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Abstract

A key challenge in applying reinforcement
learning to safety-critical domains is under-
standing how to balance exploration (needed
to attain good performance on the task) with
safety (needed to avoid catastrophic failure).
Although a growing line of work in reinforce-
ment learning has investigated this area of
“safe exploration,” most existing techniques
either 1) do not guarantee safety during the
actual exploration process; and/or 2) limit
the problem to a priori known and/or de-
terministic transition dynamics with strong
smoothness assumptions. Addressing this
gap, we propose Analogous Safe-state Ex-
ploration (ASE), an algorithm for provably
safe exploration in Markov Decision Processes
(MDPs) with unknown, stochastic dynamics.
Our method exploits analogies between state-
action pairs to safely learn a near-optimal
policy in a PAC-MDP (Probably Approxi-
mately Correct-MDP) sense. Additionally,
ASE also guides exploration towards the most
task-relevant states, which empirically results
in significant improvements in terms of sample
efficiency, when compared to existing methods.
Source code for the experiments is available
at https://github.com/locuslab/ase.

1 Introduction

Imagine you are Phillipe Petit in 1974, about to make
a tight-rope walk between two thousand-foot-tall build-
ings. There is no room for error. You would want to be
certain that you could successfully walk across without
falling. And to do so, you would naturally want to
practice walking a tightrope on a similar length of wire,
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but only a few feet off the ground, where there is no
real danger.

This example illustrates one of the key challenges in
applying reinforcement learning (RL) to safety-critical
domains, such as autonomous driving or healthcare,
where a single mistake could cause significant harm or
even death. While RL algorithms have been able to
significantly improve over human performance on some
tasks in the average case, most of these algorithms do
not provide any guarantees of safety either during or
after training, making them too risky to be used in
real-world, safety-critical domains.

Taking inspiration from the tight-rope example, we
propose a new approach to safe exploration in reinforce-
ment learning. Our approach, Analogous Safe-state
Exploration (ASE), seeks to explore state-action pairs
that are analogous to those along the path to the goal,
but are guaranteed to be safe. Our work fits broadly
into the context of a great deal of recent work in safe re-
inforcement learning, but compared with past work, our
approach is novel in that 1) it guarantees safety during
exploration in a stochastic, unknown environment (with
high probability), 2) it finds a near-optimal policy in
a PAC-MDP (Probably Approximately Correct-MDP)
sense, and 3) it guides exploration to focus only on
state-action pairs that provide necessary information
for learning the optimal policy. Specifically, in our
setting we assume our agent has access to a set of ini-
tial state-action pairs that are guaranteed to be safe
and a function that indicates the similarity between
state-action pairs. Our agent constructs an optimistic
policy, following this policy only when it can establish
that this policy won’t lead to a dangerous state-action
pair. Otherwise, the agent explores state-action pairs
that inform the safety of the optimistic path.

In conjunction with proposing this new approach, we
make two main contributions. First, we prove that
ASE guarantees PAC-MDP optimality, and also safety
of the entire training trajectory, with high probability.
To the best of our knowledge, this is the first algorithm
with this two-fold guarantee in stochastic environments.
Second, we evaluate ASE on two illustrative MDPs,
and show empirically that our proposed approach sub-
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stantially improves upon existing PAC-MDP methods,
either in safety or sample efficiency, as well as existing
methods modified to guarantee safety.

2 Related Work

Safe reinforcement learning. Many safe RL tech-
niques either require sufficient prior knowledge to guar-
antee safety a priori or promise safety only during
deployment and not during training/exploration. Risk-
aware control methods (Fleming and McEneaney}, 1995}
Blackmore et al. 2010; |Ono et al., 2015)), for example,
can compute safe control policies even in situations
where the state is not known exactly, but require the
dynamics to be known a priori. Similar works
land Barto}, 2002; Hans et al., |2008) allow for learning
unknown dynamics, but assume sufficient prior knowl-
edge to determine safety information before exploring.
Constrained-MDPs (C-MDPs) (Altman, 1999; |Achiam|
et al.,2017; Taleghan and Dietterich, [2018) and Robust
RL (Wiesemann et al., [2013; Lim et alJ, 2013, [Nilim
and EI Ghaouil, [2005; [Ostafew et al.| 2016} [Aswani
et al., |2013), on the other hand, are able to learn the
dynamics and safety information, but promise safety
only during deployment. Additionally, there are com-
plications with using C-MDPs, such as optimal policies
being stochastic and the constraints only holding for a
subset of states (Taleghan and Dietterich| 2018).

