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Abstract

Abduction is one of the basic logical inferences (deduction, induction and abduction) and
derives the best explanations for our observation. Statistical abduction attempts to define a
probability distribution over explanations and to evaluate them by their probabilities. The
framework of statistical abduction is general since many well-known probabilistic models,
i.e., BNs, HMMs and PCFGs, are formulated as statistical abduction. Logic-based proba-
bilistic models (LBPMs) have been developed as a way to combine probabilities and logic,
and it enables us to perform statistical abduction. However, most of existing LBPMs impose
restrictions on explanations (logical formulas) to realize efficient probability computation
and learning. To relax those restrictions, we propose two MCMC (Markov chain Monte
Carlo) methods for Bayesian inference on LBPMs using binary decision diagrams. The main
advantage of our methods over existing methods is that it has no restriction on formulas.
In the context of statistical abduction with Bayesian inference, whereas our deterministic
knowledge can be described by logical formulas as rules and facts, our non-deterministic
knowledge like frequency and preference can be reflected in a prior distribution in Bayesian
inference. To illustrate our methods, we first formulate LDA (latent Dirichlet allocation)
which is a well-known generative probabilistic model for bag-of-words as a form of statis-
tical abduction, and compare the learning result of our methods with that of an MCMC
method called collapsed Gibbs sampling specialized for LDA. We also apply our methods
to diagnosis for failure in a logic circuit and evaluate explanations using a posterior distri-
bution approximated by our method. The experiment shows Bayesian inference achieves
better predicting accuracy than that of Maximum likelihood estimation.

Keywords: statistical abduction, Bayesian inference, Markov chain Monte Carlo, binary
decision diagrams

1. Introduction

Abduction is one of the basic logical inferences (deduction, induction and abduction)
and derives the best explanation E for our observation O such that E is consistent with
knowledge base KB and KB ∧E |= O. For example, we observe grass in our garden is wet
and have knowledge that grass is wet if it rained or someone watered the grass. Then, we
can derive two explanations “it rained” and “someone watered garden” for the observation.
The problem here is we do not know which explanation is the best. Statistical abduction
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attempts to define a probability distribution over explanations and to evaluate them by their
probabilities. For example, if we know that the probabilities of “it rained” and “someone
watered garden” are 0.3 and 0.5, respectively, then we can say the second one is the best.
Statistical abduction is a general framework since many well-known probabilistic models,
i.e., BNs (Bayesian networks), HMMs (hidden Markov models) and PCFGs (probabilistic
context-free grammars), are formulated as statistical abduction (Sato and Kameya (2001)).
For example, explanations for HMMs correspond to hidden states for a given sequence, and
those for PCFGs are parse trees for a given corpse. Recently, statistical abduction has
been applied to diagnosis (Poole (1993), Ishihata et al. (2010)), plan recognition (Singla
and Mooney (2011), Raghavan and Mooney (2011)), systems biology (Inoue et al. (2009),
Synnaeve et al. (2011)) etc.

In the past two decades, a number of formalisms to combine probability and logic
have been proposed in the area of statistical relational learning (SRL) (Getoor and Taskar
(2007)). Well-known examples include SLPs (stochastic logic programs) (Muggleton (1996)),
ICL (independent choice logic) (Poole (1997)), PRISM (Sato and Kameya (2001)), BLPs
(Bayesian logic programs) (Kersting and De Raedt (2001)), MLNs (Markov logic networks)
(Richardson and Domingos (2006)) and ProbLog (De Raedt et al. (2007)). In recent years,
statistical abduction systems based on BLPs and MLNs have been developed and the for-
mer is called BALPs (Bayesian abductive logic programs) (Kate and Mooney (2009)) and
the latter is abductive Markov logic (Raghavan and Mooney (2010)). Whereas most of sta-
tistical abduction systems including those employ MLE (maximum likelihood estimation)
to obtain probabilities of explanations, PRISM which is based on Prolog supplies various
learning methods other than MLE such as MAP (maximum a posterior) inference and re-
cently Bayesian inference (Sato et al. (2009), Sato (2011)). The introduction of Bayesian
inference for statistical abduction gives the following benefits. The first one is the en-
larged range of usable models. For example, LDA (latent Dirichlet allocation) which is a
well-known probabilistic generative model for bag-of-words can be formulated as statisti-
cal abduction with Bayesian inference. The second benefit is that our non-deterministic
knowledge can be explicitly reflected in evaluation of explanations as a prior distribution
of Bayesian inference. In statistical abduction, our deterministic knowledge such as rules
and facts can be described as logical formulas but our non-deterministic knowledge such
as frequency and preference seems difficult to describe by logic. Bayesian inference allows
us to represent such knowledge as a prior distribution and explicitly reflects it in evalu-
ation of explanations. However, PRISM has a problem that it assumes the exclusiveness
condition on explanations, that is, disjuncts must be probabilistically exclusive. Although
most of statistical abduction systems have such restrictions to realize efficient probability
computation and learning, but, they prevent us from enjoying the full expressive power of
logic.

