above.

Note that to apply Lemma 15, we must also ensure that for all (s, a) ∈ K, the support of the next state
distribution is the same under M ′goal and Mgoal. To see why this is true, observe that for all (s, a) ∈ K, the width

of the confidence interval is at most O(ε̃) = τ/2. Then, since the transition probability for (s, a) ∈ K in M
†

and M ′ correspond to T
† ∈ CI(

∆

T ) and T respectively, Lemma 2 implies that the support of these state-action
pairs are indeed the same for these two transition functions. Also note that Lemma 15 implies that these value
functions are either ε1-close to each other or both equal to −∞; even in the latter case, the above inequality
would hold (although, to be precise, this latter case does not really matter since Theorem 1 eventually shows that
these quantities are lower bounded by a positive quantity).

Having established the above inequalities, we now begin lower bounding the value of the algorithm. First, since
the rewards R(·, ·) are bounded below by −1, and since H = O

(
1

1−γ ln 1
ε(1−γ)

)
, by Lemma 18, we can lower

bound the infinite-horizon value of the algorithm by its finite-horizon value as

V AM (pt) ≥ V AM (pt, H)− ε

3
. (17)

Next, we claim to bound the value of following the algorithm for the next H steps as follows:

V AM (pt, H) ≥ V πgoal
M ′goal

(s,H)− 2
P (AM )

1− γ
. (18)

In other words, we have lower bounded the value of following the algorithm on M , in terms of following πgoal on
M ′goal. Let us see why this is true. For the sake of convenience, let us define two cases corresponding to the above
inequality: Case A, where the agent follows Algorithm 1 to take actions for H steps starting from st in MDP M
and Case B, where the agent follows the fixed policy πgoal to take actions for H steps starting from st in MDP
M ′goal.

Now, recall that we are considering a state st where Algorithm 1 currently follows πgoal, and will continue to
follow it until it takes an action in Kc. Then, consider a particular random seed for which, in Case A, the agent
does not reach Kc.

We argue that for this random seed, the agent will see the same cumulative discounted reward over H steps in
both Case A and Case B. To see why, recall that M ′goal and M share the same transition functions on K. Next,
since in Case A, the agent does not escape K, by Lemma 13, we know that the agent follows only πgoal for H
steps. Thus in both these cases, the agent experiences the same sequence of state-action pairs for H steps. It
only remains to argue that these state-action pairs have the same rewards in both cases. To see why, recall that
by design of Algorithm 1, since the agent does not escape K, all these state-action pairs would belong to Zgoal

which in turn is a subset of Ẑsafe. Now the MDP M and M ′goal share the same rewards on Ẑsafe; this is because,
their rewards differ only in Ẑunsafe, and we know Ẑunsafe ∪ Zsafe = ∅ (Lemma 9). Thus, in both cases, the agent
experiences the same sequence of rewards.

As a result, the value functions in Case A and B differ only due to trajectories where the algorithm either leads
the agent to Kc in H steps or leads the agent to negative rewards any time in the future. Hence, we can upper
bound the difference V πgoal

M ′goal
(st, H)−V AM (pt, H) in terms of P(AM ) multiplied by the maximum difference between

the respective cumulative rewards. We know that the cumulative reward in Case A is at least −1/(1− γ), because
the rewards R(·, ·) are bounded below by −1. On the other hand, in Case B, the cumulative reward experienced
is at most 1/(1− γ), assuming the agent receives a reward of 1 for each step. From this, we establish Equation 18.
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Subsequently, we further lower bound V πgoal
M ′goal

(st, H) as follows:

V
πgoal
M ′goal

(st, H) ≥ V πgoal

Mgoal
(st, H)− ε

3

≥ V πgoal

Mgoal
(st)− 2

ε

3
≥ V ∗Mgoal

(st)− ε

Here, the first inequality comes from Equation 16. The second inequality comes from Equation 15. The last step
comes from Lemma 19 (given admissibility). Then, by combining the above inequality with Equations 18 and 17,
we get our final result.

D.5 Supporting lemmas for showing PAC-MDP

The following lemmas are necessary for proving our algorithm is PAC-MDP. Note that most of these lemmas are
similar to lemmas from Strehl and Littman (2008). However, because we construct MDPs with infinitely negative
rewards, additional care must be taken to ensure that these properties still hold.

