Supplementary Material

1. Summary of Notation

e
1

Figure 1. The graphical model representation of the ARHMM-MIL model

Symbol Size Description

Variables

Y Scalar The label of bag b

It Scalar tth instance label in bag b

I, 1x (T, —p) All the instance labels in bag b

X! dx1 The tth observation in bag b

Xy dx T, All the observations in bag b

Xl(f*p ):(t=1) dxp p observations prior to the ¢th observation in bag b
VAL Scalar Cluster membership of instance ¢ in bag b

Model Parameters

w Scalar Parameter of the softmax function

B Kx1 Dirichlet prior parameter for the cluster membership
™ Kx1 Probability for initial cluster assignment

M Kx K Transition matrix, M;; = P(Z = j|Z}~' =i, M)
Ay dx1 Intercept term of the kth AR cluster

Ay dxd Coefficient of the jth order of the kth AR cluster
pI7R dxd Covariance matrix of the kth AR cluster

¢ 2x1 Beta prior for each cluster

0 Scalar The Bernoulli parameter for the kth cluster
Dimensions

B Number of bags

T Length of time series in bag b

K Number of mixture components

D Order of each auto-regressive process

d Time series dimension

Table 1. A summary of the notation used.



Efficient Multi-Instance Learning for Activity Recognition from Time Series Data With ARHMM

2. E-step Derivation

The complete-data log-likelihood is as follows:

B
= "log P(Zy, 1y, X4, Y;|©)
b=1

B
= Z {log P(Yp|Iy, w) + log P(1y|Zy, 0) + log P(Zy|M, 7) + log P(X,|Zs, A, 2)]

b=1
B Ty Ty
=> {logP Yollp,w) + Y log P(I}|Zf,0) +log P(ZY ™ |m) + > log P(Z4|Z{ ", M)
b=1 t=p+1 t=p+2
Ty
+ ) log P(XEIXY Y 72t A, z)] (1)
t=p+1

In order to form the auxiliary function Q(©, ®’), we take the expected value of the complete data log-likelihood under the
distribution P(Z,I|X,Y, ©®).

Q(0,0) = Epiz1x,v,0) [Z Z]I(Ib =1) <Yb log P(Y, = 1|T,w) + (1 — Y3) log P(Y, = OIb,w))
b=1 1
B Ty 1 K
300 DD Wz =1 = log P(T, = 1] 2] = j,6)
b=1t=p+1 =0 j=1

1 K
2D D> Eraixye) [H(sz = j. Iy =) log P(L, = 1| Z; ZJ,B)}

B K
30 Brmav.on |17 = os P2 = i)
b=1 j=1
B Ty K K
+> > > Erazuxye) [H%J,Zt = i)log P(2Z} = j|ZL " ‘,M)}
b=1t=p+2 j=1 i=1

B K
. —p):(t—1 .
+> 3 > Ergixy.en [H(Zéy)logP(XiIXff P)i(t ),Z}fj,A,E)]
b=1 t=p+1 j=1
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T P(ZP = j|Xy, Y, ©") log P(ZPT = j|m)

+
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2.1. Message passing for a generalized version of a chain model

Figure 2. A simplified graphical model by representing the (N, Z) variables pair as a supernode S.

2

Before we apply the message passing to the proposed model, we convert the (N, Z) variables pair to a supernode S to
introduce the message-passing algorithm on the simplified graphical model in Fig. 2. To simplify further derivations, we

omit the conditioning on the parameter set ©’.

In this approach we consider the following steps:

e A first pass in which a forward message is computed while traversing the graphical model from left to right; specif-

t

ically, the forward message is initialized at ¢+ = p + 1 by computing a(p + 1) = P(X,*™' S = ¢

t=p+2,...,T; is computed recursively using

aj(t) = P(Xp", S5 = q)
=Y PXN ST = p)P(SE = alSy T = p) P(XGX, T S = g)

p
= ab(t—1)P(S{ = qlS; " =p)P(X}X} ", ) = q).
p

) and for

e A second pass in which a backward message is computed while traversing the graphical model from right to left; the
backward message is initialized at t = T}, by setting 5 (T},) = P(Y1,|X;‘Tb, SbT’“ =q¢)andfort=T,—-1,...,p+1

is computed recursively by

55“) — P(YE,, )(Zﬁlepr(ll):t7 Sg _ q)