In this paper, we propose two MCMC methods for Bayesian inference in statistical
abduction, which have no restriction over explanations. They are applicable to any ex-
planations as long as they are described as boolean formulas and can relax restrictions of
existing statistical abduction systems including PRISM.

The remainder of this paper is organized as follows. We first formulate Bayesian infer-
ence for statistical abduction. Then, we propose two MCMC methods to perform Bayesian
inference for statistical abduction, one is a Gibbs sampling and the other is a component-
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wise Metropolis-Hasting sampling. Next, we apply our methods to finding topics of LDA
and to diagnosing stochastic errors in logic circuits. Finally, we discuss related work and
future work, followed by conclusion.

2. Preliminary

2.1. Statistical abduction on PBPMs

We here formulate statistical abduction as inference on probabilistic models called propo-
sitional logic-based probabilistic models (PBPMs). Suppose we have an observation O to be
explained and knowledge base KB consisting of first-order clauses. Then, the task of logical
abduction is to search for an explanation E such that KB ∧ E |= O and KB ∧ E is con-
sistent. In usual, the search space of explanations are limited such as conjunctions of a set
of atoms called abducibles. In statistical abduction, we introduce a probability distribution
over abducibles and define probabilities of explanations. The task of statistical abduction
is to infer the best explanation which has the highest probability.

The above framework of statistical abduction can be formulated as inference on prob-

abilistic models. Let θj ≡ {θjv}
Mj

v=1 (0≤ θjv ≤ 1,
∑Mj

v=1 θjv = 1) be a parameter vector of a

categorical distribution Cat (θj) corresponding to an Mj-sided dice, and also let xi≡{xiv}Ni
v=1

(xiv ∈{0, 1},
∑Ni

v=1 xiv = 1) be a value vector drawn from Cat (θji), where ji is the index of
the categorical distribution which generates xi. (So, Ni =Mji holds for each i). We use
vi (1 ≤ vi ≤Ni) to denote v such that xiv = 1. Then a probability p(xi | θji) is equal to
θjivi . Let θ and x be {θj}Mj=1 and {xi}Ni=1, respectively. Then, a joint distribution p(x | θ)
is computed as follows:

p(x | θ)=

M∏
j=1

Mj∏
v=1

θ
σjv(x)
jv , σjv(x)≡

∑
i:ji=j

xiv. (1)

Now, we introduce f(x) which is a function of x such that f(x) ∈ {0, 1}, and use f (resp. ¬f)
to denote the value of f(x) is 1 (resp. 0). Then, the probability p(f | θ) is defined as follows:

p(f | x)≡f(x), p(f | θ) =
∑
x

p(f, x | θ) =
∑
x

f(x)p(x | θ).

We call a joint distribution p(f, x | θ) a base model and its graphical representation is shown
at the left upper in Fig. 1. Suppose the value and the definition of f(x) are given as an
observation O and knowledge base KB, respectively. Then, computing the most probable
x given them on the base models is almost equivalent to performing statistical abduction,
that is, finding the explanation E which has the highest probability from all possible x
(a search space). However, it slightly differs from the logical statistical abduction in that
KB is described by logic in logical abduction. Now, we propositionalize the base model
p(f, x | θ) to describe f as a boolean formula in independent boolean random variables. Let
“xi=v” be a boolean random variable taking 1 (true) if xiv=1. Then, f can be represented
as a boolean formula as follows:

f =
∨

x:f(x)=1

fx, fx =
∧
xi∈x

“xi=vi”,
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Here, note that “xi=v” and “xi=v′” (v 6= v′) depend on each other. However, they can
be described as a boolean formula in independent boolean random variables b≡{biv | biv≡
“xi≤v | xi≥v”, 1≤ i≤N, 1≤v<Ni} as follows:

“xi = v” ≡

{
biv ∧

∧v−1
v′=1 ¬biv′ 1≤v<Ni∧v−1

v′=1 ¬biv′ v=Ni

,

Thus, fx can be also described as boolean formulas in b, and p(fx | θ)≡
∑

b fx(b)p(b | θ)
equals to p(x | θ) if the probability of biv is defined as follows (Ishihata et al. (2010)):

p(biv=1 | θ) ≡ θjiv
φjiv

, p(biv=0 | θ) ≡ φji,v+1

φjiv
, φjv ≡

Mj∑
v′=v

θjv′ .

For example, the probability of “xi=v” (1≤v<Ni) can be computed using b as follows:

p(“xi=v” | θ) = p(biv=1 | θ)
v−1∏
v′=1

p(biv′=0 | θ)

=
θjiv
φjiv

v−1∏
v′=1

φji,v′+1

φjiv′

= θjiv.

