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Abstract

Clusters are often defined to be the connected components of a density level set. Unfor-
tunately, this definition depends on a level that needs to be user specified by some means.
In this paper we present a simple algorithm that is able to asymptotically determine the
optimal level, that is, the level at which there is the first split in the cluster tree of the data
generating distribution. We further show that this algorithm asymptotically recovers the
corresponding connected components. Unlike previous work, our analysis does not require
strong assumptions on the density such as continuity or even smoothness.
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1. Introduction

A central and widely studied task in statistical learning theory or machine learning is cluster
analysis, where the goal is to find clusters in unlabeled data. Unlike in supervised learning
tasks such as classification or regression, a key problem in cluster analysis is already the
definition of a learning goal that describes a conceptionally and mathematically convincing
definition of clusters. A widely, but by no means generally accepted, definition of clusters has
its roots in a paper by Carmichael et al. (1968), who define clusters to be densely populated
areas in the input space that are separated by less populated areas. The non-parametric
mathematical translation of this idea, which goes back to Hartigan (1975), usually assumes
that the data D = (x1, . . . , xn) ∈ Xn is generated by some unknown probability measure
P on a topological space X that has a density h with respect to some known reference
measure µ on X. Given a threshold ρ ≥ 0, the clusters are then defined to be the connected
components of the density level set {h ≥ ρ} := {x ∈ X : h(x) ≥ ρ}. Here, one typically
considers the case, where X ⊂ Rd and µ is the Lebesgue measure on X. In addition,
it is often assumed that the density h is continuous, since this removes or hides various
pathologies regarding the topological notion of connectedness that are caused by changes
of h on µ-zero sets.

Historically, two distinct questions have been investigated for this cluster definition.
The first one is the so-called single level approach, which tries to estimate the connected
components of {h ≥ ρ} for a single and fixed level ρ ≥ 0. The single level approach has been
studied by several authors, see, e.g., Hartigan (1975); Cuevas and Fraiman (1997); Rigollet
(2007); Maier et al. (2009); Rinaldo and Wasserman (2010) and the references therein, and
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hence it seems fair to say that it already enjoys a reasonably good statistical understanding.
Unfortunately, however, it suffers from a conceptional problem, namely that of determining
a good value of ρ, and recently Rinaldo and Wasserman (2010) actually remark that research
in this direction “would be very useful”.

The second approach tries to address this issue by considering the hierarchical structure
of the connected components for different levels. To be more precise, if h is a fixed density,
which, for the sake of simplicity, is assumed to have closed density level sets, and A is
a connected component of {h ≥ ρ}, then, for every ρ′ ∈ [0, ρ], there exists exactly one
connected component B of {h ≥ ρ′} with A ⊂ B. Under some additional assumptions on
µ and the density h, this then leads to a finite tree, in which each node B is a connected
component of some level set {h ≥ ρ′} and all children of a node B are the connected
components of {h ≥ ρ} for some ρ > ρ′ that are contained in B. We refer to Hartigan
(1975); Stuetzle (2003); Chaudhuri and Dasgupta (2010); Stuetzle and Nugent (2010) for
definitions and methods for estimating the structure of this tree. In particular, Chaudhuri
and Dasgupta (2010) show that in a weak sense of Hartigan (1981), a modified single
linkage algorithm converges to this tree under some assumptions on the density h. To be
more precise, let A and A′ be two different connected components of some level set of h,
and D ∈ Xn be a data set from which the tree estimate is constructed. Furthermore, let
AD and A′D be the smallest clusters in this tree estimate that satisfy A ∩ D ⊂ AD and
A′ ∩D ⊂ A′D, respectively. Then the result by Chaudhuri and Dasgupta (2010) shows that
we have AD ∩ A′D = ∅ with probability Pn converging to 1 for n→∞. Roughly speaking,
this means that all parent/child relations of the cluster tree are eventually contained in
the tree estimate, and Chaudhuri and Dasgupta (2010) actually show the latter by finite
sample results. Unfortunately, however, neither of these results tell us a) how to find
AD and A′D without knowing h, and b) how well AD and A′D approximate A and A′,
respectively. Consequently, it seems fair to say that this approach reveals more about the
cluster structure and less about the actual clusters.

In contrast to the these papers on the cluster tree approach this work focusses more
on estimating the actual, maximal clusters1. Namely, we present a simple algorithm that
automatically approximates the smallest possible value of ρ for which the level set contains
more than one component. In addition, the algorithm approximates the resulting compo-
nents arbitrarily well for n → ∞ under minimal and somewhat natural conditions, which
include discontinuous densities.

Unlike basically all other papers on density based clustering, with the exception of Ri-
naldo and Wasserman (2010), we do not assume that the density h is continuous, or even
Hölder continuous. While this approach enlarges the class of distributions significantly, it
also produces some serious technical difficulties as we no longer have a canonical repre-
sentative for the only µ-almost surely defined density h. To be more precise, in general
the topological properties of the level set {h ≥ ρ} do dramatically depend on the chosen
representative for the density, and hence the entire density based clustering approach be-
comes ill-defined. To address this problem, we first provide a definition for density level sets
that make them actually independent of the chosen representative. As a consequence, it
becomes mathematically rigorous to consider the infimum ρ∗ over all levels ρ for which the

1. This destinction is, however, to some extend artificial, since recursively applying methods that estimate
the maximal clusters well, automatically yields a consistent estimate of the cluster tree
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corresponding density level sets contain more than connected component. For simplicity,
we then assume that there exists some ρ∗∗ > ρ∗ such that the level sets for all ρ ∈ (ρ∗, ρ∗∗]
contain exactly two connected components. Note that the persistence of the cluster struc-
ture over a small range of levels ρ ∈ (ρ∗, ρ∗∗] is assumed either explicitly or implicitly in
basically all density based clustering approaches. On the other hand, the restriction to two
components seems to be quite restrictive at first glance. Surprisingly, however, the opposite
is true. To illustrate this, assume for simplicity that X = [0, 1] and h : X → (0,∞) is a
continuous density with exactly two distinct strict local minima at say x1 and x2. Now, if,
e.g., h(x1) < h(x2), then ρ∗ = h(x1) and ρ∗∗ can be any value with h(x1) < ρ∗∗ < h(x2).
Moreover, for ρ ∈ (ρ∗, ρ∗∗], the density level actually contains exactly two connected compo-
nents, while for ρ > ρ∗∗ the level sets may or may not contain three connected components.
In other words, our assumption of two connected components for a small range above ρ∗

would only be violated if h(x1) = h(x2). Compared to the case h(x1) 6= h(x2), the latter
seems to be rather unlikely. Moreover, it is needless to say that in higher dimensions similar
arguments can be made. Finally, it seems fair to say at this point that one more significant
assumption on the level sets need to be made, namely one that excludes bridges and cusps
that are too thin and long. However, while this is certainly unpleasant, it seems to be rather
necessary, since such an assumption occurs in one form or the other in most articles dealing
with density based clustering. With the assumptions described so far, our main result,
Theorem 26, then shows that a simple histogram based algorithm both approximates ρ∗

and the resulting clusters arbitrarily well for sample sizes n→∞.
The rest of this paper is organized as follows. In Section 2 we introduce our topologically

robust notion of density level sets and establish some simple properties of these sets. We
further consider maps that relate connected components of different level sets. These maps
will be our fundamental tool for investigating the cluster structure of the true density sets
and their empirical estimates. We further make the above notion of clusters rigorous and
establish some results about the stability of the cluster structure under simple operations
related to the blurriness of empirical estimates. In Section 3 we then present our algorithm
and our main result, Theorem 26, followed by a discussion in Section 4. Finally, all proofs,
together with some auxiliary results and some background material can be found in the
appendix.

2. Preliminaries: Density level sets, connectivity, and clusters

In this section we introduce all notions related to the definition and analysis of clusters. We
further present various technical result needed throughout the paper.

2.1. Density-independent density level sets and their regularity

Unlike to the rest of the paper, where we focus on compact metric spaces, we assume
throughout this subsection that (X, d) denotes a complete separable metric space. Recall
that compact metric spaces are both complete and separable, and hence everything devel-
oped in this subsection can actually be used in the remainder of the paper, too. Now, let
B(X) be the Borel σ-algebra on X, µ be a known σ-finite measure on B(X), and P be
an unknown µ-absolutely continuous probability measure on B(X). Recall that by Radon-
Nykodym’s theorem, P has a µ-density h : X → [0,∞), but this density is only µ-almost
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surely determined and therefore, for ρ ∈ [0,∞), the density level set {h ≥ ρ} is also only
µ-almost surely determined. In particular, if we consider a measurable set A ⊂ X with

µ(A M {h ≥ ρ}) = 0 ,

then there exists another µ-density h′ : X → [0,∞) of P such that A = {h′ ≥ ρ}. Now
observe that the topological properties such as closedness or connectivity of {h′ ≥ ρ} may
be quite different from those of {h ≥ ρ}, since in general these properties may be changed by
µ-zero sets. Unfortunately, however, these topological properties play a crucial role in the
definition of clusters, and hence we need a notion of “density level sets” that is independent
of the particular choice of the density. To achieve this, observe that, for every ρ ∈ R,

µρ(A) := µ(A ∩ {h ≥ ρ}) , A ∈ B(X),

defines a measure µρ on (X,B(X)) that is independent of the particular choice of the µ-
density h of P . Consequently, the sets

Mρ := suppµρ ,

Vρ := X \Mρ ,

where suppµρ denotes the support of µρ, are independent of this choice, too. In the fol-
lowing, we call Mρ the density level set to the level ρ. To justify this notation, recall that
by definition, the support of a measure is the complement of the largest open zero set, and
hence suppµρ is the smallest closed subset B of X that satisfies µρ(X \B) = 0. Moreover,
recall that, for every measure on a complete, separable metric space, the support actually
exists. Consequently, for any given µ-density h : X → [0,∞) of P , we have

µ
(
{h ≥ ρ} \Mρ

)
= µ

(
{h ≥ ρ} ∩ (X \Mρ)

)
= µρ(X \Mρ) = 0 , (1)

that is, up to µ-zero sets no density level set {h ≥ ρ} is larger than Mρ. Moreover, Mρ is
the smallest closed set satisfying this equation, and hence we further obtain

Mρ ⊂ {h ≥ ρ} , (2)

where A denotes the closure of an A ⊂ X. In addition, it is easy to check that we have

Mρ =
{
x ∈ X : µρ(U) > 0 for all open neighborhoods U of x

}
. (3)

Note that if suppµ = X, we actually have Vρ = ∅ and Mρ = X for all ρ ≤ 0, but typically
we are, of course, interested in the case ρ > 0, only. To state our first result, which provides
a lower bound for the set Mρ, we need to recall that the interior Å of a set A ⊂ X is the
largest open subset of A.

Lemma 1 Let (X, d) be a complete separable metric space, µ be a σ-finite measure on X
with suppµ = X, and P be a µ-absolutely continuous probability measure on X. Then, for
all µ-densities h of P and all ρ ∈ R, we have

˚{h ≥ ρ} ⊂Mρ ⊂ {h ≥ ρ} .
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Lemma 1 in particular shows that ˚{h ≥ ρ} ⊂ Mρ ⊂ {h ≥ ρ}. Therefore, the difference
between the sets Mρ and {h ≥ ρ} is contained in the boundary of {h ≥ ρ}, that is

Mρ M {h ≥ ρ} ⊂ ∂{h ≥ ρ} , (4)

where ∂A := A \ Å denotes the boundary of a set A. Moreover, if P has a continuous
density, we obtain the following corollary.

Corollary 2 Let (X, d) be a complete separable metric space, µ be a σ-finite measure on
X with suppµ = X, and P be a µ-absolutely continuous probability measure on X that has
a continuous µ-density h : X → [0,∞). Then, for all ρ ∈ R, we have

{h > ρ} ⊂Mρ ⊂ {h ≥ ρ} ,

{h > ρ} ⊂ M̊ρ ⊂ ˚{h ≥ ρ} .

The next lemma shows that the sets Mρ and Vρ are ordered the way one would expect
density level sets to be ordered.

Lemma 3 Let (X, d) be a complete separable metric space, µ be a σ-finite measure on X,
and P be a µ-absolutely continuous probability measure on X. Then, for all ρ1 ≤ ρ2, we
have

Mρ2 ⊂Mρ1 ,

Vρ1 ⊂ Vρ2 .

In turns out that we will not only need the equality µ({h ≥ ρ} \Mρ) = 0 but also the
“converse” equality µ(Mρ \ {h ≥ ρ}) = 0. This is ensured by the following definition.

Definition 4 Let (X, d) be a complete separable metric space, µ be a σ-finite measure on
X, and P be a µ-absolutely continuous probability measure on X. We say that P is regular
at level ρ ∈ R, if

µ(Mρ \ {h ≥ ρ}) = 0

for one µ-density (and thus all µ-densities) h : X → [0,∞) of P .

Note that by (4) a probability measure P is regular at level ρ, if the boundary ∂{h ≥ ρ}
for one µ-density h is a µ-zero set. Let us now assume that P is regular at some level ρ.
By (1) we then immediately see that

µ(Mρ M {h ≥ ρ}) = 0 (5)

for all µ-densities h of P . Furthermore, since Vρ = X \Mρ and {h < ρ} = X \ {h ≥ ρ}, the
equation A M B = (X \A) M (X \B), which holds for all A,B ⊂ X, shows

µ(Vρ M {h < ρ}) = 0 . (6)

In other words, up to µ-zero measures, Mρ and Vρ are the ρ-level sets of all µ-densities
h of P . The following lemma shows that there even exists a µ-density h of P such that
Mρ = {h ≥ ρ}.
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Lemma 5 Let (X, d) be a complete separable metric space, µ be a σ-finite measure on
X, and P be a µ-absolutely continuous probability measure on X. Then, for ρ ∈ R, the
following statements are equivalent:

i) P is regular at level ρ.

ii) There exists a µ-density h : X → [0,∞) of P such that {h ≥ ρ} is closed.

iii) There exists a µ-density h : X → [0,∞) of P such that Mρ = {h ≥ ρ}.