Here we provide a quick description of the lemmas detailed in this section. We start with Lemma 15, which
shows that if two MDPs have sufficiently similar transition functions, the optimal Q-values on these two MDPs
must also be similar. This, together with Lemma 16, allows us to show that, if we have sufficiently explored the
state-space, we can accurately estimate the optimal policy on any MDP. Next we show, in Lemma 17, that the
difference between the value functions of the true and an estimated MDP for a given policy is proportional to the
probability of reaching an under-explored state-action pair, i.e. a state-action pair outside of K. This allows us to
claim that either the probability of reaching an element outside of K is sufficiently large, or our estimated value
function is sufficiently accurate. Lemma 18 bounds the difference between the finite horizon and infinite horizon
value functions, allowing us to consider only finite length trajectories. Lemma 19 simply shows that our optimistic
value function always over-estimates the true value function (given that our confidence intervals are admissible).

Lemma 15. Let M1 = 〈S,A, T1, R
†, γ†〉 and M2 = 〈S,A, T2, R

†, γ†〉 be two MDPs with identical rewards that
either belong to [0, 1] or equal −∞ and γ† < 1. Let K be a subset of state-action pairs such that

1. for all (s, a) /∈ K, T1(s, a, ·) = T2(s, a, ·),

2. for all (s, a) ∈ K, ‖T1(s, a, ·)− T2(s, a, ·)‖1 ≤ β and

3. for all (s, a) ∈ K, the next state distribution (s, a) has identical support under both T1 and T2.

Then, for any (stationary, deterministic) policy π, and for any (s, a) and any H ≥ 0, we have that, either:

∣∣QπM1
(s, a,H)−QπM2

(s, a,H)
∣∣ ≤ min

(
γ†β

(1− γ†)2
, βH2

)
.

or
QπM1

(s, a,H) = QπM2
(s, a,H) = −∞.

Proof. First, we note that for any (s, a) such that R†(s, a) = −∞, QπM1
(s, a,H) = QπM2

(s, a,H) = −∞ for all H.
Hence, for the rest of the discussion, we will consider (s, a) such that R†(s, a) 6= −∞.

We prove our claim by induction on H. For H = 1, for all (s, a), QπM1
(s, a,H) = QπM2

(s, a,H) = R†(s, a).

Consider any arbitrary H. First, we show that, if there exists a next state s′ in the support of T1(s, a, ·) such
that QπM1

(s′, π(s′), H − 1) = −∞, then QπM1
(s, a,H) = QπM2

(s, a,H) = −∞. Note that, by conditions 1 and 3
of the Lemma statement, we have that for all (s, a), regardless of whether in K or not, the support of the next
state distribution is identical between T1 and T2. Hence, if there exists a next state s′ in the support of T1 such
that QπM1

(s′, π(s′), H − 1) = −∞, then s′ would belong even to the support of T2 and, thus, we would have that
QπM2

(s′, π(s′), H−1) = −∞. Hence, by definition of Q-values, we would have QπM1
(s, a,H) = QπM2

(s, a,H) = −∞.
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Now consider a case where none of the next states s′ in the support of T1 (and T2, without loss of generality)
have Q-value QπM1

(s′, π(s′), H − 1) = −∞. We will prove by induction that in this case,

∣∣QπM1
(s, a,H)−QπM2

(s, a,H)
∣∣ ≤ γ†β

1− γ†
· 1− γ†H

1− γ†
.

Note that when H = 0, the right hand side above resolves to zero, which is indeed true.