In the same way, a probabilistic event f can be described as boolean formulas in independent
boolean random variables b, and its probability are computed by p(b | θ) as follows:

p(f | θ) =
∑
b

p(f, b | θ) =
∑
b

f(b)p(b | θ),

where f(b) is the value of the boolean formula of f given an assignment b. We call the
joint distribution p(f, b | θ) a propositional logic-based probabilistic model (PBPM) for a
base model p(f, x | θ) and its graphical representation is shown at the left lower in Fig. 1.
Consequently, statistical abduction is formulated as a problem to infer the most probable
x given f and its boolean formula in b. Here, PBPMs have no restriction on a boolean
formula of f and define probabilities over any boolean formulas in b.

2.2. Bayesian inference for statistical abduction on PBPMs

Given an observation f and its boolean formula in b, we here perform Bayesian inference
to infer the most probable x. In Bayesian inference, we assume a parameter θ as a random
variable and introduce a prior distribution p(θ | α) (α≡{αk}Lk=1) defined as

p(θ | α) =

M∏
j=1

p(θj | αkj ), p(θj | αkj )=
1

Z
(
αkj
) Mj∏
v=1

θ
αkjv

−1
jv , Z (αk)≡

∏Lk
v=1 Γ(αkv)

Γ
(∑Lk

v=1 αkv

) ,
where αk ≡ {αkv}Lk

v=1 (αkv > 0) is a parameter of a Dirichlet distribution Dir (αk) and kj
denotes the index of the Dirichlet distribution which generates θj . The introduction of the
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prior p(θ | α) modifies graphical representations of base models and PBPMs to those in the
right side in Fig. 1. Since Dirichlet distributions are conjugate to categorical distributions,
the posterior distribution p(θ | x, α), which is the modified distribution of θ by a given x, is
also a product of Dirichlet distributions as follows:

p(θ | x, α) =
p(x | θ)p(θ | α)

p(x | α)
, p(x | θ)p(θ | α) =

M∏
j=1

1

Z
(
αkj
) Mj∏
v=1

θ
αkjv

+σjv(x)−1
jv ,

where p(x | α) is computed as follows:

p(x | α) =

∫
p(x | θ)p(θ | α)dθ =

M∏
j=1

Z
(
αkj + σj(x)

)
Z
(
αkj
) , σj(x) ≡ {σjv(x)}Mj

v=1. (2)

We here define the most probable x given f as one that maximizes p(x | f, α) computed as

p(x | f, α) =
f(x)p(x | α)

p(f | α)
, p(f | α) =

∑
x

f(x)p(x | α),

where p(f | α) is called marginal likelihood. Unfortunately, computing p(f | α) and
argmaxx p(x | f, α) involve evaluating p(x | α) on the large discrete search space. To
the best of our knowledge, there is no efficient algorithm for computing p(f | α), let alone
that for argmaxx p(x | f, α).

We avoid this difficulty by switching from computing argmaxx p(x | f, α) to sampling
x from p(x | f, α). Suppose we have K samples {x(k)}Kk=1 taken from p(x | f, α). Then,
one which maximize p(x(k) | α) is the most probable explanation in the sample. More
generally, suppose we are given N boolean formulas (explanations) f1, . . . , fN and would
like to choose the most probable fi given f . Then, we can approximate p(fi | f, α) using
the samples {x(k)}Kk=1 by

p(fi | f, α) =
∑
x

fi(x)p(x | f, α) ≈
K∑
k=1

fi(x(k))

K
,

and choose the most probable fi using the approximated probabilities. In addition, we can
also approximate the marginal likelihood p(f | α) using the samples and a particular θ̂ as
follows:

p(f | α) =
p(θ̂ | α)p(f | θ̂)∑

x p(θ̂ | x, α)p(x | f, α)
,

∑
x

p(θ̂ | x, α)p(x | f, α) ≈ 1

K

K∑
k=1

p(θ̂ | x(k), α),

where p(θ̂ | α) is easy to compute and p(f | θ̂) can be computed by a BDD-based probability
computation algorithm proposed by Ishihata et al. (2010).

In this paper, we propose two MCMC methods to take a sample of x from p(x | f, α).
The first one is a Gibbs sampling and described in Section 3. The second one is a component-
wise Metropolis-Hastings sampling and proposed in Section 4.
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Figure 1: Graphical representations of base models and PBPMs

3. Gibbs sampling for PBPMs

3.1. Gibbs sampling

Markov chain Monte Carlo (MCMC) methods are a class of general sampling algorithms
based on Markov chains. Let π(s) be a target distribution that we would like to get samples.
An MCMC method constructs a Markov chain with a transition probability distribution
P (s̃ | s) which is easy to sample from and has the target distribution π(s) as its equilibrium
distribution, that is, Pi(s) converges to π(s) as i → ∞ where Pi(s) is the probability of s
after i state changes.

