Approximating bounded tree-width Bayesian network classifiers with

OBDD
Karine Chubarian* KCHUBA2 @UIC.EDU
University of Illlinois Chicago
Gyorgy Turan GYT@UIC.EDU

University of lllinois Chicago, University of Szeged

Abstract

It is shown that Bayesian network classifiers of tree-width k£ have an OBDD approximation com-

putable in polynomial time in the parameters, for every fixed k. This is shown by approximating
a polynomial threshold function representing the classifier. The approximation error can be mea-
sured with respect to any distribution which can be approximated by a mixture of bounded width
distributions. This includes the input distribution of the classifier.

1. Introduction

A knowledge representation formalism is tractable if it allows for answering queries and for ap-
plying operations in polynomial time. The trade-off between expressivity (or succinctness) and
tractability is an important consideration in many applications. The goal of knowledge compilation
is to study the possibilities and limitations of compilation algorithms between different representa-
tion formalisms from the point of view of such trade-offs (Darwiche and Marquis| (2002)).

In the Boolean case the ordered binary decision diagram (OBDD) representation is viewed
as providing a good compromise between expressivity and tractability, and therefore it forms a
standard representation or data structure for Boolean functions.

Chan and Darwiche| (2003) introduced the problem of compiling Bayesian network classifiers
into OBDD. They gave a compilation algorithm for the case of Naive Bayes Classifiers (NBC). For
an NBC with n input variables the size of the OBDD produced has size O (2"/ 2) and the running
time of the algorithm is O (nZ"/ 2). The compilation algorithm is extended to Latent-Tree Bayesian
Network Classifiers in|Shih et al.|(2018b) producing OBDD of size O (23"/ 4) in time O (n23"/ 4). It
is also shown that compiling even NBC to OBDD is NP-hard. A general compilation algorithm for
Bayesian network classifiers is given in|Shih et al.|(2019), which has an exponential upper bound in
the compilation width of the classifier. The compilation algorithms are used as a tool for reasoning
about the classifiers and giving explanations for their decisions in|Shih et al.|(2018a)), Darwiche and
Hirth| (2020) and Darwiche| (2020). These applications provide a connection to interpretability.

OBDDs are related to the computational model of read-once branching programs, and the com-
plexity of such models have been studied extensively in complexity theory. [Hosaka et al.| (1997)
showed that linear threshold functions (LTF) can be computed by OBDD of size O (2"/2) and
Takenaga et al.[ (1997)) constructed an LTF such that every OBDD representing that function has
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size (2 <2‘3"17 ) Shih et al. (2018b) shows that if P # NP then NBC cannot be compiled into

OBDD in polynomial time (and thus having polynomial size), while [Takenaga et al.|(1997) give an
exponential lower bound to the OBDD size needed, without any complexity-theoretic assumption.

The negative results raise the question whether there is a polynomial size approximate OBDD
representation for NBC or perhaps even for larger classes of Bayesian network classifiers, and if
so then can such an approximation be computed in polynomial time? The classifiers are usually
assumed to be built using machine learning and so being only approximately correct. This gives a
further reason to consider approximate compilations.

In this paper we answer this question positively by giving an approximation scheme for Bayesian
network classifiers of bounded tree-width. In the context of knowledge compilation, this result
corresponds to approximate knowledge compilation.

For approximate representations one has to specify what kind of approximation is considered.
One option is to consider the number of truth assignments where the two representations differ,
i.e., the error under the uniform distribution over truth assignments. However, a Bayesian network
classifier already specifies a distribution on the input variables, namely the marginal distribution
over these variables of the joint distribution represented by the classifier. It seems natural to use this
distribution for measuring error. More generally, Theorem [I] applies to any distribution which can
be approximated by a mixture of a bounded number of bounded-width distributions.

Theorem 1 For every Bayesian network classifier of tree-width k having n Boolean variables and
d-bit conditional probabilities, and every € > 0 there is an OBDD of size poly (no(k), d,1/ 5) ap-
proximating the classifier with error at most € with respect to the input distribution of the classifier.
The OBDD can be constructed in time poly (no(k), d, 1/5).

This result generalizes a preliminary version of this paper (Chubarian and Turan|(2020)) on Tree
Augmented Bayesian Network Classifiers (TAN) to bounded tree-width classifiers. Negative results
for approximate knowledge compilation were recently proved by de Colnet and Mengel (2020).