Consider any H > 0. Now, observe that for all (s, a), regardless of whether in K or not, we have ‖T1(s, a, ·)−
T2(s, a, ·)‖1 ≤ β. Besides, since R†(s, a) 6= −∞, we can upper bound the difference in the Q values as follows:

|QπM1
(s, a,H)−QπM2

(s, a,H)|

= γ†

∣∣∣∣∣∑
s′

T1(s, π(s′), s′)QπM1
(s′, π(s′), H − 1)−

∑
s′

T2(s, π(s′), s′)QπM2
(s′, π(s′), H − 1)

∣∣∣∣∣
≤ γ†

∣∣∣∣∣∑
s′

T1(s, π(s′), s′)
(
QπM1

(s′, π(s′), H − 1)−QπM2
(s′, π(s′), H − 1)

)∣∣∣∣∣
+ γ†

∣∣∣∣∣∑
s′

(T1(s, π(s′), s′)− T2(s, π(s′), s′))QπM2
(s′, π(s′), H − 1)

∣∣∣∣∣
≤ γ†

(
γ†β

1− γ†
· 1− γ†H−1

1− γ†

)
+ γ†

β

1− γ†

=
γ†β

1− γ†

(
γ†(1− γ†H−1)

1− γ†
+ 1

)
=

γ†β

1− γ†
· 1− γ†H

1− γ†

Here, the second step follows by a simple algebraic rearrangement that decomposes the difference in the Q-values,
in terms of the difference in the transitions and the difference in the next-state Q-values. In the third step, for
the first term, we make use of the fact that in this case, the next state s′ has a Q-value that is not −∞; this
means that (s′, π(s′)) does not have any next states with Q-value −∞ and therefore the induction assumption
holds. By applying the induction assumption for H − 1, we get the first term. For the second term, we make use
of the fact that the total sum of transition probabilities equals 1. Furthermore, we also make use of the fact the
maximum magnitude of the Q-value is at most 1

1−γ† if it is not −∞; this is because, if the Q-value is not −∞, it
is a discounted summation of expected rewards that lie between 0 and 1.

Hence, our induction hypothesis is true. Our main upper bound can then be established by noting that 1−γ†H < 1.

To prove our other upper bound, we consider the induction hypothesis:∣∣QπM1
(s, a,H)−QπM2

(s, a,H)
∣∣ ≤ βH2.

Then, in the third step above, we would instead have:

|QπM1
(s, a,H)−QπM2

(s, a,H)| ≤ γ†
(
β(H − 1)2

)
+ γ†βH

≤ β(H − 1)2 + βH

≤ βH2.

To get the first term on the right hand side, we again make use of the induction assumption. For the second term,
we simply upper bound the sum of the maximum discounted rewards to be H. Finally, we make use of the fact
that γ† < 1 and H2 − (H − 1)2 ≥ 2H − 1 ≥ H when H > 0.

Lemma 16. Suppose that as input to Algorithm 1, we set δT = δ/(2|S||A|m) and all confidence intervals
computed by our algorithm are admissible. Then, for any β > 0, there exists an m = O

(
|S|
β2 + 1

β2 ln |S||A|βδ

)
such

that ‖T̂ (s, a, ·) = T (s, a, ·)‖1 ≤ β holds for all state-action pairs (s, a) that have been experienced at least m times.
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Proof. See Lemma 5 from Strehl and Littman (2008).

Lemma 17. Let M† = 〈S,A,R†, T, γ†〉 be an MDP that is the same as the true MDP M , but with arbitrary
rewards R† (bounded above by 1) and discount factor γ† < 1. Let K be some set of state-action pairs. Let
M ′ = 〈S,A,R†, T ′, γ†〉 be an MDP such that T ′ is identical to T on all elements inside K. Consider a policy π.
Let AM† be the event that a state-action pair not in K is encountered in a trial generated by starting from state
s1 and following π for H steps in M† (where H is a positive constant). If, with probability 1, the agent starting
at s1 and following π in M† will receive only non-negative rewards then,

V πM (s1, H) ≥ V πM ′ (s1, H)−min

(
1

(1− γ†)
, H

)
P(AM ).

Proof. This proof is similar to that of Lemma 3 from Strehl and Littman (2008). The only aspect we need to be
careful about is the magnitude of the rewards.

The two MDPs M† and M ′ differ only in their transition functions, and moreover, only outside the set K. Then,
observe that, for a fixed random seed, if the agent were to follow π starting from s1, it would receive the same
cumulative reward for H steps in both M† and M ′, if it remained in K for all those H steps. In other words, the
value of π in these two MDPs differs only because of those random seeds which led the agent out of K in M†.
Thus, the difference V πM ′ (s1, H)− V πM† (s1, H) cannot be any larger than the respective cumulative rewards. Our
claim then follows by lower bounding the cumulative reward in M† and upper bounding the cumulative reward in
M ′. More concretely, note that cumulative reward in M† can not be any lower than zero, since we assume that
the agent receives rewards bounded in [0, 1]. On the other hand, in M ′, the agent can receive a reward of 1 in all
H steps, so the value function can be upper bounded by min

(
1

(1−γ†) , H
)
.