Other works (Wachi et al., |2018; Berkenkamp et al.

not reward-directed, and instead focus on only explor-
ing the state-action space as much as possible. Second,
although the GP-based methods (Wachi et al., 2018}
Berkenkamp et al, 2017} [Turchetta et all,[2016} [Akamet!
alu et al., [2014)) help capture uncertainty, they do not
model inherent stochasticity in the environment and
instead assume the true transition function to be de-
terministic. Accounting for this stochasticity presents
significant algorithmic challenges (see Appendix [B)). To
the best of our knowledge, Moldovan and Abbeel (2012)
is the only work that tackles learning on environments
with unknown, stochastic dynamics. Their method
guarantees safety by ensuring there always exists a
policy to return to the start state. They do, however,
assume that the agent knows a-priori a function that
can compute the transition dynamics given observable
attributes of the states. Our method, however, does not
assume known transition functions. Instead it learns
the dynamics of state-actions that it has established
to be safe, and extends this knowledge to potentially
unsafe state-actions.

PAC-MDP learning. Sample efficiency bounds for
RL fall into two main categories: 1) regret
and 2) PAC (Probably Approximately Correct)
bounds (Strehl et al., [2009; Fiechter} 1994). For our
analysis we use the PAC, specifically PAC-MDP
, framework. PAC-MDP bounds bound the
number of e-suboptimal steps taken by the learning
agent. PAC-MDP bounds have been shown for many
popular exploration techniques, including R-Max (Braf-

2017} [Turchetta et al., 2016} [Akametalu et al. [2014

man and Tennenholtz, 2002) and a slightly modified

—

Moldovan and Abbeel, 2012)) do consider the problem of
learning on unknown environments while also ensuring
safety throughout training. Indeed, both our work and
these works rely on a notion of similarity between state-
action pairs in order to gain critical safety knowledge.
For example, (Wachi et al.| [2018} Berkenkamp et al.
[2017} [Turchetta et al.| [2016; |Akametalu et al., [2014])
make assumptions about the regularity of the transition
or safety functions of the environment, which allows
them to model the uncertainty in these functions using
Gaussian Processes (GPs). Then, by examining the
worst-case estimate of this model, they guarantee safety
on continuous environments. We also refer the reader
to a rich line of work outside of the safety literature
that has studied similarity metrics in RL, in order
to improve computation time of planning and sample
complexity of exploration (Givan et al. [2003} |Taylor

et al.l 2009; Abel et al},2017; |[Kakade et al., 2003 [Taiga
et al) 2018) (see Appendix for more discussion).

However, there are two key differences between the
above works (Wachi et al., |2018; Berkenkamp et al.
2017} [Turchetta et al. 2016 [Akametalu et al. [2014
Moldovan and Abbeel, 2012)) and ours. First, (with the
exception of [Wachi et al| (2018)), these approaches are

Q-Learning (Strehl et al., 2006). While R-Max is PAC-
MDP, it explores the state-action space exhaustively,
which can be inefficient in large domains. Another
PAC-MDP algorithm, Model-Based Interval Estima-
tion (MBIE) (Strehl and Littman), 2008), outperforms
the sample efficiency of R-Max by only exploring states
that are potentially along the path to the goal. Our
work seeks to extend this algorithm to safety-critical
domains and guarantee safety during exploration.

3 Problem Setup

We model the environment as a Markov Decision Pro-
cess (MDP), a 5-tuple (S, A, R, T, ~) with discrete, fi-
nite sets of states S and actions A, a known, deter-
ministic reward function R : S x A — R, an unknown,
stochastic dynamics function 7' : S x A — Pg which
maps a state-action pair to a probability distribution
over next states, and discount factor v € (0,1). We
assume the environment has a fixed initial state and
denote it by sjni;- We also assume that the rewards
are known a-priori and bounded between —1 and 1;
the rewards that are negative denote dangerous state-
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actions[T] This of course means that the agent knows a
priori what state-actions are “immediately” dangerous;
but we must emphasize that the agent is still faced
with the non-trivial challenge of learning about other
a priori unknown state-actions that can be dangerous
in the long-term — we elaborate on this in the “Safety”
section below. Also note that while most RL literature
does not assume the reward function is known, we think
this is a reasonable assumption for many real-world
problems where reward functions are constructed by
engineers. Moreover, this assumption is not uncommon
in RL theory (Szita and Szepesvari, |2010; Lattimore
and Hutter} 2012).