The Gibbs sampling is an example of MCMC methods and generates a state s by
sampling each component (a variable or a subset of variables in s) from a conditional
distribution given the current values of the other variables. A Gibbs sampling for p(x | f, α)
is naively constructed with N components xi (1 ≤ i ≤ N) if a conditional distribution
p(xi | x−i, f, α) is computable, where x−i≡x\{xi}. Fortunately, a conditional probability
p(xi=v | x−i, f, α) is easily computed as follows:

p(xi=v | x−i, f, α) ∝ f({xi=v, x−i})
αkiv + σjiv(x−i)∑Ni
v′=1 αkiv + σjiv(x−i)

,

where xi=v denotes xiv=1 and ki is a shorthand of kji . This Gibbs sampling is a kind of a
generalization of collapsed Gibbs sampling for LDA (latent Dirichlet allocation) (Griffiths
et al. (2004)), however, actually this naive Gibbs sampling is usually useless since it might
have unreachable states. For instance, suppose x consists of two values x1 and x2, and f(x)
takes 1 if v1 = v2 and 0 otherwise. Then, p(x1 = v | x2, f, α) equals to 1 if v = v2 and 0
otherwise. So, in this case, a state change never happens.

A solution for the above problem is switching the target distribution from p(x | f, α)
to p(x, θ | f, α) and constructing a Gibbs sampling with two components x and θ. So, we
alternately take samples of x and θ from the following conditional distributions:

p(θ | x, f, α) = p(θ | x, α) p(x | θ, f, α) = p(x | f, θ).

A posterior distribution p(θ | x, α) is a product of Dirichlet distributions as shown in 2.2,
and a sampling algorithm from Dirichlet distributions has proposed (Gentle (2003)).

On the other hand, the conditional probability distribution p(x | f, θ) seems difficult to
sample from since its computation generally requires exponential time. However, Ishihata
et al. (2010) proposed an efficient algorithm for computing p(x | f, θ) via its PBPM p(b | f, θ)
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in a dynamic programming manner on a binary decision diagram (BDD) for f . In the same
manner, we can efficiently take a sample of b using the BDD and also x by decoding the
sampled b to x. The detail of the sampling algorithm for p(b | f, θ) on the BDD is described
in the following section.

3.2. BDD-based sampling from p(b | f, θ)

We here propose an efficient sampling algorithm from p(b | f, θ) using a BDD for f .
First, we introduce a totally-order over b and use bi to denote the i-th ordered variable.

Then, a conditional probability p(b=v | f, θ) (v={vi}|b|i=1, vi∈{0, 1}) can be factorized into
the following product:

p(b=v | f, θ) =

|b|∏
i=1

p

(
bi=vi | f ∧

i−1∧
i′=1

bi′=vi′ , θ

)

Thus, we can sample from p(b | f, θ) if each p(bi=vi | f ∧
∧i−1
i′=1 bi′=vi′ , θ) is computable. To

compute these conditional probabilities efficiently, we introduce a binary decision diagram
(BDD) for f . A BDD (Akers (1978)) is a directed acyclic graph which compactly represents
a boolean function. BDDs consist of two types of nodes, one is variable nodes and the other
is terminal nodes. A variable node n is labeled by a boolean variable and has exactly two
outgoing edges called 1-edge and 0-edge. We use bn to denote n’s label, and then n’s u-edge
(u∈{0, 1}) represents bn’s assignment being u. So, a path in a BDD represents assignments
for variables in the path. BDDs must have two terminal nodes, the 1-terminal t1 and the
0-terminal t0. A path from the root node to tu (u ∈ {0, 1}) in a BDD for f corresponds to a
(partial) assignment for b such that f(b)=u. The main idea of BDDs is based on recursive
Shannon expansion. Let fi be a boolean function of bi, . . . , b|b|. Then, fi can be factorized
by bi as follows:

fi = (bi ∧ fi|bi=1) ∨ (¬bi ∧ fi|bi=0),

where fi|bi=1 (resp. fi|bi=0) is a positive (resp. negative) Shannon cofactor which is fi with
bi set to 1 (resp. 0). So, fi|bi=vi (vi ∈ {0, 1}) is a boolean function of bi+1, . . . , b|b| and it
can also be factorized by bi+1 into two Shannon cofactors consisting of bi+2, . . . , b|b|. If
BDDs for fi|bi=1 and fi|bi=0 are constructed, a BDD for fi can be easily constructed by
introducing a new root node labeled by bi and its u-edge (u∈ {0, 1}) pointing a BDD for
fi|bn=u. Consequently, a BDD for f can be constructed by applying Shannon expansion by
bi (i = 1, . . . , |b|), recursively. Actually, an efficient algorithm for constructing BDDs has
proposed (Bryant (1986)).