=Y P(SiT =r|S) = q) P(XJH X!, ST =) P(V, XX St =)

=3 P(SEH = r[S) = @) P(XLT XYY, S = 1Byt + 1)

e Finally the messages are used to form the pairwise probability for (S, Sg_l) conditioned on the observed nodes
X}, ..., X! and ;. The E-step calculation of the proposed model necessitates the probability of the form P (S} =

q, S;fl = r|X,, Ys) given by

_ g1 _
p(qu,sz—lrxb,Yb)ngé(‘f’sb st
PSI):anb_ :’I’,Xb,Yb
q T

3)
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We focus on the joint distribution in the numerator of (3) since the denominator can be computed by marginalizing
out S} and Sifl in the joint distribution. The numerator of (3) can be written in term of the forward message, the
backward message, the state transition probability, and the observation model probability as

P(Slf =q, Sli_l =T, va%)
= P(Y;, X§UTXEY, S = q)P(S] = alS{7 = 1) POXYX; ) 8 = q) POXYL 817 =)
= B(P(Sh = qlS{ = 1) PXYX, 8 = q)af(t — 1) @

This approach provides the framework for computing the E-step probability terms after expanding the node S to (N}, Z)
as follows.

2.2. Message passing for the chain based on (N}, Z})

In this section, we provide more detailed intermediate steps for the forward/backward message passing based on (N}, Z}).
Recall that we use a simplified graphical model to represent the structure with in a single bag as in Fig. 3. We use the ¢
and r to compactly denote ¢ = (qn,qz) andr = (ry,rz) fort =p+1,--- ,Ty.

e

ORGRORCA

Figure 3. A graphical model representing a bag in Fig. 1 with the instance label I replaced by a counting variable N.

@@@
&

)

® @

2.2.1. FORWARD MESSAGE

We assume the first p observations Xy, ..., X, follow a joint distribution P(X;:p ) that is independent of any proposed
model parameters. The forward message starts with ¢ = p + 1, so it is clear that N} = Iy *1. Hence, the forward
message at t = p + 1 is initialized by

afv 17 (p+ 1) = P(X, "N = gn, 20T = q2)
= PP NP = g, 207 = g2 |XLP)P(XL?)
= PXPX, P 20 = an) PINPT = gl 20 = a2) P(Z0 = a2) P(X, ")

— P(XPH\X“’ Zp+1 )P(If“ _ qN|le:+l _ QZ)P(Z{,)-H _ qz)P(le,:p)

= A7 (p+1)(0g,)" (1 - ﬁqz)“*q”)ﬂqu(xi’p) (5)
for v € {0,1} and gz € {1,..., K}, where A (p + 1) = P(XP X7, 20" = qz), 7y, = P(Z = qz) and
04, = P(Ii’Jrl = 1|Zerl = qz). Then, the forward message is recursively computed for ¢ = p + 2, ..., T} using

a1 (t) = P(X,", Ny = an, Zy = qz)
= P(X,IX" 71 2 = az) P(Ny = av, Zy = 4z, %,

PXYXy N 2 =q2)) Y P(Nf =qn, Z} = qz, N7 =rn, 20 =1z, X))

TN Tz

= P(Xi‘Xi:t_l,Zi = QZ) ZZP(NLI: = QN‘ZE = qZ,Ng_l = TN)
T Tz

. P(Zé — QZ\ZE_l — TZ)P(Xll):t—17NZ;E—1 — TN7Z£_1 _ TZ)
= P(X}Xp" " 2 =q2) Y Y P(N = an|Z = qz, NJ ' =)

TN Tz
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-P(Zf = qZ\ZI’;_l =rz)aV "7 (t— 1)

= Al (¢t Z Z( (gv =rn)(1—04,) +I(gn =N + 1)0qz>Mrzﬁqza2N’TZ (t—1) (6)

Tz TN

where M,

rz,4z

= P(Zt = qz|1 2 = rz), AJ? (t) = P(X}|X, 'Y, ZE = qz) and 0, = P(I} = 1|Z} = qz).