Analogies. As highlighted in [Turchetta et al.| (2016),
some prior knowledge about the environment is re-
quired for ensuring the agent never reaches a catas-
trophic state. In prior work, this knowledge is often
provided as some notion of similarity between state-
action pairs; for example, kernel functions used in
previous work employing GPs to model dynamics or
Lipschitz continuity assumptions placed on the dy-
namics. Intuitively, such notions of similarity can be
exploited to learn about unknown (and potentially
dangerous) state-action pairs, by exploring a “proxy”
state-action pair that is sufficiently similar and known
to be safe. Below, we define a notion of similarity,
but the key difference between this and previous for-
mulations is that ours also applies to stochastic en-
vironments. Specifically, we introduce the notation
of analogies between state-action pairs. More con-
cretely, the agent is given an analogous state function
a:(SxAxS8)x(SxA) — S and a pairwise state-
action distance mapping A : (S x A) x (S x A) — [0, 2]
such that, for any (s,a,$§,a) € (S x A) x (S x A)

Z |T(sva78/) - T(§,6~L,Oc(- o 73/))| < A((Sva)v (57 a))

s'eS

where a(- -+, s') = a(s, a, ¢, §,a) represents, intuitively,
the next state that is “equivalent” to s’ for (3, a). E| In
other words, for any two state-action pairs, we are given
a bound on the L; distance between their dynamics:
one that is based on a mapping between analogous next
states. The hope is that « can provide a much more
useful analogy than a naive identity mapping between
the respective next states.

To provide some intuition, recall the tight-rope walker
example mentioned in the introduction: The tight-rope
walker agent must cross a dangerous tight-rope, but

'Note that our work can be easily extended to have a
separate safety and reward function, but we have combined
them in this work for convenience.

2Note that although « is defined for every (s, a,s’, 5, a)
tuple, not all such pairs of state-actions need be analogous to
each other. In such cases, we can imagine that a(s, a, s, 3, @)
maps to a dummy state and A((s,a), (5,a)) = 1.

wants to guarantee it can do so safely. In this situ-
ation, the agent has a “practice” tight-rope (that’s
only a few feet off the ground) and a “real” tight-
rope. In this example, if the agent is in a particu-
lar position and takes a particular action on either
tight-rope, the change in its position will be the same
regardless of what rope it was 0nE| This analogy be-
tween the two ropes can be mathematically captured
as follows. Consider representing the agent’s state
as a tuple of the form (prac,x) or (real,z) where the
first element denotes which of the two ropes the agent
is on, and the second element denotes the position
within that rope. Then for any action a, we can say
that «((prac,x),a, (prac, x’), (real,z),a) = (real,z’)
and A(((prac, z),a), ((real,z),a) = 0. This would thus
imply that by learning a model of the dynamics in
the practice setting, and the corresponding optimal
policy, an agent would still be able to learn a policy
that guaranteed safety even in the real setting.

State-action sets. For simplicity, for any set of state-
action pairs Z C S x A, we say that s € Z if there
exists any a € A such that (s,a) € Z. Also, we say that
(s,a) is an edge of Z if (s,a) ¢ Z but s € Z. We use
P[-|7] to denote the probability of an event occurring
while following a policy .

Definition 1. We say that Z C S x A is closed if
for every (s,a) € Z and for every next s’ for which
T(s,a,s") >0, there exists a’ such that (s',a') € Z.

Intuitively, if a set Z is closed, then we know that if
the agent starts at a state in Z and follows a policy
7 such that for all s € Z, (s,m(s)) € Z, then we can
guarantee that the agent never exits Z (see Fact [1|in
Appendix [A)). We will use 7 € II(Z) to denote that, for
all s € Z, (s,m(s)) € Z.

Definition 2. A subset of state-action pairs, Z C
S x A is said to be communicating if Z is closed and
for any s’ € Z, there exists a policy s € 11I(Z) such
that Vs, P[3t, sy = |ms,80 = 8] = 1.

In other words, every two states in Z must be reach-
able through a policy that never exits the subset Z.
Note that this definition is equivalent to the standard
definition of communicating when Z is the set of all
state-action pairs in the MDP (see Appendix [A)).

Safe-PAC-MDP. One of the main objectives of this
work is to design an agent that, with high probability
(over all possible trajectories the agent takes), learns
an optimal policy (in the PAC-MDP sense) while also
never taking dangerous actions (i.e. actions with neg-
ative rewards) at any point along its arbitrarily long,

3For this example, we assume the dynamics of the agent
on the practice and real tight-ropes are identical, but small
differences could be captured by making the A(-,-, -, -) func-
tion non-zero.
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trajectory. This is a very strong notion of safety, but
critical for assuring safety for long trajectories. Such
a strong notion is necessary in many real-world appli-
cations such as health and self-driving cars where a
dangerous action spells complete catastrophe.

We formally state this notion of Safe-PAC-MDP below.
The main difference between this definition and that of
standard PAC-MDP is (a) the safety requirement on
all timesteps and (b) instead of competing against an
optimal policy (which could potentially be unsafe), the
agent now competes with a “safe-optimal policy” (that
we will define later). To state this formally, as in [Strehl
et al.| (2006), let the trajectory of the agent until time
t be denoted by p; and let the value of the algorithm A
be denoted by V4(p,) — this equals the cumulative sum
of rewards in expectation over all future trajectories
(see Def[7]in Appendix [A]).