In particular, if P has an upper semi-continuous µ-density, then P is regular at every level.

The previous results may suggest that for continuous densities h we actually have Mρ =
{h ≥ ρ}. In general, however, this is not the case. To see this, consider, e.g. a Lebesgue
density that has a strict local maximum at x∗ ∈ X and the corresponding level set {h ≥ ρ}
for ρ := h(x∗). Moreover note, that not every probability measure P is regular. Indeed,
it is possible to construct a Lebesgue-absolutely continuous probability measure P on [0, 1]
that is not regular for a continuous range of levels ρ.

Besides the regularity, we need another notion ensuring that certain topological opera-
tions on the level sets do not change their mass.

Definition 6 Let (X, d) be a complete separable metric space, µ be a σ-finite measure on
X, and P be a µ-absolutely continuous probability measure on X. We say that P is normal
at level ρ∗ ≥ 0, if

µ(M̄ρ∗ \ Ṁρ∗) = 0 ,

where M̄ρ∗ :=
⋃
ρ>ρ∗Mρ and Ṁρ∗ :=

⋃
ρ>ρ∗ M̊ρ.

The following two lemmata provide sufficient conditions for normality. We begin with
continuous densities.

Lemma 7 Let (X, d) be a complete separable metric space, µ be a σ-finite measure on X
with suppµ = X, and P be a µ-absolutely continuous probability measure on X that has a
continuous µ-density h : X → [0,∞). Then, for all ρ∗ ≥ 0, we have

Ṁρ∗ = M̄ρ∗ ,

and hence P is normal at every level.

The have already mentioned that regularity is ensured if there exists a µ-density h of P
with µ(∂{h ≥ ρ}) = 0. The next lemma shows that this is also a sufficient for normality.

Lemma 8 Let (X, d) be a complete separable metric space, µ be a σ-finite measure on X
with suppµ = X, and P be a µ-absolutely continuous probability measure on X that has a
µ-density h : X → [0,∞) such that there exists a ρ∗ ≥ 0 with

µ(∂{h ≥ ρ}) = 0

for all ρ > ρ∗. Then P is regular at every level ρ > ρ∗ and normal at every level ρ ≥ ρ∗.
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2.2. Connectivity

We have already mentioned in the introduction that we will follow the idea of defining
clusters by connected components. In this subsection, we introduce the necessary topological
tools for this approach. Furthermore, we consider another, more quantitative notion of
connectivity that is used in our algorithm.

Let us begin by introducing some notations. To this end, let (X, d) be a compact metric
space. We write d(x,A) := infx′∈A d(x, x′) for the distance between some x ∈ X and
A ⊂ X, and d(A,B) := inf{d(x, y) : x ∈ A, y ∈ B} for the distance between A and another
set B ⊂ X. Furthermore, for δ > 0, we define the δ-tube around A by

Tδ(A) := {x ∈ X : d(x,A) ≤ δ} .

Lemma 27 in Subsection B collects some simple but useful facts about the δ-tube around
A. Let us further recall the definition of τ -connected sets.

Definition 9 Let (X, d) be a compact metric space, A ⊂ X be a non-empty subset and
τ > 0. We say that x, x′ ∈ A are τ -connected in A, if there exist x1, . . . , xn ∈ A such that
x1 = x, xn = x′ and d(xi, xi+1) < τ for all i = 1, . . . , n − 1. Moreover, we say that A is
τ -connected, if all x, x′ ∈ A are τ -connected in A.

It is easy to check that the property of being τ -connected in A gives an equivalence
relation for elements in A. We call the resulting equivalence classes the τ -connected com-
ponents of A and denote the set of all τ -connected components of A by Cτ (A). In addition,
we define Cτ (∅) := ∅.

Not surprisingly, the τ -connected components of A ⊂ X are τ -connected, see Lemma
28, and we always have |Cτ (A)| < ∞ and d(A′, A′′) ≥ τ for all A′, A′′ ∈ Cτ (A), see Lemma
29. Finally, if A is closed, so are the τ -connected components of A.

In the following, we often have to compare the τ -connected components of subsets
A ⊂ B. The next lemma presents the fundamental tool for this task.

Lemma 10 Let (X, d) be a compact metric space, A ⊂ B be two non-empty subsets of X
and τ > 0. Then there exists exactly one map ζ : Cτ (A)→ Cτ (B) such that

A′ ⊂ ζ(A′) , A′ ∈ Cτ (A) .

We call ζ the τ -connected components relating map (τ -CCRM) between A and B. Moreover,
we sometimes write ζA,B := ζ when we have to emphasize the involved pair (A,B).

Note that in general, the map ζτ is neither injective or surjective. Informally speaking,
ζτ is injective, if and only if no τ -connected component of B merges two τ -connected
components of A, while ζτ is surjective, if and only if B does not possess new τ -connected
components, i.e. there is no τ -connected component B′ of B with B′ ⊂ B \ A. The next
lemma introduces a very useful arithmetic property of τ -CCRMs.

Lemma 11 Let (X, d) be a compact metric space, A ⊂ B ⊂ C be three non-empty subsets
of X and τ > 0. Then the τ -CCRMs of these sets satisfy

ζA,C = ζB,C ◦ ζA,B .
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Let us now turn to the topological notion of connectivity that will be used in the
definition of clusters. To this end, recall from topology that an A ⊂ X is called connected,
if, for every pair A′, A′′ ⊂ A of closed disjoint subsets of A with A′ ∪ A′′ = A, we have
A′ = ∅ or A′′ = ∅. Moreover, the maximal connected subsets of A are called the connected
components of the space. It is well-known that these components form a partition of A
and that every component is closed if A itself is closed. In the following, we denote the
set of topologically connected components of A by C(A). Furthermore, to clearer distinct
connected sets and components from τ -connected sets and components, we often call the
former topologically connected.

It can be easily shown, see Lemma 33, that, for compact metric spaces (X, d), an A ⊂ X
is topologically connected, if and only if it is τ -connected for all τ > 0. The following lemma
investigates the relation between Cτ (A) and C(A) in more detail.

Lemma 12 Let (X, d) be a compact metric space and A ⊂ X be a non-empty closed subset.
Then the following statements hold:

i) For all τ > 0, there exists exactly one map ζ : C(A)→ Cτ (A) with

A′ ⊂ ζ(A′) , A′ ∈ C(A) .

Moreover, ζ, which we call the connected components relating map (CCRM) of A, is
surjective.

ii) If |C(A)| <∞, we have

τ∗A := min
{
d(A′, A′′) : A′, A′′ ∈ C(A) with A′ 6= A′′

}
> 0 , (7)

where min ∅ :=∞. Moreover, for all τ ∈ (0, τ∗A] ∩ (0,∞), we have C(A) = Cτ (A) and,
for such τ , the CCRM ζ : C(A) → Cτ (A) is bijective. Finally, if τ∗A < ∞, that is,
|C(A)| > 1, we have

τ∗A = max{τ > 0 : C(A) = Cτ (A)} .

Note that, in general, a closed subset of A may have infinitely many topologically con-
nected components as, e.g., the Cantor set shows. In this case, the second assertion of the
lemma above is, in general, no longer true.

Our next goal is to find a connected components relating map for topologically connected
components. This is done in the following lemma, which is a direct consequence of Lemma
12, and whose proof is therefore omitted.

Lemma 13 Let (X, d) be a compact metric space, A ⊂ B be two non-empty closed subsets
of X that both have finitely many topologically connected components. Then there exists
exactly one map ζ : C(A)→ C(B) such that

A′ ⊂ ζ(A′) , A′ ∈ C(A) .

In the following, we call ζ the topologically connected components relating map (top-CCRM)
between A and B. For τ∗ := min{τ∗A, τ∗B} and all τ ∈ (0, τ∗], we have ζ = ζτ , where ζτ is
the τ -CCRM between A and B.
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Since top-CCRMs are τ -CCRMs for all sufficiently small τ > 0, the composition formula
presented in Lemma 11 also holds for top-CCRMs. Moreover, by a straightforward modifi-
cation of the proof of Lemma 11, we see that it also holds, if some (or all) top-CCRMs or
τ -CCRMs are replaced by the CCRMs found in part i) of Lemma 12.

The quantity τ∗A defined in (7) will play a crucial role in our analysis. However, we
need to consider this quantity for more than one set, the next lemma establishes a relation
between τ∗A and τ∗B if A ⊂ B.

Lemma 14 Let (X, d) be a compact metric space, A ⊂ B be two non-empty closed subsets
of X that both have finitely many topologically connected components. If the top-CCRM
ζ : C(A)→ C(B) is injective, we have τ∗A ≥ τ∗B.

The following lemma establishes properties for the τ -CCRM between a set A and Tδ(A).
Roughly speaking, it states, that the τ -connected component structure of Tδ(A) is identical
to that of A, if τ > 0 and δ > 0 are sufficiently small.

Lemma 15 Let (X, d) be a compact metric space, A ⊂ X be a non-empty subset of X.
Then, for all δ > 0 and τ > δ, the following statements hold:

i) The set Tδ(A
′) is τ -connected for all A′ ∈ Cτ (A).

ii) The τ -CCRM ζ : Cτ (A)→ Cτ (Tδ(A)) is surjective.

iii) If A is closed and |C(A)| < ∞, there exist τ∗ > 0 and δ∗ > 0 such that, for all
τ ∈ (0, τ∗] and δ ∈ (0, δ∗] with τ > δ, the τ -CCRM ζ : Cτ (A)→ Cτ (Tδ(A)) is actually
bijective. Moreover, we can choose τ∗ and δ∗ by the equation

3τ∗ = 3δ∗ = τ∗A . (8)

2.3. Clusters

In this subsection, we introduce our notion of clusters. We further present some results
describing how robust the clusters are against horizontal blurriness. Finally, we introduce
a notion that excludes thin bridges and cusps.

Let us begin with the following definition that describes distributions that have clusters.

Definition 16 Let (X, d) be a compact metric space, µ be a finite Borel measure on X and
P be a µ-absolutely continuous Borel probability measure on X. Then we say that P can
be topologically clustered between the critical levels ρ∗ ≥ 0 and ρ∗∗ > ρ∗, if P is normal at
level ρ∗ and, for all ρ ∈ [0, ρ∗∗], the following conditions hold:

i) The set Mρ has either one or two topologically connected components.

ii) If |C(Mρ)| = 1, then ρ ≤ ρ∗.

iii) If |C(Mρ)| = 2, then ρ ≥ ρ∗ and the top-CCRM ζ : C(Mρ∗∗)→ C(Mρ) is bijective.

iv) P is regular at level ρ.
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Note that the definition above does not exclude the case |C(Mρ∗)| = 1, and hence the
elements of C(Mρ∗) cannot be used to define the clusters of P . On the other hand, for
ρ > ρ∗, each A ∈ C(Mρ) should be a subset of a cluster of P . This idea is used in the
following definition, which defines the clusters of P by a limit for ρ↘ ρ∗.

Definition 17 Let (X, d) be a compact metric space, µ be a finite Borel measure on X and
P be a µ-absolutely continuous Borel probability measure on X that can be topologically clus-
tered between the critical levels ρ∗ and ρ∗∗. For ρ ∈ (ρ∗, ρ∗∗], we write ζρ : C(Mρ∗∗)→ C(Mρ)
for the top-CCRM. Moreover, let A1 and A2 be the topologically connected components of
Mρ∗∗. Then the sets

A∗i :=
⋃

ρ∈(ρ∗,ρ∗∗]

ζρ(Ai) , i ∈ {1, 2},

are called the topological clusters of P .

By the bijectivity of the maps ζρ, it is straightforward to show that A∗1 ∩ A∗2 = ∅. In
general, however, the clusters may touch each other, that is, we may have d(A∗1, A

∗
2) = 0.

For example, if P is a mixture of two Gaussians with different centers but same variance,
then it is easy to check that the two clusters are only separated by a hyperplane, and
therefore they do touch each other.

Using finitely many samples, we can only expect estimates of the level sets Mρ that are
both vertically and horizontally blurry. To address the latter issue, we define, for δ > 0 and
ρ ≥ 0, the sets

Mρ,δ := Tδ(Mρ)

Vρ,δ := X \ Tδ(X \Mρ) = X \ Tδ(Vρ) .

Note that Mρ,δ is obtained from Mρ by adding a δ-tube, while Vρ,δ is obtained from Mρ

by removing a δ-tube. Our next goal is to investigate, how the component structure of
Mρ is preserved under these operations. The first result in this direction establishes some
permanence properties that hold without further assumptions. To appreciate its rather
theoretically appearing statements recall from the previous subsection that CCRMs between
two sets A and B are bijective, if a) the components of A are not glued together in B and
b) every component in B already appears in A.

Theorem 18 Let (X, d) be a compact metric space, µ be a finite Borel measure on X and
P be a µ-absolutely continuous Borel probability measure on X that can be topologically
clustered between the critical levels ρ∗ and ρ∗∗. For all ε∗ > 0 with ρ∗ + ε∗ ≤ ρ∗∗, we define
δε∗ > 0 and τε∗ > 0 by

3δε∗ = 3τε∗ = τ∗Mρ∗+ε∗
, (9)

where τ∗Mρ∗+ε∗
> 0 is the quantity considered in Lemma 12. Then, for all δ ∈ (0, δε∗ ],

τ ∈ (0, τε∗ ] with δ < τ , and all ρ ∈ [0, ρ∗∗], the following statements hold:

i) The set Mρ,δ has either one or two τ -connected components.

ii) If ρ ≥ ρ∗ + ε∗, then |Cτ (Mρ,δ)| = 2 and the CCRM ζ : C(Mρ)→ Cτ (Mρ,δ) is bijective.
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iii) If |Cτ (Mρ,δ)| = 2, then ρ ≥ ρ∗ and the τ -CCRM ζ : Cτ (Mρ∗∗,δ)→ Cτ (Mρ,δ) is bijective.

iv) If the τ -CCRM ζ∗∗ : Cτ (Vρ∗∗,δ) → Cτ (Mρ∗∗,δ) is bijective and |Cτ (Vρ,δ)| = 1, then we
have ρ < ρ∗ + ε∗.