In the remainder of the introduction we give an outline of the proof. We use the fact that
Bayesian network classifiers can be represented as polynomial threshold functions (PTF). The terms
of the polynomial, viewed as a hypergraph over the variables, have bounded path-width (Corollary
4). The compilation algorithm, then, is an approximate compilation of such PTF into OBDD.

For this compilation the underlying distribution over the input variables, measuring the error of
the compilation, is assumed to be have a certain structural property called (polynomially) bounded
width. Such syntactically defined discrete distributions were introduced by Kamp et al.| (2000),
and studied further in |Gopalan et al| (2010). In these papers this class of distributions is called
small-space sources (the definitions in the two papers are somewhat different). The same notion is
considered in Bozga and Maler| (1999) and [Jaeger| (2004).

The approximability result is the following.

Theorem 2 For every n-variable path-width-k1 PTF f with integer coefficients of at most d bits,
every width-ko distribution D over the input variables with d-bit probabilities and every ¢ > 0
there is an OBDD of size poly (no(kl), d, ks, 1/5) approximating the PTF with error at most € with
respect to D. The OBDD can be constructed in time poly (no(kl), d, ko, 1/6).

The proof generalizes the OBDD construction of |Gopalan et al.| (2010) for approximating the
number of solutions of knapsack problems, obtained by compressing the OBDD which works by
evaluating the partial sums of the corresponding LTF.



The joint distribution of a Bayesian network classifier of bounded width is of bounded width
itself, but this does not hold for the input distribution, which is the mixture of two bounded-width
distributions. However, in Theorem [/| we show that the input distribution can be approximated by
a bounded width distribution. Theorem [I] thus follows by applying Theorem 2] to this approximat-
ing distribution. The algorithms use width-based representation-finding and probabilistic inference
algorithms having complexity poly (n, 2’“).

The paper is structured as follows. After discussing related work in the next section, Sections
M) give preliminaries. OBDDs for the distributions involved are described in Section [5} and for the
OBDD computing the PTF exactly in Section[6] Section[7]contains the proofs of Theorems[2]and ]

2. Related work

The representational power of probabilistic classifiers is discussed by Jaeger| (2003 and |Varando
et al| (2015). General background for Bayesian networks, including compilation results are de-
scribed in |[Darwiche| (2009). Tractable operations and complexity aspects of OBDD are described
in the monograph of |Wegener| (2000).

Complexity aspects of polynomials with bounded tree-width term structure are discussed in
Makowsky and Meer| (2000). |/Amarilli et al. (2018) give a path-width characterization of OBDD
representability of monotone CNF. Levelwise monotonicity, a key OBDD property in|Gopalan et al.
(2010), is also used by Meka and Zuckerman| (2010).

3. Preliminaries
3.1 Widths

For an undirected graph G = (V, E), a tree-decomposition of G is given by a tree 1" and “bags”
B, C V for every vertex t of T', such that for every (u,v) € E there exists ¢ such that u,v € By
and for every v € V the vertices ¢ such that v € B; form a subtree of 1. The width of a tree
decomposition is max;cy (7 | Be| — 1 and the tree-width tw(G) of G is the minimal width of tree-
decompositions of G. The path-width pw(G) of G is defined by trees restricted to paths.

The moral graph of a DAG G is the undirected graph MG(G) obtained from G by adding
undirected edges between co-parents and disregarding the direction of the original directed edges.
For a DAG G we define tw(G) = tw(MG(G)) and pw(G) = pw(MG(G)). The undirected graph
obtained from a DAG G by disregarding the edge directions is denoted by und(G)

The primal graph PG(H ) of a hypergraph H is the undirected graph obtained from H by replac-
ing every hyperedge by a clique. Then tw(H ) = tw(PG(H)) and pw(H) = pw(PG(H)). Given an
undirected graph G with vertex set [n] = {1,...,n}, the separator of vertex ¢ with respect to the
natural ordering of the vertices is

S¢={j:j<{land (j,k) € E for some k > (}. (1)
We note that since the only new vertex which can enter Sy is ¢ we have
S¢ € Sp—q U {£}. (2)

The vertex separation number vs(G) of G is the minimum of max<,,—1 |S¢| over all orderings
of the vertices. Kinnersley (1992) showed that pw(G) = vs(G).
Let us recall several statements about path-width and tree-width.