Definition 3. We say that an algorithm A is Safe-
PAC-MDP if, for any €,§ € (0,1], with probability at
least 1 — &, R(s¢,ar) > 0 for all timesteps t and addi-
tionally, the sample complexity of exploration i.e., the
number of timesteps t for which VA (p;) > V/ afe (pt)—ce,
is bounded by a polynomial in the relevant quantities,
(IS, 1Al,1/€,1/6,1/(1 — ), 1/7, Heom). Here, w5y, is
the safe-optimal policy defined in Def. [0, T is the mini-
mum non-zero transition probability (see Assumption

and H om is “communication time” (see Assumption

We must emphasize that this notion of safety must not
be confused with the weaker notion where one simply
guarantees safety with high probability at every step
of the learning process. In such a case, for sufficiently
long training trajectories, the agent is guaranteed to
take a dangerous action i.e., with probability 1, the
trajectory taken by the agent will lead it to a dangerous
action as ¢ — oo.

Safety. Since our agent is provided the reward map-
ping, the agent knows a priori which state-action pairs
are “immediately” dangerous (namely, those with nega-
tive rewards). However, the agent is still faced with the
challenge of determining which actions may be danger-
ous n the long run: an action may momentarily yield
a non-negative reward, but by taking that action, the
agent may be doomed to a next state (or a future state)
where all possible actions have negative rewards. For
example, at the instant when a tight-rope walker loses
balance, they may experience a zero reward, only to
eventually fall down and receive a negative reward. In
order to avoid such “delayed danger”, below we define a
natural notion of a safe set: a closed set of non-negative
reward state-action pairs; as long as the agent takes
actions within such a safe set, it will never find itself
in a position where its only option is to take a dan-
gerous action. Our agent will then aim to learn such
a safe set; note that accomplishing this is non-trivial

despite knowing the rewards, because of the unknown
stochastic dynamics.

Definition 4. We say that Z C S x A is a safe set
if Z is closed and for all (s,a) € Z, R(s,a) > 0. In-
formally, we also call every (s,a) € Z as a safe state-
action pair.

3.1 Assumptions

We will dedicate a fairly large part of our discussion be-
low detailing the assumptions we make. Some of these
are strong and we will explain why they are in fact
required to guarantee PAC-MDP optimality in conjunc-
tion with the strong form of safety that we care about
(being safe on all actions taken in an infinitely long
trajectory) in an environment with unknown stochastic
dynamics.

First, in order to gain any knowledge of the world
safely, the agent must be provided some prior knowledge
about the safety of the environment. Without any
such knowledge (either in the form of a safe set, prior
knowledge of the dynamics, etc) it is impossible to make
safety guarantees about the first and subsequent steps
of learning. We provide this to the agent in the form of
an initial safe set of state-action pairs, Zy, that is also
communicating. We note that this kind of assumption
is common in safe RL literature (Berkenkamp et al.|
2017; [Biyik et al., |2019)). Additionally, we chose to
make this set communicating so that the agent has the
freedom to roam and try out actions inside Zy without
getting stuck.

Assumption 1 (Initial safe set). The agent is initially
given a safe, communicating set Zy C S x A such that
Sinit € Z0-

In the PAC-MDP setting, we care about how well the
agent’s policy compares to an optimal policy over the
whole MDP. However, in our setting, that would be an
unfair benchmark since such an optimal policy might
potentially travel through unsafe state-actions. To this
end, we will first suitably characterize a safe set Zgaso
and then set our benchmark to be the optimal policy
confined to Zgate.

We begin by defining Zg.;e to be the set of state-
action pairs from which there exists some (non-negative-
reward) return path to Zy. Indeed, returnability is a
key aspect in safe reinforcement learning — it has been
similarly assumed in previous work (Moldovan and
Abbeel, 2012; |Turchetta et al., |[2016) and is also very
similar to the notion of stability used to define safety
in other works (Berkenkamp et al.l |2017; |Akametalu
et al., [2014). Defining Zsate in terms of returnability
ensures that Zg,s does not contain any “safe islands”
i.e., are safe regions that the agent can venture into,
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but without a safe way to exit. At a high-level, this
criterion helps prevent the agent from getting stuck
in a safe island and acting sub-optimally forever. The
reasoning for why we need this assumption and tradi-
tional PAC-MDP algorithm do not is a bit nuanced
and we discuss this in detail in Appendix

Definition 5. We define Zsqpe to be the set of state-
action pairs (s,a) such that Im etyrn for which:

P [ 3t>0 s.t.(s¢,a:)EZo

& Vt,R(s¢,at)>0 |7Treturna (507a0) = (Saa)} =1

Note that it follows that Zg.g. is a safe set (see Fact [3|in
Appendix . Additionally, we will assume that Zg,e
is communicating; note that given that all actions in
Zsafe satisfy returnability to Zj, this assumption is
equivalent to assuming that all actions in Zg,¢ are also
reachable from Zy. This is reasonable since we care
only about the space of trajectories beginning from the
initial state, which lies in Zy. Having characterized
Zsafe this way, we then define the safe optimal policy
using Zsate-

Assumption 2 (Communicatingness of safe set). We
assume Zgqpe C S X A is communicating.