Lemma 18. Consider an MDP M† = 〈S,A, T †, R†, γ†〉 with rewards bounded above by 1, and a stationary or
non-stationary policy π and state s. Then, for any H ≥ 0, we have:

V πM†(s,H) ≥ V πM†(s)−
(γ†)H+1

1− γ†
.

As a corollary of this, for H ≥ 1
1−γ† ln 1

ε(1−γ†) , we have:

V πM†(s,H) ≥ V πM†(s)− ε.

By the same argument, in the case that the rewards are bounded below by −1,

V πM†(s,H) ≤ V πM†(s) + ε.

Proof. This proof follows the proof of Lemma 2 from Kearns and Singh (2002).

Observe that by truncating any trajectory to H steps, the cumulative discounted reward for this trajectory can
drop by a value of at most:

∞∑
t=H+1

(γ†)t =
(γ†)H+1

1− γ†
,

which happens when it receives a reward of 1 at every time step after H. Thus for any H such that the
above quantity is lesser than or equal to ε, we will have V π(s,H) ≥ V π(s) − ε. This is indeed true for
H ≥ 1

1−γ† ln 1
ε(1−γ†) .

Lemma 19. Suppose that all confidence intervals are admissible. Let M† = 〈S,A, T,R†, γ†〉 be the same MDP
as M except with arbitrary rewards that are upper bounded by 1 and discount factor γ† < 1. Let π† denote the
optimal policy i.e., ∀s, π†(s) = arg maxa∈AQ

†
(s, a). Let M

†
denote the optimal MDP. Then, for all H ≥ 0 and

for all (s, a), we have:
V π
†

M
†(s) ≥ V ∗M†(s)
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Figure 3: Full map of the Unsafe Grid World environment. The green circle marks the goal, the blue triangle
marks the initial location of the agent sinit, and red circles correspond to dangerous states.

Proof. See Lemma 6 from Strehl and Littman (2008). Note that this proof also applies to MDPs with negative
rewards.

E Experiment Details

E.1 Unsafe Grid World

The first domain we consider is a grid world domain with dangerous states, where the agent receives a reward of
−1 for any action and the episode terminates. The agent starts on a 7× 7 island of safe states and is surrounded
by four 5× 5 islands of safe states in all four directions, separated from the center island by a one-state-thick line
of dangerous states (see Figure 3). The goal is placed on one of the surrounding islands. The agent can take
actions up, down, left, or right to move in those directions one step, or can take actions jump up, jump down,
jump left, or jump right to move two steps, allowing the agent to jump over dangerous states. There is a slipping
probability of 60%, which causes the agent to fall left or right of the intended target (30% for either side).

The initial safe set provided to the agent is the whole center island (except for the corners) and all actions that
with probability 1 will keep the agent on the center island. The distance function ∆ provided to the agent is
∆((s, a), (s̃, ã)) = 0 if a = ã and s and s̃ are within 5 steps from each other (in L∞ norm) and ∆((s, a), (s̃, ã)) = 1
otherwise. The analogous state function α is simply α((s, ·, s′), (s̃, ·)) = (xs′ + (xs̃ − xs), ys′ + (ys̃ − ys)), where
the subscripts denote the state to which the attribute belongs.
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E.2 Discrete Platformer

We also consider a more complicated discrete Platformer domain. The states space consists of tuples (x, y, ẋ, ẏ)
where x, y are the coordinates of the agent and ẋ, ẏ are the directional velocities of the agent. The actions
provided to the agent are the tuple (ẋdesired, j) where ẋdesired is the desired ẋ and ranges from −2 to 2, and j is
a boolean indicating whether or not the agent should jump. While on the ground, at every step ẋ changes by
at most 1 in the direction of ẋdesired and ẏ ∈ {1, 2} if j = 1 (otherwise ẏ remains unchanged). While in the air,
however, the agent’s actions have no effect and gravity decreases ẏ by one at every step. When the agent returns
to the ground, ẏ is set to 0.