Claim 1 a) For any n > 2 it holds that tw(K,,) = n — 1.
b) For any (un)directed graph G and any H C G it holds that pw(H ) < pw(G), tw(H) < tw(G).
¢) For any n-vertex (un)directed graph G it holds that pw(G) = O(tw(G) logn).

d) For every DAG G every vertex v has at most tw(G) parents.

3.2 Bayesian network classifiers

We use X, z;, resp., a;, to denote binary random variables, Boolean variables, resp., Boolean con-
stants. A Bayesian network classifier N is a DAG Gy over binary input variables X1, . .., X, and
a binary classifier variable C, with local conditional probabilities specified for each vertex. It is
assumed that (C, X;) is an edge for every ¢ = 1,...,n. LetII; = {j : X is a parent of X;} be
the set of parents of X; other than C

The family of i is {i} U II;. Let dy = 1 + max; |II;| be the maximal size of families in G,
referred to as the degree of the Bayesian network. The tree-width of N is tw(G ) = tw(MG(Gn \
{C})), its path-width is pw(Gxy) = pw(MG(Gy \ {C})) and a separator S, is computed using
MG(Gn \ {C}).

The restriction of a vector x = (z1,...,xy) to a subset I of its coordinates is denoted by x;.
The local conditional probabilities are p0 = Py (C = ¢) and pi( = Pn(X; = a;| Xq1, =

aj 7aHi 76)
ar;,C =c)fori=1,...,n.
The joint distribution of the variables is

Py(Xi=a1,.... Xy =an,C=c)=p0 [[p
i=1

3

i
(as,an, )

The marginal distribution over the input variables, also referred to as the input distribution, is

1
PN7x(X1 :al,...,Xn:an) :ZPN(XI :al,...,Xn:an,C:c).

c=0
We also use simpler notations such as Py (a1, ..., an,c) and Py x(ai,...,ap).
The Bayesian network classifier corresponding to N is a Boolean function fy(z1,...,2y)

where fy(ai,...,a,) = 1iff
PN(al,...,an,l) ZPN(al,...,amO).

3.3 OBDD and GOBDD

An ordered binary decision diagram (OBDD) over Boolean variables z1, . . . , z,, computes a Boolean
function ] An OBDD is a DAG with two sinks labeled 0 and 1, and the other nodes labeled with
variables. The DAG is assumed to be layered, with directed edges going from a layer to the next
layer, and sinks on the last layer. There are n + 1 layers and a permutation 7(¢) of [n] such that

1. Depending on the context, with an abuse of notation, we also consider the vertex sets to be [n] or {z1,...,Zn}
throughout the paper.
2. The definition given here is that of a complete OBDD in Wegener| (2000), a convenient slightly restricted version.



nodes on the i’th layer are labeled with variable 2 (;). On the first layer there is a single start node
labeled z(1). Every non-sink node has two outgoing edges, labeled with O, resp., 1. For every
truth assignment x = (x1,...,2,), f(z) is the label of the sink reached by following edge labels
corresponding to the bits in x, evaluated in the order given by the labels of the layers. The width of
an OBDD is the maximal number of nodes in a layer.

A generator OBDD (GOBDD) D generates a probability distribution over {0, 1}™. It is similar
to an OBDD, except edges are also labeled with probabilities, and there is a single sink. A prob-
ability p,, is associated with every non-sink vertex u, and the 0-edge (resp. 1-edge) leaving w is
labeled pO = p, (resp., p. = 1 — p,,). For every truth assignment z = (z1, ..., z,), the GOBDD
determines a path from the source to the sink, and Pp(x) is the product of edge probabilities along
the path. The width of a GOBDD is the width if the underlying OBDD. The width of a distribution
is the minimal width of GOBDDs generating it. Product distributions have width one.

4. Polynomial threshold function representation of Bayesian network classifiers

A polynomial threshold function (PTF) is a Boolean function of the form sgn(p(z1, ..., z,)), where
sgn is the sign function and p is a multilinear polynomial. The degree of the representation is the
degree of p, i.e., the maximal number of variables in a term. PTF can be written in general as

play,. ) =Y Bra, )

Iel

where Z is a family of subsets of [n].
The term-hypergraph H), of the PTF p has vertex set [n] and edge set Z. The tree-width of a
PTF is the tree-width of its term-hypergraph, and similarly for path-width and separator Sy.
Varando et al.| (2015)) stated the representability of Bayesian network classifiers as PTF for
categorical distributions, assuming non-zero conditional probabilities.