Definition 6. 7*

safe 18 a safe-optimal policy in that

*

Trsafe

€ arg max

oo
¢
E E Y R(st,at)|m, S0 = Sinit
ﬂ'EH(Zsafe)

t=0

Besides returnability, another important aspect in the
safe PAC-MDP setting turns out to be the time it
takes to travel between states. In normal (unsafe)
reinforcement learning settings, the agent can gather
information from any state-action by experiencing it
directly. In this setting, on the other hand, not all state-
actions can be experienced safely so the agent must
indirectly gather information on a state-action pair
of interest by experiencing an analogous state-action.
Thus, the agent must be able to visit the informative
state-action and return to that state-action pair of
interest in polynomial time.

To formalize this, we will assume that within any com-
municating subset of state-action pairs, we can ensure
polynomial-time reachability between states, with non-
negligible probability. While this assumption is not
made in the normal (unsafe) PAC-MDP setting, we em-
phasize that this assumption applies to a wide variety
of real-world problems and is only violated in contrived
examples, such as in a random-walk setting. Specif-
ically, to violate this assumption, there must be two
state-action pairs in the safe set where the expected
number of steps to move from one to the next is expo-
nential in the state-action size. This can only happen
in random-walk-like scenarios where moving backwards

has an equal (or higher) probability than moving for-
ward, which occur very rarely in the real-world. To
make this last statement concrete, imagine a 1D grid
where any action the agent takes leads it to either of the
adjacent states with equal probability of 1/2. Then, to
reach a state that is n steps away with probability 1/2,
it would take the agent, in expectation, an exponential
number of steps in n, thus not satisfying Assumption
3. However, if the probabilities of moving forward was
3/4 for one action and moving backward was 1/4 for
the other action, then the agent could reach a state
that is n steps away with probability 1/2 in less than
2n steps, satisfying Assumption 3.

Assumption 3. (Poly-time communicating) There ex-
ists Heom = poly(|S|, |A]) such that, for any commu-
nicating set Z C S x A, and Vs’ € Z, there exists a
policy wgr € I(Z) for which

Vs, PM[Ht < Heoms 5t = 8/|7rs’750 = 3] > 1/2

Our next assumption is about the transition dynamics:
we assume that we know a constant such that any
transition either has zero probability or is larger than
that known constant. This assumption is necessary
to perform learning under our strict safety constraints
in unknown, stochastic dynamics. Specifically, given
this assumption, we can use finitely many samples to
determine the support of a particular state-action pair’s
next state distribution. This is critical since the agent
cannot take an action unless it knows every possible
next state that it could land in. Note that, in a finite
MDP, such a 7 always exists, we simply assume we
have a lower-bound on it.

Assumption 4 (Minimum transition probability).
There exists a known T > 0 such that Vs,s' € S and
ac A, T(s,a,s)e0U]r1].

Finally, we make an assumption that will help the agent
expand its current estimate of the safe-set along its
edges. Specifically, note that to establish safety of an
edge state-action pair, it is necessary to establish a
return path from it to the current safe-set (see Ap-
pendix for a more in-depth reasoning behind this).
Motivated by this we assume the following. Consider
any safe subset of state-actions Z and a state-action
(s,a) at the edge of Z that also belongs to Zsafe. Then,
we assume that for every state-action pair that is on
the path that starts from this edge and returns to Z,
there exists an element in Z that is sufficiently similar
to that pair. In other words, for any safe subset Z of
Zsafe, this assumption provides us hope that Z can be
expanded by exploring suitable state-actions inside Z.

The fact that this allows expansion of any safe subset
Z might seem like a stringent assumption. But we
must emphasize this is required to show PAC-MDP op-
timality: to learn a policy is near-optimal with respect
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to 75 s, intuitively, our algorithm must necessarily es-
tablish the safety of the set of state-actions that 7% .
could visit. Now, depending on what the (unknown)

s l0oks like, this set could be as large as (the un-
known set) Zgafe itself. To take this into account, our
assumption essentially allows the agent to use analo-
gies to expand its safe set to a set as large as Zgage if
the need arises. Without this assumption, the agent
might at some point not be able to expand the safe
set and end up acting sub-optimally forever. We note
earlier works (Turchetta et al., 2016; Berkenkamp et al.|
2017; |Akametalu et al.| [2014]) do not make this assump-
tion because they crucially didn’t need to establish
PAC-MDP optimality.