The first three statements of Theorem 18 basically show that the connected component
structure of Mρ is not changed when δ-tubes are added. Moreover, the assumed bijectivity
of ζ∗∗ : Cτ (Vρ∗∗,δ) → Cτ (Mρ∗∗,δ) in iv) means that the τ -connected component structure
of Mρ∗∗ is not changed by removing δ-tubes, and the corresponding conclusion essentially
states that this is actually true for all levels ρ ∈ [ρ∗ + ε∗, ρ∗∗].

To ensure the same stability for removing δ-tubes, we need the following additional
assumption.

Definition 19 Let (X, d) be a compact metric space, µ be a σ-finite Borel measure on X
and P be a µ-absolutely continuous Borel probability measure on X that can be topologically
clustered between the critical levels ρ∗ and ρ∗∗. Then we say that P has two thick clusters of
order γ ∈ (0, 1], if there exist c ≥ 1 and δ̃0 ∈ (0, 1] such that, for all δ ∈ (0, δ̃0], ρ ∈ [0, ρ∗∗],
we have

d(x, Vρ,δ) < c δγ , x ∈Mρ .

In this case, we call ψ : (0,∞) → (0,∞), defined by ψ(δ) := 2cδγ, the corresponding
thickness function.

Roughly speaking, the definition above ensures that every point of Mρ is close to the
set Vρ,δ that results from removing a δ-tube from Mρ. Intuitively, this excludes very thin
cusps and bridges, where the thinness and length of both is controlled by γ. Note that an
assumption of similar spirit is often made in density-based cluster analysis, we refer, e.g.,
to Cuevas et al. (2000); Rigollet (2007) for some examples in this direction.

Moreover note that, if X ⊂ R is an interval and P can be topologically clustered between
the critical levels ρ∗ and ρ∗∗, then every level set Mρ consists of either one or two closed
intervals, since intervals are the only topologically connected sets in R. Using this, it is then
straightforward to show that P actually has two thick clusters of order γ = 1, and that we
can further use every constant c > 1. Consequently, we can, e.g., consider the thickness
function ψ(δ) := 3δ, δ > 0.

The next result, which is the counterpart of Theorem 18, shows that, for thick clusters,
the connected component structure of Mρ is not changed when removing δ-tubes.

Theorem 20 Let (X, d) be a compact metric space, µ be a finite measure on X, and P
be a µ-absolutely continuous probability measure on X that has two thick clusters of order
γ ∈ (0, 1] between the critical levels ρ∗ and ρ∗∗. Let ψ be the corresponding thickness
function. Moreover, for some fixed ε∗ > 0 with ε∗ ≤ ρ∗∗ − ρ∗ we define δε∗ > 0 and τε∗ > 0
by (9). Then, for all δ ∈ (0, δε∗ ], τ ∈ (0, τε∗ ] with ψ(δ) < τ and δ ≤ δ̃0, and all ρ ∈ [0, ρ∗∗],
the following statements hold:

i) The set Vρ,δ has either one or two τ -connected components.

ii) The τ -CCRM ζ∗∗ : Cτ (Vρ∗∗,δ)→ Cτ (Mρ∗∗,δ) is bijective.
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iii) If |Cτ (Vρ,δ)| = 2, then ρ ≥ ρ∗ and the τ -CCRM ζ : Cτ (Vρ∗∗,δ)→ Cτ (Vρ,δ) is bijective.

Intuitively, considering Cτ (Vρ,δ) rather than C(Vρ,δ) means that we add a τ -tube around
Vρ,δ. By Theorem 20, the thickness of the level sets then ensure that Cτ (Vρ,δ) and Mρ

have the same component structure, or to say it in simple words, considering τ -connected
components glues together what has been accidentally cut by removing δ-tubes.

3. The algorithm and its consistency

In this section, we introduce our clustering algorithm and present our main results on its
clustering ability.

Let us begin by recalling that histograms are based on partitions of the input space X.
In the following, we need to ensure that the partitions we use are regularly behaved. To
this end, we need the diameter of a subset A ⊂ X, that is,

diamA := sup
x,x′∈A

d(x, x′) .

Now, the following definition describes partitions that are controlled both in size and mea-
sure.

Definition 21 Let (X, d) be a compact metric space and µ be a finite measure on X with
suppµ = X. If there exist constants dX > 0 and κX > 0 such that, for all δ ∈ (0, 1], there
exists a finite partition Aδ = (A1, . . . , Am) of X such that

diamAi ≤ δ ,
m ≤ κXδ−dX ,

µ(Ai) ≥ κ−1X δdX

for all i = 1, . . . ,m, then we say that the triple (X, d, µ) admits uniform dX-dimensional
partitions. Moreover, we call each such Aδ a δ-uniform partition of X.

The easiest yet most important examples of uniform partitions are hypercube partitions.
To be more precise, let X := [0, 1]d, the d-dimensional cube equipped with the metric
defined by the supremum norm ‖ · ‖`d∞ . For δ ∈ (0, 1], there then exists a unique ` ∈ N
with 1

`+1 < δ ≤ 1
` . We define h := 1

1+` and write Aδ for the usual partition of [0, 1]d into
hypercubes of length h. Then, for each Ai ∈ Aδ, we clearly have diamAi = h ≤ δ and
λd(Ai) = hd ≥ 2−dδd, where λd denotes the d-dimensional Lebesgue measure. Moreover, we
obviously have |Aδ| = h−d ≤ 2dδ−d, where |Aδ| denotes the cardinality of A. Consequently,
Aδ is an δ-uniform partition of X with dX := d and κX := 2d.

Let us now assume that (X, d, µ) admits uniform dX -dimensional partitions. Moreover,
for fixed δ > 0, let Aδ = (A1, . . . , Am) be a δ-uniform partition of X. Given a probability
measure P on X, we then define the corresponding histogram by

h̄P,Aδ(x) :=
m∑
j=1

P (Aj)

µ(Aj)
· 1Aj (x) , x ∈ X,
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where 1A denotes the indicator function of a set A. If the partition is known from the
context, we further write h̄P,δ := h̄P,Aδ to simplify notation. Let us now assume that we
have a data set D = (x1, . . . , xn) ∈ Xn. In a slight abose of notation, we then denote the
corresponding empirical measure by D, that is D := 1

n

∑n
i=1 δxi , where δx denotes the Dirac

measure at the point x. For A ⊂ X this gives

D(A) =
1

n

n∑
i=1

1A(xi) ,

and the corresponding (empirical) histogram is

h̄D,Aδ(x) =
m∑
j=1

D(Aj)

µ(Aj)
· 1Aj (x) , x ∈ X. (10)

Our first result in this section shows, that, for i.i.d. observations D, the histogram h̄D,Aδ
approximates h̄P,Aδ uniformly.

Theorem 22 Let (X, d) be a compact metric space and µ be a finite measure on X such
that (X, d, µ) admits uniform dX-dimensional partitions. Moreover, let P be a probability
measure on X, δ > 0, and Aδ be a δ-uniform partition of X. Then, for all n ≥ 1 and all
ε > 0, we have

Pn
({
D ∈ Xn : ‖h̄D,Aδ − h̄P,Aδ‖∞ < ε

})
≥ 1− 2κX exp

(
−dX ln δ − 2δ2dXε2n

κ2X

)
.

Moreover, if P is µ-absolutely continuous and there exists a bounded µ-density h of P , then
we have

Pn
({
D ∈ Xn : ‖h̄D,Aδ − h̄P,Aδ‖∞ < ε

})
≥ 1− 2κX exp

(
−dX ln δ − 3ε2δdXn

κX(6‖h‖∞ + 2ε)

)
.

Our clustering algorithm will rely on an empirical histogram. To be more precise, let
us assume that, for some fixed ε > 0, we have a function ĥ : X → R that is a uniform
ε-approximate of h̄P,Aδ , i.e.,

‖ĥ− h̄P,Aδ‖∞ ≤ ε .

Note that, by Theorem 22, empirical histograms are such ε-approximates with high proba-
bility. We write

f̂ρ := sign(ĥ− ρ) , ρ ≥ 0, (11)

where sign(·) denotes the usual sign function, that is, sign t := 1 if t ≥ 0 and sign t := −1,
otherwise. Since h̄P,Aδ can be viewed as an approximation of the µ-densities of P , ĥ can also

be viewed as such an approximation. Following this intuition, {f̂ρ = −1} and {f̂ρ = 1} can
be viewed as approximations of the sets Vρ and Mρ, respectively. However, using finitely
many samples, we can only expect estimates of the level sets Mρ that are both horizontically
and vertically blurry. The following lemma makes this intuition precise with the help of the
sets Vρ,δ and Mρ,δ defined earlier.
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Algorithm 3.1 Estimate clusters with the help of empirical histograms

Require: Some δ > 0, τ > 0, and ε > 0.
A δ-uniform partition Aδ of X.
A dataset D ∈ Xn.

Ensure: An estimate of the topological clusters A∗1 and A∗2.
1: Compute the empirical histogram h̄D,Aδ .
2: ρ← −ε
3: repeat
4: ρ← ρ+ ε
5: Compute f̂ρ by (11).

6: Identify the τ -connected components B′1, . . . , B
′
M of {f̂ρ = 1} satisfying

B′i ∩ {f̂ρ+2ε = 1} 6= ∅.

7: until M 6= 1
8: Compute f̂ρ+2ε by (11).

9: Identify the τ -connected components B′1, . . . , B
′
M of {f̂ρ+2ε = 1} satisfying

B′i ∩ {f̂ρ+4ε = 1} 6= ∅.

10: return ρ and B′1, . . . , B
′
M .

Lemma 23 Let (X, d) be a compact metric space and µ be a finite measure on X such
that (X, d, µ) admits uniform dX-dimensional partitions. Moreover, let P be a µ-absolutely
continuous probability measure on X and ĥ : X → R be a function with ‖ĥ− h̄P,Aδ‖∞ ≤ ε

for some ε > 0. Then, for all δ > 0 and ρ ≥ 0, and f̂ρ defined by (11), we have:

i) If P is regular at the level ρ+ ε, then Vρ+ε,δ ⊂ {f̂ρ = 1}.

ii) If P is regular at the level ρ− ε, then {f̂ρ = 1} ⊂Mρ−ε,δ.

Motivated by Lemma 23, our next goal is to relate the τ -connected components of our
estimate {f̂ρ = 1} to the τ -connected components of Vρ,δ.

Theorem 24 Let (X, d) be a compact metric space, µ be a finite measure on X such that
(X, d, µ) admits uniform dX-dimensional partitions, and P be a µ-absolutely continuous
probability measure on X that has two thick clusters of order γ ∈ (0, 1] between the critical
levels ρ∗ and ρ∗∗. Let ψ be the corresponding thickness function. Moreover, for some fixed
ε∗ > 0 with ε∗ ≤ ρ∗∗ − ρ∗ we define δε∗ > 0 and τε∗ > 0 by (9). Let us further fix some
ε ∈ (0, ε∗], ε ≥ 0, δ ∈ (0, δε∗ ] with δ ≤ δ̃0, and ρ ∈ [0, ρ∗∗−3ε−ε]. In addition, let ĥ : X → R
be a uniform ε-approximate of h̄P,δ and f̂ρ be the function defined by (11). Then, for all
τ ∈ (0, τε∗ ] with ψ(δ) < τ , the following disjoint union holds

Cτ ({f̂ρ = 1}) = ζ(Cτ (Vρ+ε,δ)) ∪
{
B′ ∈ Cτ ({f̂ρ = 1}) : B′ ∩ {f̂ρ+2ε+ε = 1} = ∅

}
,

where ζ : Cτ (Vρ+ε,δ)→ Cτ ({f̂ρ = 1}) is the τ -CCRM.
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Theorem 24 shows that eventually all τ -connected components B′ of our estimate {f̂ρ =

1} of Mρ are either contained in ζ(Cτ (Vρ+ε,δ)) or satisfy B′ ∩ {f̂ρ+2ε+ε = 1} = ∅. Now,
the latter components are easy to identify and remove, and therefore we have a device that
allows us to eventually identify exactly the τ -connected components B′ that are contained
in ζ(Cτ (Vρ+ε,δ)). This suggests that, for sufficiently small δ > 0, τ > 0, ε > 0, and ε ≥ 0,
we only need to scan through the values of ρ. Algorithm 3.1 formalizes this idea.

Note that Algorithm 3.1 stops if either M > 1 or M = 0 components are identified for
the current level set ρ. Moreover, the latter is eventually satisfied, since

‖h̄D,Aδ‖∞ ≤ κXδ
−dX

m∑
i=1

D(Ai) = κXδ
−dX ,

yields {f̂ρ = 1} = ∅ for all ρ > κXδ
−dX . In the following, we denote the level returned by

Algorithm 3.1 by ρ∗(D). The following theorem shows that ρ∗(D) is close to ρ∗, whenever
the empirical histogram approximates the true histogram.