Proposition 3 (see, e.g., |Varando et al.|(2015)) Let N be a Bayesian network classifier with non-
zero conditional probabilities. The classifier fx is a degree-d PTF such that every term is a subset

of a family.

Proof Let I,(x) be the binary indicator function, i.e., I;(xz) = x and Ip(x) = 1 — x. It holds that

Pn(X; = ;| X, = 211, C = ¢) = H i fai o) [jen, 1oy (23),

P(as.am, )
(as,am,)

Taking logarithms

log Py (X; = x| X1, = 711, C = ¢) = Z log (pi(ai’anwcﬁ Lo, () H Lo, ().
(ai,ani) ' jeni

From (3)) we get

IOgPN(Xl =T1,.-.- 7Xn = l‘n,C = C) = Ingg + Z Z 10g (pi(ai,an,,c)) . Iai(xi) H Iaj(l'j)
i=1 (a;,am1,) ‘ jel;



and the claim follows by the definition of fy. |

The proposition with Claim [T]implies the following.

Corollary 4 The classifier fn(x1,...,x,) represented by a tree-width k Bayesian network classi-
fier with non-zero conditional probabilities is a PTF with path-width O(k logn).

Proof For every edge (i, j) of the primal graph of the term-hypergraph H,, for the PTF p constructed
above there is a family of N containing that edge, which then belongs to the moral graph of the
classifier. |

The primal graph may be a proper subset of the moral graph due to cancellations.

4.1 Zero handling and precision

Proposition [3| and Corollary 4| are valid in the general case allowing for zero conditional probabil-
ities as well. Zero conditional probabilities can be replaced by sufficiently small numbers (chosen
depending on the non-zero entries) without changing the classifier.

The classifier compares a sum of coefficients to zero. These coefficients are logarithms of condi-
tional probabilities, and the probabilities are given with a certain precision (taking into consideration
the elimination of zero conditional probabilities as well). One can show that it is enough to approx-
imate logarithms of the probabilities with precision poly(n, d, k) to yield the same classifier. The
approximations can be computed using Taylor series in time poly(n, d, k).

For the remainder of the paper it assumed that conditional probabilities are non-zero. We note
that another approach, improving efficiency and interpretability, is to use the original product form
without taking logarithms and handling information about zero probabilities symbolically.

5. Distribution widths and approximation

In this section we consider the widths of the joint, C-conditional and input distributions of a tree-
width-k Bayesian network classifier V. It is shown that for Bayesian network classifiers of bounded
tree-width the joint and C-conditional distributions have bounded width and the input distribution
can be approximated by a bounded width distribution.

Variables are evaluated according to a good path-width ordering. The following lemma gives
the separator properties used in the computation (see also Theorem 4.1 in|Darwiche|(2009)). Recall
that the separators Sy are computed with respect to the moral graph MG(Gy).

Lemma 5 For any assignment {a1, . .., an,c} € {0,1}" "1 and any ¢ it holds that
Py (a¢|ai,...,ap—1,¢) = Py (ag | asg_l,c) .

Proof We need to show that for every m € [(—1]\S,_; the set {C, Xs,_, } is a d-separator between
X, and Xy in Gy. Consider a path P in und(G ) between X, and X,. If P contains C then it is
blocked by C as valves X; — C' — X are divergent.

Assume that P does not contain C'. Let X; be the first vertex on P with ¢t > /. Let () be the
initial segment of P ending at X;. Every inner node X; in () has ¢ < £. It holds that |Q)| > 2 as



otherwise m € Sy_;. Let the last two edges of @ be (Xs,, Xs,) and (X, , X}), and consider the
valve v = X, — X, — X;. Here s; € Sy_; by definition.