Assumption 5 (Similarity of return paths). For any
safe set Z such that Zy C Z and for any (5,a) €
Zsofe such that § € Z and (5,a) ¢ Z, we know from
Assumption @ that the agent can return to Zy (and
by extension, to Z) from (§,a) through at least one
Treturn € U(Zsage). Let 7 denote the set of state-action
pairs (s, a) visited by Trepurn before reaching Z, in that,

(se,04)=(s,a)
Py [Ht >0 vp'cy P-4

(807 aO) = (§7 &)77rretu7‘ni| > 0.

€ Z\ Z, there exists
a)) < 7/4.

We assume that for all (s,a) €
(s',d") € Z such that A((s,a), (s,

To provide some intuition behind this assumption, con-
sider again the tight-rope walker example. For this
assumption to be satisfied, the agent must be able to
safely learn how to return from any point along the
real tight-rope. Since the agent has access to a similar
practice tight-rope, the agent can learn to safely cross
the practice tight-rope, turn around, and return safely.
Once the agent has learned this policy, it has estab-
lished a safe return path from any point along the real
tight-rope. Thus, this assumption is satisfied.

4 Analogous Safe-state Exploration

Given these assumptions, we now detail the main al-
gorithmic contribution of the paper, the Analogous
Safe-state Exploration (ASE) algorithm, which we later
prove is Safe-PAC-MDP. In addition to safety and op-
timality, we also do not want to exhaustively explore
the state-action space, like R-Max (Brafman and Ten,
nenholtz, 2002), as that can be prohibitively expensive
in large domains. We want to guide our exploration,
like MBIE (Strehl and Littman, [2008), to explore only
the state-action pairs that are needed to find the safe-
optimal policy. MBIE does this by maintaining con-
fidence intervals of the dynamics of the MDP, and
then by following an “optimistic policy” computed us-
ing the most optimistic model of the MDP that falls
within the computed confidence intervals. We build

Algorithm 1 Analogous Safe-state Exploration
(a7 A7 m7 5T7 R7 ,Y) 'Yexplorev FYSWitCh’ T)

Initialize: Zsate Zo; n(s,a),n(s,a,s") < 0;
Zgoal +— S8 x A S0 < Sinit-

Compute confidence 1ntervals using Alg |§| Appendix
with parameter dr and analogy function o, A.
Compute Tgoal, Zgoal, Zexplore Using Alg . and I with
parameters -, 7 and reward function R.
Compute Texplore; Tswitch Using value iteration (Ap-
pendix with parameters Yexplore; Vswitch-
fort=1,2,3,... do
fgoal(st)
ﬁexplore(st)
ﬁswitch(st)
Take action a; and observe next state s¢y1.
if n(st,ar) < m then

n(se,at) +=1, n(se, at, Se+1) += 1.

Recompute confidence intervals

Expand Zsate using Alg |2| with parameter 7.

RecomPUte ﬁgoah Zgoal, Zexplore7 ﬁexplo:re,ﬁswitch-

if St € 7goal & 7goal C Zsafe
if Zgoal §Z Lsate
otherwise.

at <

on this standard MBIE approach and equip it with
a significant amount of machinery to meet our three
objectives simultaneously: safety, guided exploration,
and optimality in the PAC-MDP sense.

Policies maintained by ASE. ASE maintains and
updates three different policies: (a) an optimistic policy
Teoal that seeks to maximize reward — this is the same as
the optimistic policy as in standard MBIE computed on
M (except some minor differences), (b) an exploration
policy Texplore that guides the agent towards states in
a set called Zexpiore (described shortly) and finally (c)
a “switching” policy Tswitch that can be thought of as a
policy that aids the agent in switching from Texplore t0
Tgoal (by carrying it from Zexplore t0 Zgoal as explained
shortly) See Appendix for details on these policies.

Sets maintained by ASE. ASE also maintains and
updates three major subsets of state-action pairs. 1) a
safe set Zsafc which is initialized to Zy and gradually
expanded over time (using Alg. 2) an “optimistic tra-
jectory” set 7goal (computed in Alg , which contains
all state-action pairs that we expect the agent would
visit if it were to follow Tgoa1 from sini; under optimistic
transitions. 3) an “exploration set” Zexplore (computed
using Algs (3| and M4]) which contains state-action pairs
that, when explored, will provide information critical
to expand the safe set. Besides these state-action sets,
the algorithm also maintains a set of L; confidence in-
tervals as detailed in Alg[6]and Appendix[B.2} The key
detail here is that the interval for a given state-action
pair is not only updated using its samples, but also by
exploiting the samples seen at any other well-explored
state-action pair that is sufficiently similar to the given
pair, according to the given analogies.