2.2.2. BACKWARD MESSAGE

The backward message is initialized at t = T}, with
BT (L) = P Xy ™, 2" = 4z, N,* = an) = P(Y|N," = qn) (7)

forall gz € {1,..., K}, where P(Y},|NbT ® = gqn) is computed using the positive bag probability (29). Then, the backward
message is recursively computed fort =75, — 1,...,p + 1 using

Blt)lN#IZ (t) — P(}/IHXZ-FI:TE,‘XI%HS’N; — QN7Z;§ — qz)
— ZZP(}/I),X2+1:T17’N£+1 _ ’I“N,Zz-i_l _ 7"Z|X[%:t7sz = qn, Zé _ QZ)
TN Tz

=S N PN =y |2 = rg, NE = an)P(ZET = 4] ZE = az)

TN Tz

P(X§,+1|Xll,:t7 ZI2;+1 — TZ)P(Y—INXZJrZTb‘X;:H»l’N£+1 =ry, Z£+1 _ Tz)
=Y Y PN =rn|Z =g, N = qn)P(Z)T = 12| Z] = qz)

TN Tz

P(XEXE 2 = r ) BN "2 (E+1)
— Z P(ZITY = rg|Z} = qz) P(XET XL, ZE = ry)

Tz

PO = a2 = N = ) (1)

Z 9z, rz A t+1)Z<H(TN ZQN)(1_9T2)+]I(TN ZQN+1)9T2> TN’TZ(t"'l)

TN

where M, ,, = P(Z[T' =rz|Zt = qz), A} (t+1) = P(X[THXEE ZIT = ry)and 0,, = P(IT = 1|12} = ry)
(as previously defined).

2.2.3. EXPANDING THE PAIRWISE STATE PROBABILITY

We expand (4) by changing S} to the pair (N}, Z}) where we can compute the pairwise state probability P(N} = qn, Z} =
qz, N;_l =rN, Z,f_l =rz,Xys,Y),) using

P(N} =qn,Zt = qz, N\ =rn, ZL 7 =17, X3, Y3)
= P(Yy, Xy X Ny = an, Zy = az) PN = av. Z) = qzINy ' =1, 2y =1z)
POKHNG = 4,24 = 5, X PR, N~ = 1y, 274 = 1)
= BV OPING = ax 2 = 02N = v 27 = e) PORHNG = a7 = a5, X (0 1)

= B (OP(N] = aw|Z} = 4z, N{™" = rw) P(Z4 = 47127 = rz) P(X}| 24 = a7, X a7 (1 = 1)
= B (WP = ax = TvIZ) = a2)P(Z = 2|24 = r2) P(X4 24 = a2, X3 a2 (6 = 1)
(IN qz (t)9 (ZqN:rN+1)(1 _ 9q )]I(QN—TN)M7Z7(IZA(IZ( ) rN,TZ (t _ 1). (8)

where M, = P(Z} = qz|1Z " = rz), AJ? (t) = P(X}|X, 1, Z} = qz) and 0, = P(I} = 1|Z} = qz).

rz,97
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3. M-Step Derivation

In this section, we derive the equations for the M-step for all the parameters of the ARHMM-MIL model. Under the
maximum-a-posterior(MAP) framework, the objective function for the M-step is

Q(©,0) +log P(O)

B

b=1 1

1
S P =1, 2 = j|Xs, Y5, ©) log P(I}, = 1| Z} = 5,0) + log P(0;|¢)
+1 (=0

+

M=
M=
%'Mﬁ

<.
I
—
o
Il
—

t

P2 = %0, Y5, ©)log P(Z} " = i) +log P(r;|9)

n
M
M=

<
Il
Jan
S
Il
—

T
> P(Zi=34,Z" =ilX,,Y;,0) log P(Z} = j|Z{" = i,M) + log P(M;|B)

t=p+2

<.
Il
-
-
Il
-

_|_
M=
M=

S iMm

P(Z} = j|Xs, Y3, ©') log P(X4|XS 0D 2 = j A, %) ©)
1

M=
M=
(]

+

<
Il
—
S
Il

1t

+
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In general, each equation in the M-step involves a maximum likelihood estimation problem. We simply take the derivative
of the objective function (9) with respect to each parameter, set the derivative to zero and solve. We can efficiently estimate
the parameter if its closed-form solution exists; otherwise, we apply gradient ascent.