There are three cases. If v is sequential or divergent then it is closed due to X, and therefore
P is blocked. If v is convergent then X, € II(X,, ). But then sy and ¢ are co-parents and therefore
(s2,t) is an edge of MG(G ), and so s2 € Sy_q as well. Then X5, is also an inner node of Q. Its
valve v/ = X,, — X, — X, is either sequential or divergent due to (X,,, Xs,) € E(Gn), and
hence it is closed due to X,. Thus P is blocked in this case as well. |

Lemma [5|implies that the joint distribution can be written as

n
Py(X1i=a1,...,X, =a,,C=c) :pgnPN (ag]asg_l,c) ) 5)
(=2

Lemma 6 Let N be a tree-width-k Bayesian network classifier. Then the joint distribution
Pn(X1,...,X,,C) and the conditional distributions Py (X1, ..., X,,|C) have width n®®),

Proof Let N be a tree-width-k Bayesian network classifier. Then by Claim [I| and the result of
Kinnersley| (1992) there is an ordering of the input variables such that every extended separator has
size O(klogn). We use this ordering to construct a GOBDD computing the joint distribution.

The GOBDD J has n + 2 levels; the zero level corresponds to C' and has a single node ug. It has
two outgoing edges labelled with pg, p1, each edge leads to a child u(l) and ui, respectively. Level
¢ evaluates x; and contains 2/5-11*1 nodes denoted as uﬁ’b, corresponding to truth assignments to
c and s, ,. (As the GOBDD has the classifier variable coming first, we now switch from the
previous notation of put c first.) We set So = (). Each uﬁ’b has two outgoing edges evaluating x; = j
with j € {0, 1}; the edges are labelled with pﬁc’b = Pn(xp=j|xs,_, =b,C = c). For { < n the
children of uﬁ}b are uﬁfgi and uﬁfgll which correspond to assigning z, = 0 or ¢, = 1 respectively.
The assignments b; with j € {0, 1} correspond to the assignment of Sy. By , b; can be updated
using b and j. At level n, all edges go to the sink. The correctness of .J follows from (5).

The sub-GOBDD’s starting at the children of the root represent the conditional distributions.
The size bound for the GOBDD’s follows from Claim[Il |

The input distribution Py x (a1, ...,a,) can be written as
PN(a17"‘7an|0)PN(O)+PN<a17"‘7an|1)PN(]‘)7

so by Lemma6]it is a mixture of two polynomial-width distributions. It is not necessarily of poly-
nomial width itself (see Shen et al.[|(2016))). On the other hand, we now show that it can be approx-
imated by a polynomial-width distribution.

The edge probabilities in a GOBDD for the input distribution can be written as

PN(al,...,ag) _ ZiZOPN(al,...,ag,c)
Py(at,...,ai-1)  SOL_ Pn(ai,... a0 1,c)

Py(aglay, ..., ap—1) = (6)

The partial truth assignments in the last expression correspond to paths in the GOBDD .J of Lemma|6]
beginning with the start node. This suggests approximating Py (ay | a1, . . . , ag_1) by approximating

the terms on the right. This can be achieved by extending J with the required approximations.



Theorem 7 There is a distribution D(X1, . .., X,,) of width poly (no(k), d, 1/5) such that for every
a = (ay,...,ay) it holds that

(1—=¢)Pp(a) < Pyx(a) < (1+4¢)Pp(a).

Proof First we describe an auxiliary construction J/, which adds approximate evaluation of proba-
bilities assigned to paths beginning at the start node of .J, as suggested by (6).

5.1 Description of J’

Levels are 0, ...,n + 1. Nodes are of the form (u, r), where u is a node of J (including the sink),
and r € N (possible values for r are bounded by a polynomial in the parameters).

Assume that a partial truth assignment C' = ¢, X1 = aq,...,Xy_1 = ag_1 ends at v on level ¢
in J and thus the product of edge probabilities along its path is Py(c,aq,...,as—1). Thenin J' it
ends in (u, ) where

(1 -6 < Py(c,ay,...,a0—1) < (1—6)" (7)

for a parameter § to be determined later. Thus each node in J is split into several copies, collecting

paths with similar probabilities. If © = uﬁ , is anode in J on level £ then the children of (u,r) in J'

are

(u!,r+ [log,_spl]) . (8)

where w7 is the j-child of u in J, and p, = pg’ ¢ 18 the probability of the edge (u,u”). Then H
follows by induction, considering (1 — 8)! < p/, < (1 — 8) for some ¢.

The OBDD D approximating Py x is built using .JJ’. Note that the polynomial dependence on
d appears through the inclusion of probabilities in ().

5.2 Description of D
The levels are now 1,...,n + 1, with 21 evaluated on level 1. Nodes on level ¢ are (vg, v1), where
o, v1 are level £ nodes of J'. The start node is (v{, v}), where v{, v} are the children of the start
node in J'. The j-child of (vg, v1) in D is (Ug, vl ) where v/ is the j-child of v; in .J’. The sinks of
J' are combined into a single sink.