Theorem 25 Let (X, d) be a compact metric space and µ be a finite measure on X such
that (X, d, µ) admits uniform dX-dimensional partitions. Moreover, let P be a µ-absolutely
continuous probability measure on X that has two thick clusters of order γ ∈ (0, 1] between
the critical levels ρ∗ and ρ∗∗ and let ψ be the corresponding thickness function. Moreover,
we fix an ε∗ > 0 that satisfies ε∗ < (ρ∗∗ − ρ∗)/8 and define δε∗ > 0 and τε∗ > 0 by (9).
Then, for all fixed n ≥ 1, ε ∈ (0, ε∗], δ ∈ (0, δε∗ ], and τ ∈ (0, τε∗ ] with ψ(δ) < τ and δ ≤ δ̃0,
and all data sets D ∈ Xn for which ‖h̄D,Aδ − h̄P,Aδ‖∞ ≤ ε holds, the following statements
are true:

i) ρ∗(D) ∈ [ρ∗ − ε, ρ∗ + ε∗ + 2ε].

ii) |Cτ (Vρ∗(D)+3ε,δ)| = 2 and the τ -CCRM ζ : Cτ (Vρ∗(D)+3ε,δ) → Cτ ({f̂ρ∗(D)+2ε = 1}) is
injective.

iii) Algorithm 3.1 returns the two τ -connected components of ζ(Cτ (Vρ∗(D)+3ε,δ)).

iv) There exist CCRMs ζρ∗∗ : Cτ (Vρ∗∗,δ) → C(Mρ∗∗) and ζρ∗(D)+3ε : Cτ (Vρ∗(D)+3ε,δ) →
C(Mρ∗(D)+3ε) such that the following diagram

Cτ (Vρ∗∗,δ) C(Mρ∗∗)

Cτ (Vρ∗(D)+3ε,δ) C(Mρ∗(D)+3ε)

-

? ?
-

ζρ∗∗

ζρ∗∗,ρ∗(D)+3ε ζ̃

ζρ∗(D)+3ε

commutes, where ζρ∗∗,ρ∗(D)+3ε is the τ -CCRM and ζ̃ is the top-CCRM. Moreover,
every map in the diagram is bijective.

To fully appreciate Theorem 25 let us assume that we are in the situation of this the-
orem. Moreover, let A1 and A2 be the topologically connected components of Mρ∗∗ and
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V ′′1 and V ′′2 be the τ -connected components of Vρ∗∗,δ. In addition, let V ′1 and V ′2 be the
τ -connected components of Cτ (Vρ∗(D)+3ε,δ) and B1(D) and B2(D) be the components re-
turned by Algorithm 3.1. By Theorem 25, we may assume without loss of generality that
V ′′i ⊂ Ai, V

′′
i ⊂ V ′i , and V ′i ⊂ Bi(D) for i = 1, 2. This yields V ′′i ⊂ Bi(D) and V ′′i ⊂ A∗i ,

that is, V ′′i ⊂ Bi(D) ∩ A∗i . Consequently, the returned components Bi(D) contain a chunk
of the desired clusters A∗i , i = 1, 2. Our next and final goal is to show that Bi(D) M A∗i
actually becomes arbitrarily small. To this end, we assume in the following that Algorithm
3.1 always returns two components, denoted by B1(D) and B2(D). Note that this can be
easily enforced by a simple modification of its return statement in line 10 of its pseudo-code.

With these preparations, we are in the position to put all pieces together. This is done
in the following main result that establishes a type of clustering consistency for Algorithm
3.1.

Theorem 26 Let (X, d) be a compact metric space and µ be a finite measure on X such
that (X, d, µ) admits uniform dX-dimensional partitions. Moreover, let P be a µ-absolutely
continuous probability measure on X that has two thick clusters of order γ ∈ (0, 1] between
the critical levels ρ∗ and ρ∗∗ and let ψ be the corresponding thickness function. Furthermore,
let (εn), (δn), and (τn) be strictly positive sequences converging to zero such that ψ(δn) < τn
and

dXκ
2
X ln δn + 2δ2dXn ε2nn→∞ .

For n ≥ 1 consider Algorithm 3.1 with the input parameters εn, δn, and τn. Then, ρ∗(D)→
ρ∗ in probability P∞ for n→∞ and, for all ε > 0, we have

lim
n→∞

Pn
({
D ∈ Xn : µ(B1(D) M A∗1) + µ(B2(D) M A∗2) ≤ ε

})
= 1 .

Here we use the numbering convention of B1(D) and B2(D) described in the paragraph
above.

Theorem 26 shows that Algorithm 3.1 asymptotically recovers the clusters A∗1 and A∗2,
whenever the distribution P has clusters that are thicker than a pre-described order. In
other words, as soon as we assume a minimal thickness, we are able to recover the clusters.
Moreover, we have already mentioned previously, that, for intervals X ⊂ R, we automat-
ically have thickness of order γ = 1, and hence Algorithm 3.1 asymptotically recovers
the clusters, e.g., for every distribution P on intervals that can be topologically clustered.
Note that it is easy to construct distributions in this class that do not have a continu-
ous density, for example consider the distribution P on X := [0, 1] that has the Lebesgue
density h := 1[0,1/4]∪[3/4,1] + 0.5 · 1[0,1], and whose clusters are given by A∗1 := [0, 1/4]
and A∗2 := [3/4, 1]. It is obvious, that similar constructions can also be made in higher
dimensions, and finally, such examples are, of course, by no means the only examples of
distributions for which the clusters can be recovered by Algorithm 3.1.

Furthermore, note that although Theorem 26 presents an asymptotic result, its entire
proof uses finite-sample results and estimates, i.e., we could have also stated a result of
the form: if the algorithm parameters are smaller than some thresholds determined in the
proof of Theorem 26, then µ(B1(D) M A∗1) + µ(B2(D) M A∗2) ≤ ε holds with probability Pn

not smaller than some value also determined in the proof. Since the presented algorithm
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was meant to be a proof-of-concept rather than an algorithm actually used in dimensions
greater than, say, 2 or 3, we decided to omit the technically rather cumbersome formulation
of such a result.

4. Discussion

The goal of this work was to provide the first density-based clustering algorithm that, under
mild assumptions on the density h, can choose the density level in a data-dependent and
asymptotically optimal way and completely recovers the corresponding clusters even when
they touch each other.

Although the algorithm works in theory, we do not expect it to perform well in most
practical situations. Let us therefore briefly describe what should be done to obtain a more
interesting algorithm:

• The algorithm should be based on density level set estimators that are better than
histograms. A natural first alternative in this direction would be kernel density rules
since they have already been successfully considered in the single level clustering
problem.

• The algorithm and its analysis should be extended to situations in which P has either
only N = 1 or N > 2 clusters. Note that the first scenario can probably be rather
easily analyzed with our techniques, while the second scenario probably needs a refined
algorithm, first. In this direction note that our proofs already show that the algorithm
recovers at least two of the N clusters. So far, however, we cannot ensure that it
accidentally glues some of the N clusters together.

• The algorithm should not only determine the level ρ in a data-dependent way, but
also the other algorithm parameters δ, ε, and τ . Analogous, data-dependent choices
should be investigated for other underlying density level set estimators.

• Finally, the algorithm does not necessarily need to stop once it leaves the loop. Instead,
it could save the found clusters together with the level and reenter the loop recursively
for both clusters. This way it seems plausible, that the algorithm is actually able to
recover all clusters contained in the cluster tree.

Besides these issues that are more of practical interest, it would also be helpful to investigate
the following, more theoretically orientated questions:

• Can we replace the thickness assumption by some other assumption such as Hölder
continuity or rectifiable cluster boundaries, which have already been considered in the
literature. Or, more challenging, is it possible in dimension d ≥ 2 to remove such
assumptions at all?

• Can we replace density level sets by level sets of generalized densities in the sense of
Rinaldo and Wasserman (2010)?
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Appendix A. Proofs related to the definition of level sets

Proof of Lemma 1 The second inclusion has already been shown in (2), and hence it

suffices to show the first. To show the first inclusion we fix an x ∈ ˚{h ≥ ρ} and an open set

U with x ∈ U . Then ˚{h ≥ ρ} ∩ U is open and non-empty, and hence suppµ = X yields

µρ(U) = µ
(
{h ≥ ρ} ∩ U

)
≥ µ

( ˚{h ≥ ρ} ∩ U
)
> 0 .
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By (3) we conclude that x ∈Mρ, that is we have shown ˚{h ≥ ρ} ⊂Mρ. Since Mρ is closed,
we then obtain the first inclusion.

Proof of Corollary 2 Clearly, we have {h > ρ} ⊂ {h ≥ ρ} and since {h > ρ} is open,

we conclude that {h > ρ} ⊂ ˚{h ≥ ρ} ⊂ Mρ by Lemma 1. This implies the first and, since
{h > ρ} is open, also the third inclusion. The second and forth inclusion also follows from
Lemma 1 and the fact that {h ≥ ρ} is closed.

Proof of Lemma 3 Obviously, it suffice to show the first inclusion. To this end, we fix
an x ∈Mρ2 and an open set U ⊂ X with x ∈ U . Moreover, we fix a µ-density h of P . Then
we obtain

µρ1(U) = µ
(
{h ≥ ρ1} ∩ U

)
≥ µ

(
{h ≥ ρ2} ∩ U

)
= µρ2(U) > 0 ,

and hence we obtain x ∈Mρ1 by (3).

Proof of Lemma 5 i) ⇒ iii). Let h̃ : X → [0,∞) be an arbitrary µ-density of P . We
define

h(x) :=


h̃(x) if x 6∈Mρ M {h̃ ≥ ρ}
ρ if x ∈Mρ \ {h̃ ≥ ρ}
0 if x ∈ {h̃ ≥ ρ} \Mρ .

Since {h 6= h̃} ⊂ Mρ M {h̃ ≥ ρ}, the regularity shows that µ({h 6= h̃}) = 0, and hence h is
a µ-density of P . Furthermore, for x ∈ {h ≥ ρ}, we either have x ∈Mρ \ {h̃ ≥ ρ} ⊂Mρ or

x ∈ X \
(
Mρ M {h̃ ≥ ρ}

)
∩ {h̃ ≥ ρ} ⊂Mρ ,

where in the last step we used that x 6∈ A M B together with x ∈ B implies x ∈ A.
Conversely, if x ∈Mρ, then h̃(x) < ρ implies h(x) = ρ and h̃(x) ≥ ρ implies h(x) = h̃(x) ≥ ρ.
These considerations show {h ≥ ρ} = Mρ.

iii) ⇒ ii). Since Mρ is closed, this implication is trivial.

ii) ⇒ i). The inclusion (2) shows Mρ ⊂ {h ≥ ρ} = {h ≥ ρ}, and hence we obtain
µ(Mρ \ {h ≥ ρ}) = µ(∅) = 0.

Finally, if h is an upper semi-continuous µ-density, then {h ≥ ρ} is closed for all ρ ∈ R.
Consequently, P is regular at every level by the already proved implication from ii) to i).

Proof of Lemma 7 The inclusion ⊂ is trivial. To show the converse, we fix an ρ > ρ∗.
Then there exists an ρ′ ∈ (ρ∗, ρ), and by Corollary 2 we thus find

Mρ ⊂ {h ≥ ρ} ⊂ {h > ρ′} ⊂ M̊ρ′ .

From this we easily derive the assertion.

Proof of Lemma 8 The regularity follows from (4). To show that that P is normal,
we fix a ρ0 ≥ ρ∗. Because of the monotonicity of Mρ in ρ, it then suffices to show that
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µ(Mρ \ M̊ρ) = 0 for all ρ > ρ0. However, Lemma 1 ensures both ˚{h ≥ ρ} ⊂ M̊ρ and

Mρ ⊂ {h ≥ ρ}, and hence we obtain Mρ \ M̊ρ ⊂ ∂{h ≥ ρ}.

Appendix B. Proofs related to basic properties of connected components

Lemma 27 Let (X, d) be a compact metric space and A,B ⊂ X be two subsets. Then the
following statements hold:

i) If A is closed, then Tδ(A) := {x ∈ X : ∃x′ ∈ A with d(x, x′) ≤ δ}.

ii) We have d(A,B) ≤ d(Tδ(A), Tδ(B)) + 2δ.

iii) We have ⋂
δ>0

Tδ(A) = A . (12)

Proof of Lemma 27 i). For fixed x ∈ Tδ(A), there exists a sequence (xn) ⊂ A with
d(x, xn) ≤ δ + 1/n for all n ≥ 1. Since X is compact, we may assume without loss of
generality that (xn) converges to some x′ ∈ X, and since we assumed that A is closed, we
obtain x′ ∈ A. Now we easily obtain the assertion from d(x, x′) ≤ d(x, xn) + d(xn, x

′).
ii). Let us fix an x ∈ Tδ(A) and an y ∈ Tδ(B). Then there exist two sequences (xn) ⊂ A

and (yn) ⊂ B such that d(x, xn) ≤ δ + 1/n and d(y, yn) ≤ δ + 1/n for all n ≥ 1. Now this
construction yields

d(A,B) ≤ d(xn, yn) ≤ d(xn, x) + d(x, y) + d(y, yn) ≤ d(x, y) + 2δ + 2/n n ≥ 1,

and by first letting n→∞ and then taking the infimum over all x ∈ Tδ(A) and y ∈ Tδ(B),
we obtain the assertion.

iii). To show the inclusion ⊃, we fix an x ∈ A. Then there exists a sequence (xn) ⊂ A
with xn → x for n → ∞. For δ > 0 there then exists an nδ such that d(x, xn) ≤ δ for all
n ≥ nδ. This shows x ∈ Tδ(A). To show the converse inclusion ⊂, we fix an x ∈ X that sat-
isfies x ∈ T1/n(A) for all n ≥ 1. Then there exists a sequence (xn) ⊂ A with d(x, xn) ≤ 1/n,

and hence we find xn → x for n→∞. This shows x ∈ A.

Lemma 28 Let (X, d) be a compact metric space, A ⊂ X be a non-empty subset and τ > 0.
Then every τ -connected component of A is τ -connected.