Let fn be a function represented by a sub-BDD of which root node is n. Then, its
backward probability B[n]≡p(fn | θ) can be computed recursively as follows:

B[t1] ≡ 1, B[t0] ≡ 0, B[n] =
∑

u∈{0,1}

p(bn=u | θ)B[nu],

where nu is n’s child node pointed by its u-edge. Since p(bn=u | θ)B[nu] corresponds to a
joint probability p(bn=u, fn | θ), a conditional probability p(bn=u | fn, θ) can be computed
as p(bn=u | θ)B[nu]/B[n]. Consequently, we can take a sample from p(b | f, θ) in a dynamic
programming manner on a BDD for f as follows:
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1. Construct a BDD for f .

2. Compute backward probabilities of nodes in the BDD.

3. Set n to the root node of the BDD.

4. Sample u ∈ {0, 1} as the value of bn with probability p(bn=u | θ)B[nu]/B[n].

5. Update n to nu and repeat 4 until n reaches the 1-terminal.

The time and space complexity of the above sampling is proportional to the BDD size.
The BDD size strongly depends on the boolean function f and the totally-order over b.
Unfortunately, in the worst case, the BDD size is exponential in |b|. However, Bryant
(1986) showed many useful functions can be represented as BDDs with polynomial size.
Furthermore, Ishihata et al. (2010) showed that the size of BDDs for HMMs (hidden Markov
models) and the time complexity of an EM algorithm working on the BDDs are the same
as the Baum-Weltch algorithm which is an EM algorithm specialized for HMMs.

4. Component-wise Metropolis-Hastings Sampling for PBPMs

Since the Gibbs sampling described in Section 3 takes sample of x and θ even though
what we would like to get is only samples of x, the method is expected to be slower in
convergence than direct sampling methods from p(x | f, α). In this section, we propose a
sampling method directly from p(x | f, α) based on the Metropolis-Hasting (M-H) sampling.
This sampling is a kind of application of a component-wise M-H sampling for PCFGs
proposed by Johnson and Griffiths (2007) to PBPMs. The M-H sampling is an MCMC
method for sampling from a target distribution π(s) and constructs a Markov chain using
a proposal distribution Q(s̃ | s) which is easy to sample from. It takes a sample s̃ from
Q(s̃ | s) as a candidate of the next state, where s is the previous state, and accepts s̃ with
probability A(s̃, s) defined as

A(s̃, s) ≡ min{1, R(s̃, s)}, R(s̃, s) ≡ π(s̃)Q(s | s̃)
π(s)Q(s̃ | s)

.

If s̃ is rejected, a state change does not happen. The M-H sampling for p(x | f, α) is easily
constructed by employing p(x | f, θ̂) as a proposal distribution, where we call θ̂ a production
probability. In this M-H sampling, we take a candidate x̃ from p(x | f, θ̂) in the same way
as Section 3 and accept x̃ with probability A(x̃, x) computed by the following R(x̃, x):

R(x̃, x) =
p(x̃ | f, α)p(x | f, θ̂)
p(x | f, α)p(x̃ | f, θ̂)

=
p(x̃ | α)p(x | θ̂)
p(x | α)p(x̃ | θ̂)

.

The point here is that computing the marginal likelihood p(f | α), which is intractable
but required to compute the target distribution p(x | f, α), is not required in the above
computation. By substituting Equation (1) and (2), we have

R(x̃, x) =
∏
j=1

Z
(
αkjv + σjv(x̃)

)
Z
(
αkjv + σjv(x)

) Mj∏
v=1

θ̂
σjv(x)
jv

θ̂
σjv(x̃)
jv

=
∏

j,v : σjv(x−x̃) 6=0

Γ
(
αkjv + σjv(x̃)

)
Γ
(
αkjv + σjv(x)

) θ̂σjv(x−x̃)jv .
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The problem remained here is how to decide a production probability θ̂ of the proposal
distribution p(x | f, θ̂). If we choose θ̂ randomly from the posterior distribution p(θ | x, α)
given the current sample x, this M-H sampling is most of same as the Gibbs sampling
described in Section 3 but expected to be slower since rejections only happen in the M-H
sampling.