If vo = (ug,70) and v1 = (uq,71) with children 7)2:7 = <uz, rf) then the probability of the edge

from (vg, v1) to its j-child (vg, v{) is defined as the approximation of @) ie.,

(1—6)" + (1 — o)
(1—0)0 1 (1—0)

For the approximation property of the distribution generated by D, consider a partial truth as-
signment aq, . .., ay. Let the nodes reached by the extensions (¢, a1, . . .,ay_1) in J' be (ug, ro), (u1, 1),
and those reached by (c, a1, . .., ag) be (ug’, r() , (uj’, r{*). Then (6) and (7) imply that

ap

(1 _ 5)rg€+(e+1) + (1 o 5)7{1@4_(@-&-1) (1 . 5)7”8‘* + (1 . 5)r1
< o) <
(1 — 5)7‘0 T (1 — 5)7‘1 S PN(QZ | ag, , Ay 1) = (1 _ 5)7-0+[ + (1 _ 5)T‘1+Z (9)

8



Combining this with

(1—6)7" +(1— o)
(1—0)0 + (1—0)

and multiplying the inequalities it follows that

(1 - 6"V Py(a) < Py x(a) < Pp(a)(1 — §)~ "+

= Pp(aglay,...,ar—1),

for every truth assignment a. Thus the theorem follows with choosing § = © (¢/n?). [ |

The same proof shows that, in general, the mixture of a constant number of bounded-width
distributions can be approximated by a bounded-width distribution with a polynomial width blow-

up.

6. Exact OBDD for a PTF

In this section we describe an OBDD B computing a PTF exactly. B also computes acceptance
probabilities at each node w.r.t. a distribution D over {0, 1}" represented by a GOBDD. The size
of B is exponential. The probabilities will be used in the next section, where B is compressed,
introducing a small error with respect to D. The compression process uses B in a “virtual” manner.

Let f(z1,...,zn) = sgn(p(x1,...,zy,)) be a PTF p of the form (4) with integer coefficients
and let D be a distribution represented by a GOBDD over {0, 1}". Let W be an upper bound for
the sum of the absolute values of the coefficients of p. There are n + 1 layers; for 2 < ¢ < n the
layer ¢ contains nodes labelled as vﬁm where — W < s < W, b € {0, 1}‘SZ*1| is an assignment to
the bits in x5, , and u is a node of D on layer £. For £ = 1 there is one node U&@’ul where u! is the
start node of D.

The children of a node v&f, by ATC vﬁiim o and vﬁiél .uy > they correspond to the evaluations ¢ = 0
and xy = 1. The nodes ug and u; are 0 and 1 child of anode w in D. The values sg, s1 are determined
as follows. First, let

sum(b, xg) = Z 51b[\{g} Ty

T€T:1CS, 1 U{e} Lel
This sum represents the terms which become constant when x; is evaluated, assuming that their
other variables are assigned truth values according to b. Note that the use of the primal graph
guarantees that all such terms are accounted for in S;. Then we set sg = s + sum(b,0),s; =

s+ sum(b, 1). The updates to by and b are done using (2).
On the last level there are nodes of the form ”?Iﬁw +1 Where u"™t1 is a sink of D. Nodes with
s < 0 (resp., s > 0) are replaced by the sink nodes sinkg, sink; which reject or accept respectively.
For a node v/, with 1 < ¢ < n its acceptance set A, ~C {0,1}"* is the set of all
assignments to {L‘g; - , Tr, Which, when starting at that node lead to sink; in B. Acceptance sets
are computed recursively. We set A"} = () and A"!! = {e} where € is the empty string. For

sinkg sink1

1 < ¢ < n it holds that Aﬁ b =0 AQ})O wo Y 1- Aﬁﬁl w? where - denotes string concatenation.
l

Furthermore, given a node v, ,

for 1 < ¢ < n its acceptance probability Pp <v£ ) is

s,byu

the probability that a random truth assignment to xy, ..., z, leads from vﬁ b t0 sinky in B. The

9



probabilities are evaluated in D starting from u. We set Pp(sinkg) = 0 and Pp(sink;) = 1. For
¢ < n we have
¢ 0+1 0+1
Pp (vs,b,u> - puP ( s:bo,uo) +p11LPD (USTJHJH) ’