Proof of Lemma 28 Let A′ be a τ -connected component of A and x, x′ ∈ A′. Then x
and x′ are τ -connected in A, and hence there exist x1, . . . , xn ∈ A such that x1 = x, xn = x′

and d(xi, xi+1) < τ for all i = 1, . . . , n − 1. Now, d(x1, x2) < τ shows that x1 and x2 are
τ -connected in A, and hence they belong to the same τ -connected component, i.e. we have
found x2 ∈ A′. Iterating this argument, we find xi ∈ A′ for all i = 1, . . . , n. Consequently,
x and x′ are not only τ -connected in A, but also τ -connected in A′. This shows that A′ is
τ -connected.
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Lemma 29 Let (X, d) be a compact metric space, A ⊂ X be a non-empty subset and τ > 0.
Then there exist only finitely many τ -connected components A1, . . . , Am of A. Moreover,
we have d(Ai, Aj) ≥ τ for all i 6= j. Finally, if A is closed, these components are closed,
too.

Proof of Lemma 29 Let A′ 6= A′′ be two τ -connected components of A. Then we have
d(x′, x′′) ≥ τ for all x′ ∈ A′ and x′′ ∈ A′′, since otherwise x′ and x′′ would be τ -connected
in A. Consequently, we have d(A′, A′′) ≥ τ , and from the latter and the compactness of X,
it is straightforward to conclude that |Cτ (A)| < ∞. Finally, let (xi) ⊂ A′ be a sequence in
some component A′ ∈ Cτ (A) such that xi → x for some x ∈ X. Since A is closed, we have
x ∈ A, and hence x ∈ A′′ for A′′ ∈ Cτ (A). By construction we find d(A′, A′′) = 0, and hence
we obtain A′ = A′′ by the assertion that has been shown first.

Lemma 30 Let (X, d) be a compact metric space, A ⊂ X be a non-empty subset and τ > 0.
Then the following statements are equivalent:

i) A is τ -connected.

ii) For all non-empty subsets A+ and A− of A with A+ ∪A− = A and A+ ∩A− = ∅ we
have d(A+, A−) < τ .

Proof of Lemma 30 i) ⇒ ii). Let us fix two non-empty subsets A+ and A− of A with
A+ ∪ A− = A and A+ ∩ A− = ∅. Let us further fix two points x+ ∈ A+ and x− ∈ A−.
Since A is τ -connected, there then exist x1, . . . , xn ∈ A such that x1 = x−, xn = x+ and
d(xi, xi+1) < τ for all i = 1, . . . , n− 1. Then, x+ ∈ A+ and x− ∈ A− imply the existence of
an i ∈ {1, . . . , n−1} with xi ∈ A− and xi+1 ∈ A+. This yields d(A+, A−) ≤ d(xi, xi+1) < τ .

ii) ⇒ i). Assume that A is not τ -connected. Then Lemma 29 shows that there exist
finitely many τ -connected components A1, . . . , Am of A. By definition, these components
are non-empty, mutually disjoint, and satisfy A = A1∪· · ·∪Am. Moreover, Lemma 28 shows
that each component is τ -connected, and since we assumed that A itself is not τ -connected,
we conclude that m ≥ 2. In addition, Lemma 29 shows d(Aj , Aj′) ≥ τ , whenever j 6= j′.
Let us define A− := A1 and A+ := A2 ∪ · · · ∪ Am. Then our previous considerations show
that the subsets A+ and A− of A are non-empty and satisfy A+ ∪ A− = A, A+ ∩ A− = ∅,
and d(A+, A−) ≥ τ .

Corollary 31 Let (X, d) be a compact metric space, A ⊂ B ⊂ X be non-empty subsets and
τ > 0. If A is τ -connected, then there exists exactly one τ -connected component B′ of B
with A ∩ B′ 6= ∅. Moreover, B′ is the only τ -connected component B′′ of B that satisfies
A ⊂ B′′.

Proof of Corollary 31 The second assertion is a direct consequence of the first, and
hence it suffice to show the first assertion. Now, by Lemma 29, there exist finitely many
τ -connected components B1, . . . , Bm of B. Since we obviously have A ⊂ B1 ∪ · · · ∪ Bm it
suffices to show A∩Bi = ∅ for all but one index i ∈ {1, . . . ,m}. Let us assume the converse,
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that is, there exist two indices i, j ∈ {1, . . . ,m} with i 6= j, A ∩ Bi 6= ∅, and A ∩ Bj 6= ∅.
We write A− := A ∩ Bi and A+ := A ∩ (B \ Bi). Since Bj ⊂ B \ Bi, we obtain A+ 6= ∅,
and therefore, Lemma 30 shows d(A−, A+) < τ . Consequently, there exist x− ∈ A− and
x+ ∈ A+ with d(x+, x−) < τ . Now we obviously have x− ∈ Bi, and by construction, we
also find an index i′ 6= i with x+ ∈ Bi′ . Our previous inequality then yields d(Bi, Bi′) < τ ,
while Lemma 29 shows d(Bi, Bi′) ≥ τ , that is, we have found a contradiction.

Lemma 32 Let (X, d) be a compact metric space, A ⊂ X be a non-empty subset and τ > 0.
Then, for a partition A1, . . . , Am of A, the following statements are equivalent:

i) Cτ (A) = {A1, . . . , Am}.

ii) For all i = 1, . . . ,m, the set Ai is τ -connected and d(Ai, Aj) ≥ τ for all i 6= j.

Proof of Lemma 32 i) ⇒ ii). Follows from Lemma 29.
ii) ⇒ i). Let us fix an A′ ∈ Cτ (A). Then, by Corollary 31, every Ai with Ai ∩ A′ 6= ∅

satisfies Ai ⊂ A′. Since A1, . . . , Am is a partition, we conclude that

A′ =
⋃
i∈I

Ai ,

where I := {i : Ai ∩ A′ 6= ∅}. Now let us assume that |I| ≥ 2. We fix an i0 ∈ I and write
A+ := Ai0 and A− :=

⋃
i∈I\{i0}Ai. Since |I| ≥ 2, we obtain A− 6= ∅, and hence Lemma

30 shows d(A+, A−) < τ . On the other hand, our assumption ensures d(A+, A−) ≥ τ , and
hence |I| ≥ 2 cannot be true. Consequently, there exists a unique index i with A′ = Ai,
that is, we have shown the assertion.

Proof of Lemma 10 For A′ ∈ Cτ (A), Corollary 31 shows that there exists exactly
B′ ∈ Cτ (B) with A′ ⊂ B′. Setting ζ(A′) := B′ then gives the desired map and this map is
uniquely determined since B′ is.

Proof of Lemma 11 Clearly, ζB,C ◦ ζA,B maps from Cτ (A) to Cτ (C). Moreover, for
A′ ∈ Cτ (A) we have A′ ⊂ ζA,B(A′) and for B′ := ζA,B(A′) ∈ Cτ (B) we have B′ ⊂ ζB,C(B′).
Combining these inclusions we find A′ ⊂ ζB,C(ζA,B(A′)) = ζB,C ◦ζA,B(A′) for all A′ ∈ Cτ (A).
By Lemma 10, ζA,C is the only map satisfying this property, and hence we conclude that
ζA,C = ζB,C ◦ ζA,B.

Lemma 33 Let (X, d) be a compact metric space and A ⊂ X be a non-empty closed subset.
Then the following statements are equivalent:

i) A is connected.

ii) A is τ -connected for all τ > 0.
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Proof of Lemma 33 i) ⇒ ii). Let us assume that A is not τ -connected for some τ > 0.
Then, by Lemma 29, there are finitely many τ -connected components A1, . . . , Am of A with
m > 1. We write A′ := A1 and A′′ := A2 ∪ · · · ∪ Am. Then A′ and A′′ are non-empty,
disjoint and A′ ∪A′′ = A by construction. Moreover, Lemma 29 shows that A′ and A′′ are
closed since A is closed, and hence A cannot be connected.

ii) ⇒ i). Let us assume that A is not connected. Then there exist two non-empty closed
disjoint subsets of A with A′ ∪ A′′ = A. Since X is compact, A′ and A′′ are also compact,
and hence A′ ∩ A′′ = ∅ implies τ := d(A′, A′′) > 0. Lemma 30 then shows that A is not
τ -connected.

Proof of Lemma 12 i). Let A′ ⊂ A be a topologically connected component of A and
τ > 0. Then we have already seen in Lemma 33 that A′ is τ -connected, and since A′ ⊂ A,
Corollary 31 shows that there exists exactly one A′′ ∈ Cτ (A) with A′ ⊂ A′′. Consequently,
ζ(A′) := A′′ is the only possible definition of ζ. Moreover, if A′′ ∈ Cτ (A) is an arbitrary τ -
connected component, then there exists an x ∈ A′′, and to this x, there exists an A′ ∈ C(A)
with x ∈ A′. Corollary 31 then shows that A′ ⊂ A′′, and hence we obtain ζ(A′) = A′′. In
other words, ζ is surjective.

ii). Let A1, . . . , Am be the topologically connected components of A. Then the com-
ponents are closed, and since A is a closed and thus compact subset of X, the compo-
nents are compact, too. This shows d(Ai, Aj) > 0 for all i 6= j, and consequently we
obtain τ∗A > 0. Let us fix a τ ∈ (0, τ∗A] ∩ (0,∞). Then, Lemma 33 shows that each Ai
is τ -connected, and therefore Lemma 32 together with d(Ai, Aj) ≥ τ∗A ≥ τ for all i 6= j
yields Cτ (A) = {A1, . . . , Am}. Consequently, we have proved C(A) = Cτ (A). The bijec-
tivity of ζ now follows from its surjectivity. For the proof of the last equation, we define
τ∗ := sup{τ > 0 : C(A) = Cτ (A)}. Then we have already seen that τ∗A ≤ τ∗. Now suppose
that τ∗A < τ∗. Then there exists a τ ∈ (τ∗A, τ

∗) with C(A) = Cτ (A). On the one hand, we
then find d(Ai, Aj) ≥ τ for all i 6= j by Lemma 29, while on the other hand τ > τ∗A shows
that there exist i0 6= j0 with d(Ai0 , Aj0) < τ . In other words, the assumption τ∗A < τ∗ leads
to a contradiction, and hence we have τ∗A = τ∗.

Proof of Lemma 14 Let A′, A′′ ∈ C(A) with A′ 6= A′′. Since ζ is injective, we then obtain
ζ(A′) 6= ζ(A′′). Combining this with A′ ⊂ ζ(A′) and A′′ ⊂ ζ(A′′), we find

d(A′, A′′) ≥ d(ζ(A′), ζ(A′′)) ≥ τ∗B ,

where the last inequality follows from Lemma 12. Taking the infimum over all A′ and A′′

with A′ 6= A′′ yields the assertion.

Proof of Lemma 15 i). Since τ > δ, there exist an ε > 0 with δ+ ε < τ . For x ∈ Tδ(A′),
there thus exists an x′ ∈ A′ with d(x, x′) ≤ δ + ε < τ , i.e. x and x′ are τ -connected. Since
A′ is τ -connected, it is then easy to show that every pair x, x′′ ∈ Tδ(A′) is τ -connected.

ii). Let us fix an A′ ∈ Cτ (Tδ(A)) and an x ∈ A′. For n ≥ 1 there then exists an
xn ∈ A with d(x, xn) ≤ δ + 1/n and since by Lemma 29 there only exist finitely many
τ -connected components of A, we may assume without loss of generality that there exists
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an A′′ ∈ Cτ (A) with xn ∈ A′′ for all n ≥ 1. This yields d(x,A′′) ≤ δ + 1/n for all n ≥ 1,
and hence d(x,A′′) ≤ δ. Consequently, we obtain x ∈ Tδ(A′′), i.e. we have Tδ(A

′′)∩A′ 6= ∅.
Since Tδ(A

′′) ⊂ Tδ(A), we then conclude that Tδ(A
′′) ⊂ A′ by Corollary 31 and part i).

Furthermore, we clearly have A′′ ⊂ Tδ(A′′), and hence ζ(A′′) = A′.
iii). We write A1, . . . , Am for the τ -connected components of A. For arbitrary τ > 0

and δ > 0, we first show that

Tδ(A) =

m⋃
i=1

Tδ(Ai) . (13)

Obviously, the inclusion ,,⊃” is trivial. To show the converse inclusion, we fix an x ∈ Tδ(A).
Since A is compact, there then exists an x′ ∈ A with d(x, x′) ≤ δ. Obviously, we further
have x′ ∈ Ai for some component Ai, and hence we find x ∈ Tδ(Ai).

We now choose τ∗ and δ∗ by (8) and fix some τ ∈ (0, τ∗] and δ ∈ (0, δ∗]. Moreover,
let A1, . . . , Am again be the τ -connected components of A. Since τ ≤ τ∗ ≤ τ∗A, part ii) of
Lemma 12 shows C(A) = Cτ (A), and consequently we obtain d(Ai, Aj) ≥ τ∗A = 3τ∗ for all
i 6= j by another application of part ii) of Lemma 12. Our next goal is to show that

d(Tδ(Ai), Tδ(Aj)) ≥ τ , i 6= j . (14)

To this end, we fix an xi ∈ Tδ(Ai) and an xj ∈ Tδ(Aj). Then there exist x′i ∈ Ai and
x′j ∈ Aj with d(xi, x

′
i) ≤ δ and d(xj , x

′
j) ≤ δ, and therefore using δ ≤ δ∗ = τ∗ we obtain

3τ∗ ≤ d(x′i, x
′
j) ≤ d(x′i, xi) + d(xi, xj) + d(xj , x

′
j) ≤ 2τ∗ + d(xi, xj) .

Obviously, the latter together with τ∗ ≥ τ implies (14).
Now part i) showed that each Tδ(Ai), i = 1, . . . ,m, is τ -connected whenever τ > δ.

Combining this with (13), (14), and Lemma 32, we thus see that Tδ(A1), . . . , Tδ(Am) are
the τ -connected components of Tδ(A). The bijectivity of ζ then follows from the surjectivity
and a simple cardinality argument.