To realize sampling with lower rejection, we here extend the above naive M-H sampling
to a component-wise M-H sampling. We divide x into T components x(1), . . . , x(T ) (x(t)⊆x,
1≤ t≤T ) and assume that a function f(x) can be factorized as a product of T sub-functions
f (t)(x(t)). Then, a base model p(f, x | θ) is also factorized as a product of T base models
p(f (t), x(t) | θ) with the common parameter θ such as i.i.d. observations. If a conditional
distribution p(x(t) | x(−t), f (t), α) were easily computable such as p(xi | x−i, f, α), we could
construct a component-wise Gibbs sampling, where x(−t) = x\x(t). Unfortunately, p(x(t) |
x(−t), f (t), α) is intractable since the number of possible x(t) is generally exponential in |x(t)|.
However, as with the above M-H sampling for p(x | f, α), we can take a sample directly from
p(x(t) | x(−t), f (t), α) by an M-H sampling with a proposal distribution p(x(t) | f (t), θ̂). To
close the proposal distribution p(x(t) | f (t), θ̂) to the target distribution p(x(t) | x(−t), f (t), α),
we set θ̂ to E[θ]p(θ|x(−t),α) which is the mean of the posterior distribution p(θ | x(−t), α) given

x(−t) computed as follows:

θ̂jv =
αkiv + σjiv(x

(−t))∑Ni
v′=1 αkiv + σjiv(x

(−t))
.

So, the component-wise M-H sampling is constructed as follows:

1. Sample t from {1, . . . , T} uniformly.

2. Set θ̂ to E[θ]p(θ|x(t),α).

3. Sample a candidate x̂(t) from the proposal distribution p(x(t) | f (t), θ̂).
4. Accept x̂(t) as new sample of x(t) with probability A(x̂(t), x(t)) defined by the following
R(x̃(t), x(t)):

R(x̃(t), x(t)) ≡
∏

j,v : σjv(x(t)−x̃(t))6=0

Γ
(
αkjv + σjv(x

(−t)) + σjv(x̃)
)

Γ
(
αkjv + σjv(x(−t)) + σjv(x)

)θσjv(x(t)−x̃(t))jv .

This component-wise M-H sampling is expected to converge faster than the Gibbs sam-
pling in Section 3 since it updates the production probability θ̂ after each component sam-
pled whereas the Gibbs sampling samples θ after all components sampled.

5. Experiments

5.1. LDA as statistical abduction

To show statistical abduction and our MCMC methods are general, we here formulate
LDA (latent Dirichlet allocation) which is a well-known generative model for bag-of-words
(Blei et al. (2003)) as statistical abduction on a PBPM, and apply them for finding topics
on the LDA model.
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Figure 2: Graphical representations of LDA. The left one is of the original LDA and the
right one is of a PBPM representing LDA.

Suppose we have D documents and their vocabulary consists of V words. LDA assumes
that each document has a topic distribution and each topic has a word distribution. We use
wdl and zdl to denote the l-th word of the d-th document and its hidden topic, respectively.
Then, LDA defines a joint distribution of wdl and zdl as follows:

p(wdl, zdl | θ, φ)≡p(wdl | zdl, φ)p(zdl|θ), p(zdl=k | θ)≡θdk, p(wdl=v | zdl=k, φ)≡φkv,

where θd ≡ {θdk}Kk=1 and φk ≡ {φkv}Vv=1 are parameters of the topic distribution of the
d-th document and the word distribution of the k-th topic, respectively. In addition, LDA
assumes parameters θd and φk are generated from Dirichlet distributions with parameters
α and β, respectively. The graphical representation of LDA is shown at the left in Fig. 2.

Given a bag-of-words w≡{wdl | 1≤d≤D, 1≤ l≤Ld} and parameters α and β, our task
is to infer the most probable topic zdl corresponding to each word wdl. Now, we introduce
new discrete random variables wdlk with probability p(wdlk=v | φ) ≡ φkv corresponding to
the conditional probability p(wdl=v | zdl=k, φ). Then, a probabilistic event fw representing
that “a bag-of-words w is observed” is described as the following boolean formula:

fw=

D∧
d=1

Ld∧
l=1

“wdl=vdl”, “wdl=vdl”≡
K∨
k=1

“zdl=k” ∧ “wdlk=vdl”,

where vdl is the word ID corresponding to the observed wdl in w. As shown in 2.1, probabilis-
tic events “zdl=k” and “wdlk=v” can be represented as boolean formulas in independent
boolean random variables zdlk and wdlkv, respectively. So, an LDA model can be described
as a PBPM of which graphical representation is at the right in Fig. 2, and finding the most
probable topics on LDA models is formulated as statistical abduction on PBPMs.

We generated a small dataset by the same way as Griffiths et al. (2004). The dataset
consisted of 1,000 documents and the vocabulary was 25 words. Each document can be
represented as a 5 × 5 grid image, where the intensity of the i-th pixel corresponds to
the count of the i-th word in the document. The documents were generated by sampling
words from 10 topics corresponding to horizontal and vertical lines as shown in Fig. 3. A
word distribution of a topic was a uniform distribution over its line, and topic distributions
of documents were sampled from a Dirichlet distribution with α = 1. Every document
contained 100 words and their subset is shown in Fig. 3.