Melrose Roderick, Vaishnavh Nagarajan, J. Zico Kolter

How ASE schedules the policies. We discuss how,
at any timestep, the agent chooses between one of the
above three policies to take an action. First, the agent
follows Tgoa1 Whenever it can establish that doing so
would be safe. Specifically, whenever (a) 7goa1 C Zsate
and (b) the current state s; belongs to 7goa17 it is
easy to argue that following Tgoal is safe (see proof of
safety in Theorem [I). On the other hand, when (a)
does not hold, the agent follows Texplore- In doing so,
the hope is that, it can explore Zexpiore Well and use
analogies to expand Zeate until it is large enough to
subsume Zgoa (Which means (a) would hold then). As
a final case, assume (a) holds, but (b) does not i.e.,
St & Zgoa- This could happen if the agent has just
explored a state-action pair far away from Zgoalv which
subsequently helped establish (a) i.e., 7g0a1 C Zeato-
Here, we use Tswitch t0 carry the agent back to Zgoal.
Once carried there, both (a) and (b) hold, so it can
switch to following Tgoal.

Guided exploration. We would like the agent to
explore only relevant states by using the optimistic
policy as a guide, like in MBIE. This is automatically
the case whenever the agent explores using the opti-
mistic goal policy Tgoal- As a key addition to this, we
use the optimistic policy to also guide the exploration
policy Texplore- As explained below, we do this by only
conservatively populating Zeiplore based on the opti-
mistic trajectory set Zgoal. Recall that the hope from
exploring Zexplore is that it can help Zsafe expand in
a way that it is large enough to satisfy Zgoal C Zsafe.
Keeping this in mind, the naive way to set Zexplore
would be to add all of Zeuge to it; this will force us
to do a brute-force exploration of the safe set, and
consequently aggressively expand the safe set in all
directions. Instead of doing so, roughly speaking, we
compute Zexplore i & Way that it can help establish the
safety of only those actions that (a) are on the edge
of Zsafe and (b) also belong to 7g0a1. This will help us
conservatively expand the safe set in “the direction of
the optimistic goal policy”. (Note that all this entails
non-trivial algorithmic challenges since we operate in
an unknown stochastic environment. Due to lack of
space we discuss these challenges in Appendix

5 Theoretical Results

Below we state our main theoretical result, that ASE
is Safe-PAC-MDP. We must however emphasize that
this result does not intend to provide a tight sample
complexity bound for ASE; nor does it intend to com-
pete with existing sample complexity results of other
(unsafe) PAC-MDP algorithms. In fact, our sample
complexity result does not capture the benefits of our
guided exploration techniques — instead, we use practi-
cal experiments to demonstrate that these benefits are

significant (see Section @ The goal of this theorem is
to establish that ASE is indeed PAC-MDP and safe,
which in itself is highly non-trivial as ASE has much
more machinery than existing PAC-MDP algorithms
like MBIE. In the interest of space we will give a brief
overview of the proof & algorithm. A more detailed
proof outline can be found in Appendix [C} The full
(lengthy) proof is included in Appendix @

Theorem 1. For any constant ¢ € (0,1/4],

e,6 € (0,1, MDP M = (S,AT,R,vy), for
or = 6/(2|S||A|m)7 Vexplore = Vswitch = Cl/H,
and m = O((S|/&)+ (1/&)In(]S||A]/8))
where € = min(7,e(1—7)%1/H?) and H =

O (max {H com 108 Heom, (1/(1 = 7)) In(1/€(1 = 7))})
ASE is Safe-PAC-MDP with a sample complezity
bounded by O (Hm|S||A|(1/e(1 —v))1In(1/4)).

To prove safety, we show in Lemma [3|that Alg[2] which
computes Zsafe, always ensures that Zsafe is a safe set.
Then, in the main proof of Theorem [I] we argue that
the agent always picks state-actions inside Zsafe- So, it
follows that the agent always experiences only positive
rewards. Next, in order to prove PAC-MDP-ness, while
we build on the core ideas from the proof for PAC-MDP-
ness of MBIE (Strehl and Littman) 2008), our proof is
a lot more involved. This is because we need to show
that all the added machinery in ASE work in a way that
(a) the agent never gets “stuck” and (b) whenever the
agent takes a series of sub-optimal actions (e.g., while
following Texplore OF Tswitch), it can “make progress” in
some form. As an example of (a), Lemma [4 shows that
Zsate 18 always a communicating set, so the agent can
always freely move between the states in Zsafe. This is
critical to show that when the agent follows Texplore (OF
Tswitch)s it can reach Zexplore (0r Zgoa1) without being
stuck anywhere (see Lemma . As an example of
(b), Lemma [9] and Lemma [10] together show that only
informative state-action pairs are added to Zexpiore i-€.,
when explored, they will help us expand Zsate-