Appendix C. Proofs related to the identification of components

Proof of Theorem 18 i). Since τ > δ, part ii) of Lemma 15 and part i) of Lemma 12
yield

|Cτ (Mρ,δ)| ≤ |Cτ (Mρ)| ≤ |C(Mρ)| ≤ 2 . (15)

ii). Let us fix a ρ ∈ [ρ∗ + ε∗, ρ∗∗]. Then Definition 16 guarantees that both Mρ∗+ε∗ and
Mρ have two topologically connected components and that the top-CCRM ζ : C(Mρ) →
C(Mρ∗+ε∗) is bijective. From Lemma 14 we thus obtain τ∗Mρ

≥ τ∗Mρ∗+ε∗
, and consequently,

we find τ ≤ τ∗Mρ∗+ε∗
≤ τ∗Mρ

. This implies C(Mρ) = Cτ (Mρ) by part ii) of Lemma 12, that

is, |Cτ (Mρ)| = 2. Furthermore, τ∗Mρ
≥ τ∗Mρ∗+ε∗

implies δ ≤ τ∗Mρ
/3 and τ ≤ τ∗Mρ

/3, and hence

part iii) of Lemma 15 shows that the τ -CCRM ζ : Cτ (Mρ) → Cτ (Mρ,δ) is bijective. This
implies |Cτ (Mρ,δ)| = 2.

iii). If |Cτ (Mρ,δ)| > 1, then (15) implies |C(Mρ)| > 1, and hence Definition 16 yields
ρ ≥ ρ∗. Moreover, for ρ∗∗, we have already seen in part ii) that the τ -CCRM ζM :
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Cτ (Mρ∗∗)→ Cτ (Mρ∗∗,δ) is bijective, and the proof of ii) further showed C(Mρ∗∗) = Cτ (Mρ∗∗).
Consequently, we can identify ζM with the CCRM C(Mρ∗∗) → Cτ (Mρ∗∗,δ). Moreover,
by (15) we obtain |C(Mρ)| = 2, and hence Definition 16 ensures that the top-CCRM
ζ∗∗ : C(Mρ∗∗)→ C(Mρ) is bijective. In addition, τ > δ together with part ii) of Lemma 15
and part i) of Lemma 12 shows that the CCRM ζρ : C(Mρ)→ Cτ (Mρ,δ) is surjective. Now,
by Lemma 11 these maps commute in the sense of the following diagram

C(Mρ∗∗) C(Mρ)

Cτ (Mρ∗∗,δ) Cτ (Mρ,δ)

-

? ?
-

ζ∗∗

ζM ζρ

ζ

and consequently, ζ is surjective. Since |Cτ (Mρ∗∗,δ)| = |C(Mρ∗∗)| = 2 and |Cτ (Mρ,δ)| = 2, we
then conclude that ζ is bijective.

iv). Let us fix an ρ ∈ [ρ∗ + ε∗, ρ∗∗]. By part ii) and i) we then see that Mρ,δ has two
τ -connected components and part iii) thus shows that the τ -CCRM ζM : Cτ (Mρ∗∗,δ) →
Cτ (Mρ,δ) is bijective. Moreover, Lemma 11 yields the following diagram

Cτ (Vρ∗∗,δ) Cτ (Mρ∗∗,δ)

Cτ (Vρ,δ) Cτ (Mρ,δ)

-

? ?
-

ζ∗∗

ζV ζM

ζV,M

where ζV and ζV,M are the corresponding τ -CCRMs. Now our assumption guarantees that
ζ∗∗ is bijective, and hence the diagram shows that ζV,M ◦ ζV is bijective. Consequently, ζV
is injective, and we obtain 2 = |Cτ (Mρ,δ)| = |Cτ (Vρ∗∗,δ)| ≤ |Cτ (Vρ,δ)|.

Lemma 34 Let (X, d) be a compact metric space, µ be a finite measure on X, and P be
a µ-absolutely continuous probability measure on X that has two thick clusters of order
γ ∈ (0, 1] between the critical levels ρ∗ and ρ∗∗. We write ψ for the corresponding thickness
function. Then, for all ρ ∈ [0, ρ∗∗], δ ∈ (0, δ̃0], and τ > ψ(δ), the following statements hold:

i) For all B′ ∈ C(Mρ), there exists at most one A′ ∈ Cτ (Vρ,δ) such that A′ ∩B′ 6= ∅.

ii) We have |Cτ (Vρ,δ)| ≤ |C(Mρ)|.

iii) If |Cτ (Vρ,δ)| = |C(Mρ)|, then there exists a unique map ζ : Cτ (Vρ,δ) → C(Mρ) that
satisfies

A′ ⊂ ζ(A′) , A′ ∈ Cτ (Vρ,δ) . (16)

Moreover, ζ is bijective.

Proof of Lemma 34 i). Let us fix a τ ′ ∈ (0, τ∗Mρ
] such that ψ(δ) + τ ′ < τ , where τ∗Mρ

is the constant defined in Lemma 12 and c ≥ 1 is the constant appearing in Definition
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19. Moreover, we fix a B′ ∈ C(Mρ). By Lemma 12 we then see that C(Mρ) = Cτ ′(Mρ),
and hence B′ is τ ′-connected. Now let A1, . . . , Am be the τ -connected components of Vρ,δ.
Clearly, Lemma 29 yields d(Ai, Aj) ≥ τ for all i 6= j. Assume that the assertion of the
lemma is not true, that is, there exist i0 6= j0 with Ai0 ∩ B′ 6= ∅ and Aj0 ∩ B′ 6= ∅. Then
there exist x′ ∈ Ai0 ∩B′ and x′′ ∈ Aj0 ∩B′, and since B′ is τ ′-connected, there further exist
x0, . . . , xn+1 ∈ B′ ⊂ Mρ with x0 = x′, xn+1 = x′′ and d(xi, xi+1) < τ ′ for all i = 0, . . . , n.
Moreover, our assumptions guarantee d(xi, Vρ,δ) < ψ(δ)/2 for all i = 0, . . . , n + 1. For all
i = 0, . . . , n+ 1, there thus exists an index `i such that

d(xi, A`i) < ψ(δ)/2 .

In addition, we have x0 ∈ Ai0 and xn+1 ∈ Aj0 by construction, and hence we may choose
`0 = i0 and `n+1 = j0. Since we assumed `0 6= `n+1, there then exists an i ∈ {0, . . . , n+ 1}
with `i 6= `i+1. For this index, our construction now yields

d(A`i , A`i+1
) ≤ d(xi, A`i) + d(xi, xi+1) + d(xi+1, A`i+1

) < ψ(δ) + τ ′ < τ ,

which contradicts the earlier established d(A`i , A`i+1
) ≥ τ .

ii). Since Vρ,δ ⊂ Mρ, we have, for every A′ ∈ Cτ (Vρ,δ), a B′ ∈ C(Mρ) with A′ ∩ B′ 6= ∅.
We pick one such B′ and define ζ(A′) := B′. Now part i) shows that ζ : Cτ (Vρ,δ)→ C(Mρ)
is injective, and hence we conclude |Cτ (Vρ,δ)| ≤ |C(Mρ)|.

iii). As mentioned in part ii), we have an injective map ζ : Cτ (Vρ,δ) → C(Mρ) that
satisfies

A′ ∩ ζ(A′) 6= ∅ , A′ ∈ Cτ (Vρ,δ) . (17)

Now, |Cτ (Vρ,δ)| = |C(Mρ)| implies that ζ is actually bijective. Let us show that ζ is the only
map that satisfies (17). To this end, assume the converse, that is, for some A′ ∈ Cτ (Vρ,δ),
there exists an B′ ∈ C(Mρ) with B′ 6= ζ(A′) and A′ ∩ B′ 6= ∅. Since ζ is bijective, there
then exists an A′′ ∈ Cτ (Vρ,δ) with ζ(A′′) = B′, and hence we have A′′ ∩B′ 6= ∅. By part i),
we conclude that A′ = A′′, which in turn yields ζ(A′) = ζ(A′′) = B′. In other words, we
have found a contradiction, and hence ζ is indeed the only map that satisfies (17). From
this it is easy to conclude, that there exists at most one map that satisfies (16). Let us
therefore finally show that ζ satisfies (16). To this end, we pick an A′ ∈ Cτ (Vρ,δ) and write
B1, . . . , Bm for the topologically connected components of Mρ. Since Vρ,δ ⊂ Mρ, we then
have A′ ⊂ B1 ∪ · · · ∪ Bm, where the latter union is disjoint. Now, we have just seen that
ζ(A′) ∈ {B1, . . . , Bm} is the only component satisfying A′∩ ζ(A′) 6= ∅, and therefore we can
conclude A′ ⊂ ζ(A′).

Proof of Theorem 20 i). This follows from |Cτ (Vρ,δ)| ≤ |C(Mρ)| ≤ 2, where the first
inequality was established in part ii) of Lemma 34.

ii). Our definition of ε∗ yields δε∗ = τε∗ = τ∗Mρ∗+ε∗
/3 ≤ τ∗Mρ∗∗

/3. By part iii) of

Lemma 15 we then conclude that the τ -CCRM Cτ (Mρ∗∗) → Cτ (Mρ∗∗,δ) is bijective. By
Lemma 11 it thus suffices to show that the τ -CCRM ζ : Cτ (Vρ∗∗,δ)→ Cτ (Mρ∗∗) is bijective.
Furthermore, if |Cτ (Vρ∗∗,δ)| = 1, the map ζ is automatically injective, and if |Cτ (Vρ∗∗,δ)| = 2,
the injectivity follows from the surjectivity. Consequently, it actually suffices to show that
ζ is surjective. To this end, we fix a B′ ∈ Cτ (Mρ∗∗) and an x ∈ B′. Then our assumption
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ensures d(x, Vρ∗∗,δ) < cδγ , and hence there exists an A′ ∈ Cτ (Vρ∗∗,δ) with d(x,A′) < cδγ .
Therefore, cδγ < ψ(δ) < τ implies that x and A′ are τ -connected, which yields x ∈ A′. In
other words, we have shown A′∩B′ 6= ∅. By Lemma 31 and the definition of ζ, we conclude
that ζ(A′) = B′.

iii). By part ii) of Lemma 34, we conclude that |Cτ (Vρ,δ)| = |C(Mρ)| = 2, and hence
the definition of topological clustering ensures ρ ≥ ρ∗. Furthermore, part iii) of Lemma
34 yields a unique map ζρ : Cτ (Vρ,δ) → C(Mρ) satisfying (16). Moreover, part ii) of The-
orem 18 shows |Cτ (Mρ∗∗,δ)| = 2 and the already established bijectivity of ζ∗∗ then gives
|Cτ (Vρ∗∗,δ)| = |Cτ (Mρ∗∗,δ)| = 2. Consequently, part iii) of Lemma 34 yields a unique map
ζρ∗∗ : Cτ (Vρ∗∗,δ) → C(Mρ∗∗) satisfying (16). Finally, let ζtop : C(Mρ∗∗) → C(Mρ) be the
top-CCRM, which is bijective according to the definition of topological clustering. Then
the τ -CCRM ζ : Cτ (Vρ∗∗,δ)→ Cτ (Vρ,δ) enjoys the following diagram

Cτ (Vρ∗∗,δ) C(Mρ∗∗)

Cτ (Vρ,δ) C(Mρ)

-

? ?
-

ζρ∗∗

ζ ζtop

ζρ

whose commutativity can be checked analogously to the proof of Lemma 11. Then the
bijectivity of ζρ∗∗ , ζtop, and ζρ yields the bijectivity of ζ, which completes the proof.

Appendix D. Proofs related to basic properties of histograms

Proof of Theorem 22 We fix an A ∈ Aδ and write f := µ(A)−11A. Then f is non-
negative, bounded, and our assumptions ensure ‖f‖∞ ≤ κXδ−dX . Consequently, Hoeffding’s
inequality, see e.g. (Devroye et al., 1996, Theorem 8.1), yields

Pn
({

D ∈ Xn :
∣∣∣ 1
n

n∑
i=1

f(xi)− EP f
∣∣∣ < ε

})
≥ 1− 2e−2κ

−2
X δ2dX ε2n

for all n ≥ 1 and ε > 0, where we assumed D = (x1, . . . , xn). Furthermore, we have
1
n

∑n
i=1 f(xi) = µ(A)−1D(A) and EP f = µ(A)−1P (A). By a union bound argument and

|Aδ| ≤ κXδ−dX , we thus obtain

Pn
({

D ∈ Xn : sup
A∈Aδ

∣∣∣D(A)

µ(A)
− P (A)

µ(A)

∣∣∣ < ε
})
≥ 1− 2κXδ

−dXe−2κ
−2
X δ2dX ε2n .

For A ∈ Aδ and x ∈ A, we have h̄D,Aδ(x) = µ(A)−1D(A) and h̄P,Aδ(x) = µ(A)−1P (A), and
hence find the first assertion.

To show the second inequality, we fix an A ∈ Aδ and write f := µ(A)−1(1A − P (A)).
This yields ‖f‖∞ ≤ κXδ−dX and

Ef2 ≤ µ(A)−2P (A) ≤ µ(A)−1‖h‖∞ ≤ κXδ−dX‖h‖∞ .
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Consequently, Bernstein’s inequality, see e.g. (Devroye et al., 1996, Theorem 8.2), yields

Pn
({

D ∈ Xn :
∣∣∣ 1
n

n∑
i=1

f(xi)
∣∣∣ < ε

})
≥ 1− 2e

− 3ε2δdX n
κX (6‖h‖∞+2ε) .

The rest of the proof follows the lines of the proof of the first inequality.