We applied the Gibbs sampling (GS) proposed in Section 3 and the component-wise M-H
sampling (CMHS) proposed in Section 4 to this dataset, together with the collapsed Gibbs
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Figure 5: Obtained topics

sampling (CGS) for LDA (Griffiths et al. (2004)). In CMHS, we divided a boolean function
fw into 100,000 components “wdl=vdl” corresponding to one word in the dataset. Fig. 4
shows a BDD for “wdl=v” with K = 5 and the BDD size is proportional to K. So, we can
sample a topic zdl corresponding to word wdl in O(K) time. We defined one step of CMHS
as sampling 100,000 topics since GS and CGS sample 100,000 topics in a step. We ran each
sampling method 100 steps and repeated 100 times. The results of these computations are
shown in Fig. 5 and 6, and they show estimated topic distribution and convergence of log
likelihood of each method, respectively. In the results, θd and φk are estimated by the mean
of their posterior distributions given the set of samples. The results show all three methods
are able to recover the underlying topics, and CMHS quickly stabilizes than GS. However,
CMHS is slower than CGS since CMHS sometimes rejects candidates.
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Figure 6: Convergence of log likelihoods
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5.2. Diagnosis for failure in logic circuits as statistical abduction

To compare the performance of Bayesian inference and MLE (most likelihood estima-
tion), we here applied our method to a stochastic error finding problem, together with a
method which performs MLE.

Poole (1993) formulated a stochastic error finding problem in logic circuits as statistical
abduction. In the formulation, an error gate is stochastically stuck at 0 or 1, and the task
is to predict where error gates are in a target logic circuit given its structure (knowledge
base) and pairs of input and output values (observations). We here use PRISM (Sato and
Kameya (2001)), which is a Prolog-based probabilistic modeling language for statistical
abduction, to describe a structure of the target logic circuit and derive boolean formulas of
the observations.

We first introduce two predicates type(G,T ) and conn(P,Q) to describe a structure
of the target circuit, where type(G,T ) defines the type of a gate G as T , and conn(P,Q)
represents that two ports P and Q are connected. For instance, a logic circuit c representing
a boolean function (b1 ∧ b2) ∨ b3 is described as the following PRISM programs:

type(g1, and). type(g2, or).

conn(in(c, 1), in(g1, 1)). conn(in(c, 2), in(g1, 2)). conn(in(c, 3), in(g2, 1)).

conn(out(g1), in(g2, 2)). conn(out(g2), out(c)).

where in(G,N) and out(G) denote the N -th input port and the output port of G, respec-
tively. We next introduce a predicate val(P, V ) to represent the value of a port P being V .
Then, the function of a gate G is described as the following PRISM programs:

func(G,V ) :−type(G,T ), (T =or, or(G,V ) ; T =and, and(G,V )).

or(G,V ) :−(val(in(G, 1), 1), V =1

; val(in(G, 2), 1), V =1

; val(in(G, 1), 0), val(in(G, 2), 0), V =0).

and(G,V ) :−(val(in(G, 1), 0), V =0

; val(in(G, 2), 0), V =0

; val(in(G, 1), 1), val(in(G, 2), 1), V =1).

In this problem setting, some gates might be error and error gates are stochastically stuck
at 0 or 1. To handle such uncertainty, PRISM has a particular predicate msw(S, V ) which
represents a probabilistic switch S taking a value V . We now introduce a probabilistic switch
st(G) corresponding to the state of a gate G and takes one of three values {ok, stk0, stk1}.
Using st(G), a predicate val(P, V ) is defined as follows:

val(Q,V ) :− conn(P,Q), val(P, V ).

val(out(G), V ) :− msw(st(G), S),

( S=ok, func(G,V )

; S=stk0, V =0

; S=stk1, V =1).
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The above PRISM programs can derive boolean formulas of observations in msw(st(G), V ),
where an observation is a pair of input and output values of the target circuit. For instance,
suppose we set (0, 0, 0) to the inputs of the target circuit c and observed its output being
1. Then, PRISM derives a boolean formula msw(st(g1), stk1) ∨msw(st(g2), stk1) as the
explanation of the observation.

Given the boolean formulas of observations, we would like to predict which gate is
an error. In this paper, we additionally assume that non-deterministic knowledge such
as “or gates tend to be stuck at 1” and “and gates tend to be stuck at 0” are given as
prior knowledge. Such non-deterministic knowledge seems difficult to describe by logic,
however, it can be reflected in the model as prior distributions by introducing Bayesian
inference for statistical abduction. PRISM has a built-in method for performing Bayesian
inference, however, it assumes that disjuncts in explanations are probabilistically exclusive.
Unfortunately, the explanations derived by the above PRISM programs does not necessarily
satisfy the assumption. So, in this paper, we use our MCMC method instead of PRISM
built-in method to perform Bayesian inference for this problem.