Lemma 8 Ler v’ € B be such that s1 < so. Then

a)Asl b ©
b) Pp (Uslbu> <PD< SQbu>

s1,b,u? SQbu

Aé

527b7u’

7. Proof of Theorems 2 and 1]

First we prove Theorem 2| The approximate OBDD B satisfying the requirements is constructed
by compressing B, processing its levels from the bottom up and within each level from left to right.
We set W = nF*1 2442 Each level of B is partitioned into blocks

Ly, = {v?,w =W <s< W}

In each block a polynomial size set of distinguished nodes Dvau - BL?U is selected. These are the

nodes of B. The children of distinguished nodes are modified to be the closest distinguished node
with a larger s-value. The processing of a level also includes the calculation of modified acceptance

probabilities Pp (vﬁ’b’u) , using the modified acceptance probabilities of the modified children. B
is used implicitly, by doing binary search on the s values.
The construction of B uses the procedure BUILD ( sb u)

Procedure BUILD ( v bu)

if / = n then children and acceptance probabilities are unchanged

else

modify the children: the new 0-child is ”ﬁtblo, uy» Tesp- the new 1-child is vﬁ,ﬁ})h ;> Where

I — i .ot 2+1 "o__ . .41 2+1
s —mln{t. tbouOEDNb u,80<t} S —mln{t. tblmeDthm,slgt},

compute the new acceptance probability PD( vt bu) =p2Pp ( Erl )—i—puP ( bl )

Vg ,bo,uo s”,bl,ul

Applying the procedure BUILD repeatedly, we find the set of distinguished vertices DNﬁ,u
with s-values s < s] < ..., where s; = —W and

s} +11fPD< +1bu) (1 —|—5)PD<U*M)
max{ Pp (vtb ) (1+5)PD( 5 bu)} else,

where 9 is to be specified later. After all the distinguished sets are constructed, there may be nodes
not reachable from the start node; they are removed by one pass from the start node.
Note that it follows by induction from the definition of children that P(vﬁ b.,) 1S Monotonic in

Sip1 = (10)

s. Let flﬁ »., denote the acceptance sets in B.
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Lemma 9 For any level £ < n and any distinguished node Uﬁ’b,u € DNf;,u it holds that

a) AL, C A*

s,byu = “7s,b,u’
l D y4 n—/_ y4
b) PD (vs,b,u> < PD (vs,b,u> < (1 + 5) PD (Us,b,u)'

Proof Part a) follows from Lemma 8] by noting that the s-values are always increased. For part b),
the first inequality follows from a). For the second inequality we claim that

5 +1 P 041
Pp (“s',bo,uo) <(1+4)Pp (vso,bo,uo) : (11)

where s is the 0-child of s in B, and s’ is its new O-child found by procedure BUILD. This holds
by definition if vihl , is included in DN”IO using the second case in . Otherwise sg = s, so

s’,bo,u, bo,u
the claim holds again. The analogous statement holds for 1 instead of 0 as well.

Using the definition of Pp, and induction
Po(vh) = 00P0 (05 0, ) +0iPo (o00,0,) < (04 0) (1o (v£5h, ) + PhPo (o154, )
—¢ ¢ 1 —¢ ¢
(1+8)"~ (WP (v 00 ) + 24P (V50 ) ) = L+ 0" P (vh)

IN

By Lemma(9|b) choosing the value § = O(e/n) gives that for the root v, p.¢ itholds that P (vé 0 @) <

P (Uéﬂﬂ)) <(l+¢)P (vé,w). Lemmaﬁa} implies that B has one-sided error at most € w.r.t. D.
The monotonicity of acceptance probabilities implies that the next distinguished node s7', | can
be found by binary search over [s}, W], calling BUILD in each step to compute P. Binary search
is polynomial in the parameters. The number of distinguished nodes is also polynomial, as their s-
values increase exponentially. Thus the size of the OBDD and the running time are both polynomial.
Theorem [I] follows from applying Theorem [2]to the PTF of Bayesian network classifier N and
distribution D approximating input distribution Py x, using error parameter /3 in both cases.

References

A. Amarilli, M. Monet, and P. Senellart. Connecting Width and Structure in Knowledge Compila-
tion. In ICDT, 2018, volume 98 of Leibniz Int. Proc. in Inf. (LIPIcs), pages 6:1-6:17, 2018.