Proof of Lemma 23 i). We will show the equivalent inclusion {f̂ρ = −1} ⊂ Tδ(Vρ+ε). To

this end, we fix an x ∈ X with f̂ρ(x) = −1. If x ∈ Vρ+ε, we immediately obtain x ∈ Tδ(Vρ+ε),
and hence we may restrict our considerations to the case x ∈ Mρ+ε. Then, f̂ρ(x) = −1

implies ĥ(x) < ρ and from ‖ĥ− h̄P,Aδ‖∞ ≤ ε, we thus conclude h̄P,Aδ(x) ≤ ĥ(x)+ε < ρ+ε.
Now let Ai be the unique cell of the partition Aδ satisfying x ∈ Ai. The definition of h̄P,Aδ
together with the assumed 0 < µ(Ai) <∞ then yields∫

Ai

h dµ = P (Ai) < (ρ+ ε)µ(Ai) , (18)

where h : X → [0,∞) is an arbitrary µ-density of P . Our next goal is to show that there
exists an x′ ∈ Vρ+ε ∩ Ai. Suppose the converse, that is Ai ⊂ Mρ+ε. Then the regularity of
P at the level ρ+ ε yields µ(Ai \ {h ≥ ρ+ ε}) ≤ µ(Mρ+ε \ {h ≥ ρ+ ε}) = 0, and hence we
conclude that µ(Ai ∩ {h ≥ ρ+ ε}) = µ(Ai). This leads to∫

Ai

h dµ =

∫
Ai∩{h≥ρ+ε}

h dµ+

∫
Ai\{h≥ρ+ε}

h dµ =

∫
Ai∩{h≥ρ+ε}

h dµ ≥ (ρ+ ε)µ(Ai) .

However, this inequality contradicts (18), and hence there does exist an x′ ∈ Vρ+ε ∩ Ai.
This implies

d(x, Vρ+ε) ≤ d(x, x′) ≤ diamAi ≤ δ ,

i.e. we have shown x ∈ Tδ(Vρ+ε).
ii). Let us fix an x ∈ X with f̂ρ(x) = 1. If x ∈ Mρ−ε, we immediately obtain x ∈

Tδ(Mρ−ε), and hence it remains to consider the case x ∈ Vρ−ε. Clearly, if ρ − ε ≤ 0, this

case is impossible, and hence we may additionally assume ρ − ε > 0. Then, f̂ρ(x) = 1

implies ĥ(x) ≥ ρ and from ‖ĥ− h̄P,Aδ‖∞ ≤ ε, we thus conclude h̄P,Aδ(x) ≥ ĥ(x)−ε ≥ ρ−ε.
Now let Ai be the unique cell of the partition Aδ satisfying x ∈ Ai. By the definition of
h̄P,Aδ and µ(Ai) > 0 we then obtain∫

Ai

h dµ = P (Ai) ≥ (ρ− ε)µ(Ai) , (19)

where, again, h : X → [0,∞) is an arbitrary µ-density of P . Our next goal is to show
that there exists an x′ ∈ Mρ−ε ∩ Ai. Suppose the converse holds, that is Ai ⊂ Vρ−ε.
Then the assumed regularity of P at the level ρ− ε yields (6), and hence we conclude that
µ(Ai \ {h < ρ− ε}) ≤ µ(Vρ−ε \ {h < ρ− ε}) = 0. This implies∫

Ai

h dµ =

∫
Ai∩{h<ρ−ε}

h dµ+

∫
Ai\{h<ρ−ε}

h dµ =

∫
Ai∩{h<ρ−ε}

h dµ < (ρ− ε)µ(Ai) .
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However, this inequality contradicts (19), and hence there does exist an x′ ∈ Mρ−ε ∩ Ai.
This yields

d(x,Mρ−ε) ≤ d(x, x′) ≤ diamAi ≤ δ ,

i.e. we have shown x ∈ Tδ(Mρ−ε).

Lemma 35 Let (X, d) be a compact metric space and µ be a finite measure on X such
that (X, d, µ) admits uniform dX-dimensional partitions. Moreover, let P be a µ-absolutely
continuous probability measure on X and ĥ : X → R be a function with ‖ĥ− h̄P,Aδ‖∞ ≤ ε
for some ε > 0. Furthermore, for fixed δ > 0, ε ≥ 0, τ > 0, and ρ ≥ 0, let ζ : Cτ (Vρ+ε,δ)→
Cτ ({f̂ρ = 1}) be the τ -CCRM. Then the following statements hold:

i) If, for some V ′ ∈ Cτ (Vρ+ε,δ), we have V ′ ∩ Vρ+3ε+ε,δ 6= ∅, then we obtain

ζ(V ′) ∩ {f̂ρ+2ε+ε = 1} 6= ∅ .

ii) For all B′ ∈ Cτ ({f̂ρ = 1}) with B′ 6∈ ζ(Cτ (Vρ+ε,δ)), we have

B′ ⊂ Tδ(X \Mρ+ε) ∩ Tδ(Mρ−ε) .

Moreover, every A ⊂ B′ ∩ {f̂ρ+2ε+ε = 1} satisfies A ⊂ Tδ(X \Mρ+ε) ∩ Tδ(Mρ+ε+ε).

Proof of Lemma 35 i). This assertion follows from the τ -CCRM property V ′ ⊂ ζ(V ′)
and the inclusion Vρ+3ε+ε,δ ⊂ {f̂ρ+2ε+ε = 1} established in Lemma 23.

ii). For x ∈ B′ we have x 6∈
⋃
V ′∈Cτ (Vρ+ε,δ) ζ(V ′), and hence the τ -CCRM property yields

x 6∈
⋃

V ′∈Cτ (Vρ+ε,δ)

V ′ = Vρ+ε,δ .

This shows x ∈ Tδ(X \ Mρ+ε), i.e. we have proved B′ ⊂ Tδ(X \ Mρ+ε). The inclusion

B′ ⊂ Tδ(Mρ−ε) directly follows from B′ ⊂ {f̂ρ = 1} and Lemma 23. The last assertion

follows from the inclusion {f̂ρ+2ε+ε = 1} ⊂ Tδ(Mρ+ε+ε) established in Lemma 23 and the
previously shown inclusion.

Proof of Theorem 24 Our first goal is to establish the following disjoint union:

Cτ ({f̂ρ = 1}) = ζ(Cτ (Vρ+ε,δ))

∪
{
B′ ∈ Cτ ({f̂ρ = 1}) \ ζ(Cτ (Vρ+ε,δ)) : B′ ∩ {f̂ρ+2ε+ε = 1} 6= ∅

}
∪
{
B′ ∈ Cτ ({f̂ρ = 1}) : B′ ∩ {f̂ρ+2ε+ε = 1} = ∅

}
. (20)

We begin by showing the auxiliary result

V ′ ∩ Vρ+3ε+ε,δ 6= ∅ , V ′ ∈ Cτ (Vρ+ε,δ). (21)
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To this end, we observe that parts i) and ii) of Theorem 18 yield |Cτ (Mρ∗∗,δ)| = 2, and
hence part ii) of Theorem 20 implies |Cτ (Vρ∗∗,δ)| = 2, and thus Vρ∗∗,δ 6= ∅. Let W ′ and W ′′

be the two τ -connected components of Vρ∗∗,δ. Let us first assume that Vρ+ε,δ has exactly
one τ -connected component V ′, i.e. V ′ = Vρ+ε,δ. Then ρ+3ε+ε ≤ ρ∗∗ and ρ+ε ≤ ρ+3ε+ε
imply

∅ 6= Vρ∗∗,δ ⊂ Vρ+3ε+ε,δ = Vρ+ε,δ ∩ Vρ+3ε+ε,δ = V ′ ∩ Vρ+3ε+ε,δ ,

i.e. we have shown (21). Let us now assume that Vρ+ε,δ has more than one τ -component.
Then it has exactly two such components V ′ and V ′′ by ρ+ ε < ρ∗∗ and part i) of Theorem
20. By part iii) of Theorem 20 we may then assume without loss of generality that we have
W ′ ⊂ V ′ and W ′′ ⊂ V ′′. Since ρ+ 3ε+ ε ≤ ρ∗∗ implies Vρ∗∗,δ ⊂ Vρ+3ε+ε,δ, these inclusions
yield ∅ 6= W ′ = W ′ ∩ Vρ∗∗,δ ⊂ V ′ ∩ Vρ+3ε+ε,δ and ∅ 6= W ′′ = W ′′ ∩ Vρ∗∗,δ ⊂ V ′′ ∩ Vρ+3ε+ε,δ.
Consequently, we have proved (21) in this case, too.

Now, from (21) we conclude by part i) of Lemma 35 that B′ ∩ {f̂ρ+2ε+ε = 1} 6= ∅ for all
B′ ∈ ζ(Cτ (Vρ+ε,δ)). This yields{

B′ ∈ Cτ ({f̂ρ = 1}) \ ζ(Cτ (Vρ+ε,δ)) : B′ ∩ {f̂ρ+2ε+ε = 1} = ∅
}

=
{
B′ ∈ Cτ ({f̂ρ = 1}) : B′ ∩ {f̂ρ+2ε+ε = 1} = ∅

}
,

and the latter immediately implies (20).
Now, using (20) and {f̂ρ+2ε = 1} ⊃ {f̂ρ+2ε+ε = 1} it remains to show

B′ ∩ {f̂ρ+2ε = 1} = ∅ ,

for all B′ ∈ Cτ ({f̂ρ = 1}) \ ζ(Cτ (Vρ+ε,δ)). Let us assume the converse, that is, there

exists some B′ ∈ Cτ ({f̂ρ = 1}) with B′ 6∈ ζ(Cτ (Vρ+ε,δ)) and B′ ∩ {f̂ρ+2ε = 1} 6= ∅. Since

{f̂ρ+2ε = 1} ⊂ Tδ(Mρ+ε) by Lemma 23, there then exists an x ∈ B′ ∩ Tδ(Mρ+ε). The latter
yields an x′ ∈Mρ+ε with d(x, x′) ≤ δ, and since P has thick clusters we obtain

d(x′, Vρ+ε,δ) < c δγ .

From this inequality we conclude that there exists an x′′ ∈ Vρ+ε,δ satisfying d(x′, x′′) < cδγ .
Let V ′′ ∈ Cτ (Vρ+ε,δ) be the unique τ -connected component satisfying x′′ ∈ V ′′. The τ -
CCRM property then yields x′′ ∈ V ′′ ⊂ ζ(V ′′) =: B′′, and hence, using c ≥ 1, we find

d(B′, B′′) ≤ d(x, x′′) ≤ d(x, x′) + d(x′, x′′) < δ + cδγ ≤ τ .

However, since B′ 6∈ ζ(Cτ (Vρ+ε,δ)) and B′′ ∈ ζ(Cτ (Vρ+ε,δ)) we obtain B′ 6= B′′, and there-
fore, Lemma 29 yields d(B′, B′′) ≥ τ , i.e. we have found a contradiction.

Proof of Theorem 25 i). Let D ∈ Xn be a dataset such that ‖h̄D,Aδ − h̄P,Aδ‖∞ < ε.
Moreover, let ε := 0 and ρ ≥ 0 be the current level that is considered by Algorithm 3.1.
Then, Theorem 24 shows that, for ρ ∈ [0, ρ∗∗ − 3ε], Algorithm 3.1 identifies exactly the
τ -connected components of {f̂ρ = 1} in its loop that belong to the set ζ(Cτ (Vρ+ε,δ)), where

ζ : Cτ (Vρ+ε,δ) → Cτ ({f̂ρ = 1}) is the τ -CCRM. In the following, we thus consider the set
ζ(Cτ (Vρ+ε,δ)) for ρ ∈ [0, ρ∗∗ − 3ε].
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Let us first consider the case ρ ∈ [0, ρ∗ − ε). Then, part i) and iii) of Theorem 20
together with the assumed ρ+ε < ρ∗ show |Cτ (Vρ+ε,δ)| = 1. This yields |ζ(Cτ (Vρ+ε,δ))| = 1,
and hence Algorithm 3.1 does not stop. Consequently, we have ρ∗(D) ≥ ρ∗ − ε.

Let us now consider the case ρ ∈ [ρ∗ + ε∗ + ε, ρ∗ + ε∗ + 2ε]. Then we first note that
Algorithm 3.1 actually inspects such an ρ, since it iteratively inspects all ρ = iε, i = 0, 1, . . . ,
and the width of the interval above is ε. Moreover, our assumptions on ε∗ and ε guarantee
ρ∗ + ε∗ + 2ε ≤ ρ∗∗ − 3ε and hence we have ρ ∈ [ρ∗ + ε∗ + ε, ρ∗∗ − 3ε]. Let us write ζV :
Cτ (Vρ∗∗,δ)→ Cτ (Vρ+ε,δ), ζM : Cτ (Mρ∗∗,δ)→ Cτ (Mρ−ε,δ), and ζV,M : Cτ (Vρ+ε,δ)→ Cτ (Mρ−ε,δ)
for the τ -CCRMs between the involved sets. Using Lemma 11 twice, we then obtain the
following diagram:

Cτ (Vρ+ε,δ) Cτ (Mρ−ε,δ)

Cτ (Vρ∗∗,δ) Cτ (Mρ∗∗,δ)

-

6 6

-

ζV,M

ζV ζM

ζ∗∗

Moreover, we have ρ − ε ≥ ρ∗ + ε∗ and ρ + ε ≥ ρ∗ + ε∗, and hence part ii) and iv) of
Theorem 18 together with part i) and ii) of Theorem 20 show that the sets Mρ−ε,δ and
Vρ+ε,δ both have two τ -connected components. Consequently, part iii) of Theorem 18 and
part iii) of Theorem 20 ensure that the maps ζV and ζM are bijective, and, in addition,
part ii) of Theorem 20 shows that ζ∗∗ is bijective. Consequently, ζV,M is bijective. Let

us further consider the τ -CCRM ζ ′ : Cτ ({f̂ρ = 1}) → Cτ (Mρ−ε,δ). Then Lemma 11 yields
another diagram:

Cτ (Vρ+ε,δ) Cτ (Mρ−ε,δ)

Cτ ({f̂ρ = 1})

-

@
@
@
@@R �

�
�
���

ζV,M

ζ ζ ′

Since ζV,M is bijective, we then find that ζ is injective, and since we have already seen
that Vρ+ε,δ has two τ -connected components, we conclude that ζ(Cτ (Vρ+ε,δ)) contains two
elements. Consequently, the stopping criterion of Algorithm 3.1 is satisfied, that is, ρ∗(D) ≤
ρ∗ + ε∗ + 2ε.