In this experiment, we applied our CMHS to predicting errors in a 3-bit adder circuit,
together with the BO-EM algorithm (Ishihata et al. (2010)) which is an EM algorithm
based on BDDs, and compared their predicting accuracy. (Actually, we also applied GS
but omit the result since it was almost same as CMHS.) A 3-bit adder consists of 12 gates
g1, . . . , g12 (5 and, 5 xor and 2 or gates). We use θi1, θi2 and θi3 to denote the probability
of st(gi) taking ok, stk0 and stk1, respectively. So θi = {θiv}3v=1 defines the distribution of
st(gi). We randomly generated 1,000 3-bit adders with mixing error gates with probability
0.1, where the distribution of each gi was defined as

• If gi is not an error gate, (θi1, θi2, θi3) = (1, 0, 0),

• If gi is an error xor/or gate, (θi1, θi2, θi3) = (0, 0.1, 0.9),

• If gi is an error and gate, (θi1, θi2, θi3) = (0, 0.9, 0.1),

and sampled N (N = 20, 40, 60, 80, 100) input and output pairs from each circuit. So,
the average distribution of xor/or gates and that of and gates were (0.9, 0.01, 0.09) and
(0.9, 0.09, 0.01), respectively. To reflect these knowledge to statistical abduction, we in-
troduced two Dirichlet distribution with parameters (α11, α12, α13) = (0.9, 0.01, 0.09) and
(α21, α22, α23) = (0.9, 0.09, 0.01), and assumed xor/or gates were generated from the first
one and and gates were from the second one. Given these prior distributions and boolean
formulas of observations derived by the above PRISM programs, we estimated each θi us-
ing a single sample taken after 100 iterations of CMHS. Using the estimated parameter
θi, we predicted gi as error if θi1 was smaller than the threshold decided to maximize the
F-measure for the test set with N =20. The left side in Fig. 7 depicts the precision, recall
and F-measure of BO-EM as function of the number of observations N , and the left one de-
picts those of CMHS. The results shows CMHS achieved better F-measures than BO-EM in
every N and also shows that introducing non-deterministic knowledge as prior distributions
is efficient in prediction of stochastic error in logic circuit.
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Figure 7: Predicting accuracy of BO-EM (left) and CMHS (right)

6. Related work and Future work

Johnson and Griffiths (2007) proposed a component-wise Metropolis-Hastings algorithm
for PCFGs (probabilistic context free grammars), and recently Sato (2011) generalized
the method for a logic-based probabilistic modeling language PRISM (Sato and Kameya
(2001)). Our method is an application of their methods to PBPMs, however, it differs a
great deal in that it has no restriction on formulas whereas PRISM assumes disjuncts in
formulas are probabilistically exclusive.

ProbLog (De Raedt et al. (2007)) is a recent probabilistic extension of Prolog and
employs a BDD-based probability learning method called CoPrEM algorithm (Gutmann
et al. (2010)). However, to the best of our knowledge, Bayesian inference for ProbLog has
not been proposed yet. It would be interesting to apply our methods for Bayesian inference
on ProbLog.

More recently, a couple of new statistical abduction frameworks have been proposed.
Raghavan and Mooney (2011) proposed BALPs (Bayesian abductive logic programs) which
integrates BLPs (Bayesian logic programs) (Kersting and De Raedt (2001)) and abduction,
and Singla and Mooney (2011) combined abductive inference and MLNs (Markov logic
networks) (Richardson and Domingos (2006)). BLPs and MLNs are similar in that they can
be considered as templates for constructing graphical models, the former defines Bayesian
networks and the latter Markov random fields. The difference of those methods and our
methods is that BALPs employ EM learning and a general learning method for abductive
Markov logic has not been proposed yet.

Variational Bayes (VB) inference is another approximation method for performing
Bayesian inference, and the VB-EM algorithm (Beal and Ghahramani (2003)) is known
as an EM like iterative computation for VB inference. Ishihata et al. (2011) generalized the
BO-EM algorithm (Ishihata et al. (2010)), which is an EM algorithm working on BDDs, to
the VB-EM algorithm and applied it to statistical abduction. Comparing the performance
of their method with that of our MCMC methods is a future work.

Inoue et al. (2009) and Synnaeve et al. (2011) applied the BO-EM algorithm to evalu-
ating abductive hypotheses about metabolic pathway. Replacing BO-EM with our method
enables us to perform Bayesian inference for their problem and allows us to introduce non-
deterministic knowledge such as preference and/or frequency of chemical reactions.
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7. Conclusion

We proposed two MCMC methods for performing Bayesian inference for statistical ab-
duction. As a component of those algorithms, we derived an efficient sampling algorithm
based on dynamic programming on BDDs. To demonstrate the framework of statistical ab-
duction and our methods are general, we described LDA which is a well-known generative
model for bag-of-words as statistical abduction and applied our methods to it. Then, we
used our methods to predict stochastic errors in logic circuit and showed their performances
are better than the method based on maximum likelihood estimation.
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