M. Bozga and O. Maler. On the representation of probabilities over structured domains. In //th
Computer Aided Verification, CAV ’99, volume 1633 of LNCS, pages 261-273. Springer, 1999.

H. Chan and A. Darwiche. Reasoning about Bayesian network classifiers. In UAI 03, Proceedings
of the 19th Conference in Uncertainty in Artificial Intelligence, pages 107-115, 2003.

K. Chubarian and G. Turén. Interpretability of Bayesian network classifiers: OBDD approximation
and polynomial threshold functions. In ISAIM, 2020.

A. Darwiche. Modeling and Reasoning with Bayesian Networks. Camb. Univ. Press, 2009.

A. Darwiche. Three modern roles for logic in AI. CoRR, abs/2004.08599, 2020.

11



A. Darwiche and A. Hirth. On the reasons behind decisions. CoRR, abs/2002.09284, 2020.

A. Darwiche and P. Marquis. A knowledge compilation map. J. Artif. Intell. Res., 17:229-264,
2002.

A. de Colnet and S. Mengel. Lower bounds for approximate knowledge compilation. In C. Bessiere,
editor, Proc. of the Twenty-Ninth Int. Joint Conf. on Al 2020, pages 1834—1840, 2020.

P. Gopalan, A. R. Klivans, and R. Meka. Polynomial-time approximation schemes for knapsack and
related counting problems using branching programs. CoRR, abs/1008.3187, 2010.

K. Hosaka, Y. Takenaga, T. Kaneda, and S. Yajima. Size of ordered binary decision diagrams
representing threshold functions. Theor. Comput. Sci., 180(1-2):47-60, 1997.

M. Jaeger. Probabilistic classifiers and the concepts they recognize. In Machine Learning, Proceed-
ings of the Twentieth International Conference (ICML 2003), pages 266-273, 2003.

M. Jaeger. Probabilistic decision graphs - combining verification and Al techniques for probabilistic
inference. Int. J. Uncertain. Fuzziness Knowl. Based Syst., 12(Supplement-1):19-42, 2004.

J. Kamp, A. Rao, S. P. Vadhan, and D. Zuckerman. Deterministic extractors for small-space sources.
In STOC, 2006, pages 691-700, 2006.

N. G. Kinnersley. The vertex separation number of a graph equals its path-width. Inf. Process. Lett.,
42(6):345-350, 1992.

J. Makowsky and K. Meer. Polynomials of bounded tree-width. In Formal Power Series and
Algebraic Combinatorics, pages 692—703. Springer, 2000.

R. Meka and D. Zuckerman. Pseudorandom generators for polynomial threshold functions. In
STOC 2010, pages 427-436, 2010.

Y. Shen, A. Choi, and A. Darwiche. Tractable operations for arithmetic circuits of probabilistic
models. In NIPS, 2016, pages 3936-3944, 2016.

A. Shih, A. Choi, and A. Darwiche. Formal verification of Bayesian network classifiers. In M. Stu-
deny and V. Kratochvil, editors, PGM 2018, volume 72 of Proceedings of Machine Learning
Research, pages 427-438. PMLR, 2018a.

A. Shih, A. Choi, and A. Darwiche. A symbolic approach to explaining Bayesian network classi-
fiers. In IJCAI 2018, pages 5103-5111, 2018b.

A. Shih, A. Choi, and A. Darwiche. Compiling Bayesian network classifiers into decision graphs.
In AAAI 2019,, pages 7966-7974, 2019.

Y. Takenaga, M. Nouzoe, and S. Yajima. Size and variable ordering of OBDDs representing thresh-
old functions. In Computing and Combinatorics, pages 91-100, 1997.

G. Varando, C. Bielza, and P. Larrafiaga. Decision boundary for discrete Bayesian network classi-
fiers. Journal of Machine Learning Research, 16:2725-2749, 2015.

I. Wegener. Branching Programs and Binary Decision Diagrams. SIAM, 2000.

12



	Introduction
	Related work
	Preliminaries
	Widths
	Bayesian network classifiers
	OBDD and GOBDD

	Polynomial threshold function representation of Bayesian network classifiers
	Zero handling and precision

	Distribution widths and approximation
	Description of J'
	Description of D

	Exact OBDD for a PTF
	Proof of Theorems 2 and 1