ii). Theorem 24 shows that in its last run through the loop Algorithm 3.1 identifies ex-
actly the τ -connected components of {f̂ρ∗(D) = 1} that belong to the set ζε(Cτ (Vρ∗(D)+ε,δ)),

where ζε : Cτ (Vρ∗(D)+ε,δ) → Cτ ({f̂ρ∗(D) = 1}) is the τ -CCRM. Moreover, since Algorithm
3.1 stops at ρ∗(D), we have |ζε(Cτ (Vρ∗(D)+ε,δ))| 6= 1 and thus |Cτ (Vρ∗(D)+ε,δ)| 6= 1. From
ρ∗(D) + ε ≤ ρ∗∗ and part i) of Theorem 20 we thus conclude that |Cτ (Vρ∗(D)+ε,δ)| = 2. For
later purposes, note that the latter implies the injectivity of ζε. Therefore, iii) of Theorem
20 shows that the τ -CCRM ζρ∗∗,ρ∗(D)+ε : Cτ (Vρ∗∗,δ) → Cτ (Vρ∗(D)+ε,δ) is bijective. Let us
now consider the following commutative diagram:
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Cτ (Vρ∗∗,δ) Cτ (Vρ∗(D)+ε,δ)

Cτ (Vρ∗(D)+3ε,δ)

-

@
@
@
@@R �

�
�
���

ζρ∗∗,ρ∗(D)+ε

ζρ∗∗,ρ∗(D)+3ε ζ

where the remaining two maps are the corresponding τ -CCRMs. Now the bijectivity
of ζρ∗∗,ρ∗(D)+ε shows that ζρ∗∗,ρ∗(D)+3ε is injective, and since ρ∗(D) + 3ε ≤ ρ∗∗ implies
|Cτ (Vρ∗(D)+3ε,δ)| ≤ 2 = |Cτ (Vρ∗∗,δ)| by part i) of Theorem 20, ζρ∗∗,ρ∗(D)+3ε is actually bijec-
tive. This yields |Cτ (Vρ∗(D)+3ε,δ)| = 2 and the bijectivity of ζ. Let us consider yet another
commutative diagram

Cτ (Vρ∗(D)+3ε,δ) Cτ (Vρ∗(D)+ε,δ)

Cτ ({f̂ρ∗(D)+2ε = 1}) Cτ ({f̂ρ∗(D) = 1})

-

? ?
-

ζ

ζ3ε ζε

ζf

where again, all occurring maps are the τ -CCRMs between the respective sets. Now we
have already shown that ζε is injective and ζ is bijective. Consequently, ζ3ε is injective.

iii). Follows from Theorem 24 and ρ∗(D) + 2ε ≤ ρ∗∗ − 3ε.
iv). By part iii) of Lemma 34 there exist bijective CCRMs ζρ∗∗ : Cτ (Vρ∗∗,δ)→ C(Mρ∗∗)

and ζρ∗(D)+3ε : Cτ (Vρ∗(D)+3ε,δ) → C(Mρ∗(D)+3ε). Moreover, in the proof of ii) we have al-
ready seen that τ -CCRM ζρ∗∗,ρ∗(D)+3ε is bijective. This gives the diagram.

Appendix E. Proofs related to large sample sizes

Lemma 36 Let (X, d) be a complete separable metric space, µ be a finite measure on X,
and (Aρ)ρ∈R be a family of closed subsets of X with Aρ ⊂ Aρ′ for all ρ′ ≤ ρ. For ρ∗ ∈ R,
we write

Āρ∗ :=
⋃
ρ>ρ∗

Aρ and Ȧρ∗ :=
⋃
ρ>ρ∗

Åρ .

Then we have

Ȧρ∗ =
⋃
ρ>ρ∗

⋃
ε>0

⋃
δ>0

(
X \ Tδ(X \Aρ+ε)

)
Āρ∗ =

⋃
ρ>ρ∗

⋂
ε>0

⋂
δ>0

Tδ(Aρ−ε) .

Moreover, the following statements are equivalent:

i) µ(Āρ∗ \ Ȧρ∗) = 0.
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ii) For all ε > 0, there exists a ρε > ρ∗ such that, for all ρ ∈ (ρ∗, ρε], we have µ(Aρ\Åρ) ≤
ε.

Proof of Lemma 36 To show the first equality, we observe that (12) implies⋂
ρ>ρ∗

⋂
ε>0

⋂
δ>0

Tδ(X \Aρ+ε) =
⋂
ε>0

⋂
ρ>ρ∗

X \Aρ+ε =
⋂
ρ>ρ∗

X \Aρ .

Moreover, every set A ⊂ X satisfies X \A = X \ Å, and hence we obtain⋂
ρ>ρ∗

X \Aρ =
⋂
ρ>ρ∗

(X \ Åρ) = X \
⋃
ρ>ρ∗

Åρ .

Combining both equalities and then taking the complement, we find the first assertion.
Analogously, (12) shows⋃

ρ>ρ∗

⋂
ε>0

⋂
δ>0

Tδ(Aρ−ε) =
⋃
ρ>ρ∗

⋂
ε>0

Aρ−ε =
⋃
ρ>ρ∗

⋂
ε>0

Aρ−ε .

Moreover, using the monotonicity of the family (Aρ), it is straightforward to show that⋃
ρ>ρ∗

⋂
ε>0Aρ−ε =

⋃
ρ>ρ∗ Aρ, which finishes the proof.

i) ⇒ ii). Let us fix an ε > 0. Since
⋃
ρ′≥ρ Åρ′ = Åρ ↗ Ȧρ∗ for ρ↘ ρ∗, the σ-continuity

of finite measures yields an ρε > ρ∗ such that µ(Āρ∗ \ Åρ) ≤ ε for all ρ ∈ (ρ∗, ρε]. Using
Aρ ⊂ Āρ∗ for ρ > ρ∗, we then obtain the assertion.

ii) ⇒ i). Let us fix an ε > 0. For ρ ∈ (ρ∗, ρε], we then have Åρ ⊂ Ȧρ∗ , and hence our as-
sumption yields µ(Aρ\Ȧρ∗) ≤ ε. In other words, we have limρ↘ρ∗ µ(Aρ\Ȧρ∗) = 0. Moreover,
we have Aρ ↗ Āρ∗ for ρ↘ ρ∗, and hence the continuity of µ yields limρ↘ρ∗ µ(Aρ \ Ȧρ∗) =
µ(Āρ∗ \ Ȧρ∗).

Proof of Theorem 26 Let us write Aρ∗∗,i, i = 1, 2, for the two topologically connected
components of Mρ∗∗ . Moreover, for ρ ∈ (ρ∗, ρ∗∗], we define Aρ,i := ζρ(Aρ∗∗,i), where ζρ :
C(Mρ∗∗) → C(Mρ) is the top-CCRM. In addition, we write Aρ,i := ∅ for ρ > ρ∗∗ and
Aρ,i := X for ρ ≤ ρ∗. Our first goal is to show that

µ(Āρ∗,i \ Ȧρ∗,i) = 0 (22)

for i = 1, 2, where we used the notation of Lemma 36. To this end, we fix an ε > 0. Since the
definition of clusters ensures that P is normal at level ρ∗, we have µ(M̄ρ∗ \Ṁρ∗) = 0, Lemma
36 then shows that there exists a ρε > ρ∗ such that µ(Mρ\M̊ρ) ≤ ε for all ρ ∈ (ρ∗, ρε], where
we may assume without loss of generality that ρε ≤ ρ∗∗. Let us fix a ρ ∈ (ρ∗, ρε]. Then
the fact that Mρ = Aρ,1 ∪ Aρ,2 is a disjoint union of closed sets yields M̊ρ = Åρ,1 ∪ Åρ,2.
Consequently, we obtain

Mρ \ M̊ρ =
(
Aρ,1 \ (Åρ,1 ∪ Åρ,2)

)
∪
(
Aρ,2 \ (Åρ,1 ∪ Åρ,2)

)
= (Aρ,1 \ Åρ,1) ∪ (Aρ,2 \ Åρ,2) .

This implies µ(Aρ,i \ Åρ,i) ≤ ε, and hence Lemma 36 shows (22).
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Let us now fix an ε > 0. We define Vρ,δ,i := X \ Tδ(X \ Aρ,i) for all δ > 0, ρ ∈ R, and
i = 1, 2. By the first equality of Lemma 36, Equation (22), and the σ-continuity of finite
measures there then exist δε > 0, εε > 0, and ρε > ρ∗ such that, for all ε ∈ (0, εε], δ ∈ (0, δε],
ρ ∈ (ρ∗, ρε], and i = 1, 2 we have

µ(Āρ∗,i \ Vρ+ε,δ,i) = µ(Ȧρ∗,i \ Vρ+ε,δ,i) ≤ ε . (23)

Moreover, the second equality of Lemma 36 shows that, for all ρ > ρ∗, we have⋂
ε>0

⋂
δ>0

Mρ−ε,δ ⊂ M̄ρ∗ .

Clearly, this implies
⋂
ε>0

⋂
δ>0Mρ−ε,δ \ M̄ρ∗ = ∅. Consequently, we have

µ(Mρ−ε,δ \ M̄ρ∗) ≤ ε (24)

for all ρ > ρ∗ and all sufficiently small ε > 0, δ > 0. Without loss of generality, we may
thus assume that (24) holds for all ε ∈ (0, εε], δ ∈ (0, δε] and all ρ > ρ∗. We now define
ε∗ := min{ρε−ρ

∗

5 , ρ
∗∗−ρ∗
8 }, ε? := min{ε∗, εε}, δ? := min{δε, δε∗ , δ̃0}, and τ? := τε∗ . Then,

for all sufficiently large n, we have εn ∈ (0, ε?], δn ∈ (0, δ?], τn ∈ (0, τ?], and by Theorem
22 we further know that the probability Pn of ‖h̄D,Aδn − h̄P,Aδn‖∞ < εn converges to 1
for n → ∞. Let us therefore only consider such data sets D and parameters satisfying
εn ∈ (0, ε?], δn ∈ (0, δ?], τn ∈ (0, τ?]. Then our construction ensures that we can apply
Theorem 25. In particular, we have ρ∗ < ρ∗(D) + 2εn ≤ ρ∗ + ε∗ + 4εn ≤ ρ∗ + 5ε∗ ≤ ρε,
and hence (23) and (24) hold for ρ := ρ∗(D) + 2εn. Following the discussion in front
of Theorem 26, we further have two τn-connected components V ′1 and V ′2 of Vρ+εn,δn and
two τn-connected components V ′′1 and V ′′2 of Vρ∗∗,δn such that V ′′i ⊂ V ′i , V ′′i ⊂ Aρ∗∗,i, and
V ′i ⊂ Bi(D) for i = 1, 2. Let us next show that, for i = 1, 2, we have

Vρ+εn,δn,i ⊂ V ′i . (25)

To this end, we fix an x ∈ Vρ+εn,δn,1 = X \ Tδn(X \ Aρ+εn,1). Since Vρ+εn,δn,1 ⊂ Aρ+εn,1
and Vρ+εn,δn,1 ⊂ Vρ+εn,δn , we then have x ∈ Aρ+εn,1 and x ∈ V ′1 ∪ V ′2 . Let us assume
that x ∈ V ′2 . Then we have V ′2 ∩ Aρ+εn,1 6= ∅. Now, the diagram of Theorem 25 shows
that ζρ+εn : Cτn(Vρ+εn,δn) → C(Mρ+εn) satisfies ζρ+εn(V ′i ) = Aρ+εn,i, and hence we have
V ′2 ⊂ Aρ+εn,2. Consequently, V ′2 ∩ Aρ+εn,1 6= ∅ implies Aρ+εn,2 ∩ Aρ+εn,1 6= ∅, which is a
contradiction. Therefore, we have x ∈ V ′1 , that is, we have shown (25) for i = 1. The case
i = 2 can be shown analogously.

Using A∗i = Āρ∗,i, V
′
i ⊂ Bi(D), (25), and (23) we now obtain

µ
(
A∗i \Bi(D)

)
= µ

(
Āρ∗,i \Bi(D)

)
≤ µ(Āρ∗,i \ V ′i ) ≤ µ(Āρ∗,i \ Vρ+εn,δn,i) ≤ ε . (26)

Conversely, using µ(B \A) = µ(B)− µ(A ∩B) twice, we obtain

µ
(
B1(D) \ (A∗1 ∪A∗2)

)
= µ(B1(D))− µ

(
B1 ∩ (A∗1 ∪A∗2)

)
≥ µ(B1(D))− µ(B1(D) ∩A∗1)− µ(B1(D) ∩A∗2)
= µ(B1(D) \A∗1)− µ(B1(D) ∩A∗2) .
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Since B1(D)∩B2(D) = ∅ implies B1(D)∩A∗2 ⊂ A∗2 \B2(D) and Lemma 23 shows B1(D) ⊂
Mρ+εn,δn , we can thus conclude with the help of the previous estimate that

µ(B1(D) \A∗1) ≤ µ
(
B1(D) \ (A∗1 ∪A∗2)

)
+ µ(A∗2 \B2(D))

≤ µ
(
Mρ+εn,δn \ (A∗1 ∪A∗2)

)
+ µ(A∗2 \B2(D))

≤ 2ε ,

where in the last step we used (24) and (26). Clearly, we can establish µ(B2(D) \A∗2) ≤ 2ε
analogously, and hence we we finally obtain µ(Bi(D) M A∗i ) ≤ 3ε for i = 1, 2.

737


	Introduction
	Preliminaries: Density level sets, connectivity, and clusters
	Density-independent density level sets and their regularity
	Connectivity
	Clusters

	The algorithm and its consistency
	Discussion
	Proofs related to the definition of level sets
	Proofs related to basic properties of connected components
	Proofs related to the identification of components
	Proofs related to basic properties of histograms
	Proofs related to large sample sizes