6 Experiments

Through experiments, we aim to show that (a) ASE
effectively guides exploration, requiring significantly
less exploration than exhaustive exploration methods,
and (b) the agent indeed never reaches a dangerous
state under realistic settings of the parameters (namely
m and 7 in Alg. Below, we outline our experiments,
deferring the details to Appendix [E] For our experi-
ments, we consider two environments. The first is a
stochastic grid world containing five islands of grid cells
surrounded by “dangerous states” (i.e., states where all
actions result in a negative reward). The agent can
take actions that allow it to jump over dangerous states
to transition between islands and reach the goal state.
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(a) Unsafe Grid World
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(b) Discrete Platformer

Figure 1: Number of e-sub-optimal steps taken by each
agent throughout training. Lines denote averages over
five trials and shaded regions mark the max and min.

The second is a stochastic platformer game where cer-
tain actions can doom the agent to eventually reaching
a dangerous state by jumping off the edge of a platform.
In the grid world environment, two state-actions are
analogous if the actions are equivalent and the states
are near each other (Lo, distance), and in the stochas-
tic platformer game, if the actions and all attributes
but the horizontal position in the state are equivalent
and the two states are on the same “surface type”.

We compare the behavior of our algorithm against both
“unsafe” and “safe” approaches to learning reward-based
policies. For the unsafe baselines, we consider the orig-
inal (unsafe) MBIE algorithm (Strehl and Littmanl,
2008), R-Max (Brafman and Tennenholtz, 2002), and
e-greedy, all adapted to use the analogy function (with-
out which, exploring would take prohibitively long).
For safe baselines, unfortunately, there is no existing
algorithm because no prior work has simultaneously ad-
dressed the two objectives of provably safe exploration
and learning a reward-based policy in environments

/X"

g
‘h .[k_“...l.}

W
i ;‘A;lll'l'il‘. i A. A"‘\

(c) MBIE (unsafe)

Figure 2: All trajectories of different agents on the
Discrete Platformer domain. Unsafe trajectories are
drawn in red. The brown, white, and grey squares
correspond to the different surface types: sand, ice,
and concrete, respectively. The agent starts in the
center of the leftmost island. The flag represents the
goal state.

with unknown stochastic dynamics. To this end, we cre-
ate safe versions of R-Max and e-greedy (by restricting
the allowable set of actions the agent can take to Zsafe,
and using analogies to expand Zsafe), and also consider
an “Undirected ASE,” which is a naiver version of ASE
that expands Zsate in all directions (not just along the
goal policy).

Source code for the experiments is available at https!
//github.com/locuslab/ase,

Results. To measure efficiency of exploration, we
count the number of e-sub-optimal steps taken by each
agent. To calculate this, we first compute the true
safe-optimal @Q-function, Q;j;afe. We then count the
number of e-sub-optimal actions taken by the agent,
namely the number of times the agent is at a state
s; and takes an action a; such that QX}*‘“Q (st,ap) <
maxge A Qﬁafe (s¢,a) — €, where e = 0.01. Figure
shows our algorithm takes far fewer e-sub-optimal ac-
tions before it converges compared to all other safe
algorithms. As for safety, during our experiments, we
observe that, in both domains, the safe algorithms do
not reach any unsafe states. In the unsafe grid world
domain, the MBIE, R-Max, and e-greedy algorithms en-
counter an average of 85, 5,016, and 915 unsafe states,
respectively, and in the discrete platformer game en-
counter 83, 542, and 768 unsafe states.
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In the platformer domain, as we can see from Figure
our method explores only the necessary parts of the
initial safe-set, the right side, unlike the Safe R-Max
algorithm. Although standard MBIE also directs ex-
ploration, it has many trajectories that end in unsafe
states, which ASE avoids.

7 Conclusion

We introduced Analogous Safe Exploration (ASE), an
algorithm for safe and guided exploration in unknown,
stochastic environments using analogies. We proved
that, with high probability, our algorithm never reaches
an unsafe state and converges to the optimal policy, in
a PAC-MDP sense. To the best of our knowledge, this
is the first provably safe and optimal learning algorithm
for stochastic, unknown environments (specifically, safe
during exploration). Finally, we illustrated empirically
that ASE explores more efficiently than other non-
guided methods. Future directions for the this line
of work include extensions to continuous state-action
spaces, combining the handling of stochasticity we
present here with common strategies in these domains
such as kernel-based nonlinear dynamics.
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