There are three types of surfaces in the environment: 1) concrete, 2) ice, and 3) sand. These surfaces change
how high the agent can jump. On concrete, when the agent jumps, ẏ = 2 with probability 1; on ice ẏ = 2 with
probability 0.5 and ẏ = 1 with probability 0.5; and on sand ẏ = 1 with probability 1.

The environment is arranged into three islands. The first island has all three surface materials from left to right:
sand, ice, then concrete. The next two islands are just concrete, with the last one containing the goal state (where
the reward is 1). The regions surrounding these island are unsafe, meaning they produce rewards of −1 and are
terminal. The islands are spaced apart such that the agent must be on concrete to make the full jump to the next
islands (and visa versa).

The initial safe set provided to the agent is the whole first island and all actions that with probability 1 will keep
the agent on the center island. The distance function ∆ provided to the agent is ∆((s, a), (s̃, ã)) = 0 if a = ã and
s and s̃ are either both in the air or both on the same type of surface and ∆((s, a), (s̃, ã)) = 1 otherwise. The
analogous state function α is simply α((s, ·, s′), (s̃, ·)) = s̃′ where s̃′ has the same y, ẋ, and ẏ values as s′ with the
x value shifted by the x difference between s and s̃.

E.3 Baselines

Here we describe the details for the baselines we compare against. We note that all these baselines make use of
the distance metric and analogous state function to transfer information between different states, just like our
algorithm. For all of our “unsafe” algorithms, we set all negative rewards to be very large to ensure that they
converged to the safe-optimal policy. To improve the runtime of the experiments, the value functions and safe
sets are only re-computed every 100 time steps.

MBIE MBIE (Strehl and Littman, 2008) is a guided exploration algorithm that always follows a policy that
maximizes an optimistic estimate of the optimal value function. As noted above, one of the motivations of our
method was to construct a safe version of MBIE.

R-Max and Safe R-Max The next algorithm we compare against is R-Max (Brafman and Tennenholtz, 2002).
This algorithm sets the value function for all state-action pairs that have been seen fewer than m times (for some
integer m) to be equal to Vmax, the maximum value the agent can obtain. In order to ensure that all states are
sufficiently explored and still make use of the analogous state function, we set the value of any state-action pair,
(s, a), to Vmax = 1 (since all goal states are terminal) only if there is a state-action pair similar to (s, a) with a
transferred confidence interval length greater than some ε′ > 0. In mathematical terms, all state-action pairs
in {(s, a) ∈ S × A : ∃(s̃, ã) ∈ S × A where ∆

εT (s, a) < ε′ and ∆((s, a), (s̃, ã)) < τ/2} are set to Vmax. Clearly,
this requires at most every state to be explored m times, but in most cases decreases the number of times each
state-action pair needs to be explored. In our experiments we set ε′ = τ/2 to give R-Max the most generous
comparison against ASE, since ASE requires that a state-action only have a confidence interval of τ/2 before it
can be marked as safe. However, note that in many problems τ/2 may be much larger than the desired confidence
interval.

Our safe modification of this algorithm, “Safe R-Max,” simply restricts the allowable set of actions the agent can
take to Ẑsafe.

ε-greedy and Safe ε-greedy Another classic algorithm we compare against is ε-greedy. This algorithm acts
according to the optimal policy over its internal model at every time step with probability 1 − ε and with
probability ε the agent takes a random action. For our experiments we anneal ε between 1 and 0.1 for the first N
number of steps (N = 5,000 for the unsafe grid world and N = 20,000 for the discrete platformer game). Our
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safe modification of this algorithm, “Safe ε-greedy,” simply restricts the allowable set of actions the agent can take
to Ẑsafe.

Undirected ASE We also compare against a modified version of our algorithm “Undirected ASE.” This
modification changes Algorithm 3 such that Zedge ← {(s, a) ∈ Ẑcsafe |s ∈ Ẑsafe}, removing the use of Zgoal. With
this change, “Undirected ASE” simply tries to expand the safe set in all directions, instead of only along the
direction of the optimistic goal policy. This baseline is to illustrate the efficacy of using our directed exploration
method.