3.1. Update the initial prior 7 of the hidden states Z

In order to update 7, we collect the terms in (9) that involve 7; and also add a Lagrangian multiplier 7 for the constraint
Zle m; = 1. The resulting function is:

K B K

L(mj) = (ZP(Zg’“ = j|Xp, Y5, ©) logm; + (B; — 1) log m) +n(d - 1) (10)

j=1 Nb=1 j=1

Taking derivative of L(m;) with respect to 7; and setting to 0 we get

B
> Pz = X, Y, @) + 5 — 1
b=1

+n=0. (11)
7
Setting the derivative to 0 and solving for 7; results in:
B
N P2 = X0, Y5, ©) + B 1
my = =L (12)
Ui
K K
OL(7;
Set () = ij —-1= Owegetij =1.If wesumup (12) over 5 = 1,..., K, we get:
on , ,
j=1 j=1
K K .
— Yy P2 = 1%, Y5, ©) 4+ 8, — 1
D2 m=2
j=1 j=1 n

K B .
1:2 _Zb:1P(Zi])D+1 :J|vava®I)+6j_1
— n
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ZZP (20" = I, Y5, ©') + 55— 1 (13)

j=1b=1

Substitute (13) into (12), we get:

B
ZP (20" = j1Xp, 3, ©) + B — 1

p—— (14)
SN PP =X, Y, ') + By — 1
§'=1b=1
3.2. Update the transition matrix M of the hidden states
K
Since the rows in the hidden state transition matrix sum to 1, we need to include the constraints that Z M;; = 1 for
J=1

1 = 1,... K. Similar to (10), the Lagrangian of Ml] can be formulated by collecting all terms involving M;; in (9) and
1ntr0duc1ng Lagrangian multipliers n; for: =1,..., K:

b
J):ZZ(Z > P(Zy=4,Z" =ilX,,Y;,0) log M;; + (8; — 1) logM”>+Zm ZMW

j=1i=1 \b=1t=p+2
(15)
Taking the derivative of L(M;;) with respect to M;; and setting it equal to O we obtain:
Ty
NN Pz =520 =X, Y5,0) + 8 - 1
b=1t=p+2
i =0
M o
B T
Y P =2 = X%, 00) 45,1
— Mij = s (16)
Un
OL(M;;) <
Set ———= ZM” = 0 we get ZM” =1.If wesumup (16) over j =1,..., K, we get:
O
j=1 j=1
B T
K K 72 Z P(Zézjazlf_l:i|Xb7Yb7®/)+ﬂj71
b=1 t=p+2
> M=) _
j=1 j=1 i
K B T,
I Pz =420 =ilX, Y, 0') + 85— 1
L _d=lb=lt=p2
i
K B T
— ==Y > Y P(Z=527"=iXY,®)+p; -1 (17)
j=1b=1 t=p+2
Substitute (17) into (16), we get the update equation for M;;:
B T
SN PZi=5.2] =ilXp,Y,0) + 8 — 1
b=1 t=p+2
My, = e (18)

D2 D P =727 =X Y, 0) + -1

7'=1b=1t=p+2
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3.3. Update the covariance matrix X; for each AR process

In order to simplify the notation, we denote that &,,; = P(Z} = j|X,,Y;,0’)isa K x K matrix fort = p+1,...,T;.
The objective for estimating 33; can be written as:

1 u e u _ 1
- g(Xi —Ajo— Y AXTR SN - Ao - > ARXTR) - 5 log|X;| (19
k=1 k=1

For convenience, denote e ; = X) — (Ajo + E A; kXt k ).
k=1

K B Ty
= Z Z Z fbt] QTT(IJ’btj E l'l’btj) log ‘Ej|
j=1b=1 t=p+1

1 _ 1
- §T7“(thjubtj/2j N - 5 log |35

Using the fact that S|~ = |X;],

_ 1 _
TT(Hbt]Hbt] pIp N+ 5 log [3; Y

Now, instead of differentiating L(33;) with respect to X, we differentiate with respect to Ej_l. Setting the derivative to 0
and solving, we get:

Z Z fbtj thgﬂbtg 22 Pp— |E 1|E =0
b=1t=p+1 I |
- Z Z gbtj ubt]ubt] + = 2 =0
b=1t=p+1
B T,
— > Gy | g’ — 5| =0
b=1t=p+1
B Ty K B Ty 1 o
33 b =303 3 S,
b=1 t=p+1 i=1 b=1 t=p+1 1=0
B Ty
DD oot
b=1t=p+1
= B =——F (20)
DL D
b=1 t=p+1

3.4. Update the AR coefficients A ;o and A ;.

In (21) below, we collect the terms in (9) that are related to the AR coefficients. Recall that A ;o is a d x 1 vector and A j;,
are matrices of size d X d.

L(AjO,Ajla Ceey Ajp) =
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K Ty P p

1 sy —s
S by [ — i(xg — A= S ALXTYE XY — Ao — > AXLT )] 1)
i s=1 s=1

Setting the derivative of (21) with respect to A o to 0 and solving, we obtain the following:

Z Z Ebm{ (B (XE - Ao - ZAJSX’f s )] —0

b=1t=p+1
:}ZZ&Z)U[ 2 +E ) ]0 ZA]th s:|:
b=1 t=p+1
B Ty p
= 3 Y au(SXE - Ay~ Y ALXTH) =0 (22)
b=1t=p+1 s=1
Analogously, setting the derivative of (21) with respect to A, to 0, we will get the following:
B Ty P
D> Gu(EHXE —Aj— D ALXT)(XT) =0 (23)
b=1 t=p+1 s=1

Reorganizing (22) and (23) will lead to a fully determined system, which is equivalent to the generalized Yule-Walker
equations for solving the AR coefficients. The update rule for the set of AR parameters are listed below.

B T p B Ty
DD bu [AjoJrZAjs(Xi_s)} =) > &uX

b= 1t—p+l b=1 t=p+1

B Ty
Z Z &m[ Jo(XER) +ZAJQ (XE=) (XL~ k)] =303 Gy(XDX;F) fork=1,....,p
b=1 t=p+1 = b=1 t=p+1

3.5. Update the Bernoulli instance positive probability parameter 6

The parameter 6; controls the probability of an instance being positive, and we denote 5ét ;= Pl = 1,z =
J1Xs, Y3, ©). Collecting the terms in (9) related to 6;, we obtain:

=ZZ Z Z% [Hoge +(1—1)log(1 — 6; )} (G~ 1)logb; + (G2 — 1) log(1 — 6)

j=1b=1t=p+1 (=0

[5btj log0; + 58@ log(1 — )} ((1—1)log8; + (¢2 — 1) log(1 — 6;)

K B T

=y [(Z Z Spij +C1 — )1og9j + <Z > o+ G- 1) log(1 —9]»)} (24)
Jj=1 b=1t=p+1 b=1t=p+1

Setting the derivative of £(6;) with respect to §; to 0, we will obtain the following equation

B Ty B T
Zzégtj+C1—1 ZZégtj—i-Cg—l

b=1 t=p+1 b=1t=p+1

0, B 1-6; =0
(Z Z S + 1 — ) (Z Z Sy + G2 — )9j=0
b=1 t=p+1 b=1 t=p+1

B T, B T, B T,
= (Z S ta-1+> > 5,9tj+<21>9jz > S ta-1

b=1t=p+1 b=1t=p+1 b=1t=p+1
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B T
Z Z Sye; +C1— 1

= 0, = b=l i=pil (25)

B Ty B Ty
(Z > 5gtj+cl—1)+<z > 6l?t]-+C2—1)

b=1t=p+1 b=1t=p+1

Denote ¢; as shown in (26),

B T
Z Z Sye; + G — 1

b=1 t=p+1
b =51 (26)
P DR TENCE
b=1 t=p+1
Then the update rules for §; are shown below.
P;
0. = 27
Ay (27)
3.6. Update bag positive probability parameter w
Collecting the terms in (9) that involve the parameter w, we get:
B
(W)=Y Ezixy []I(Ib =1) (Yb log P(Yy = 1|T) + (1 — Y3) log P(Y;, = 0|1b)>]
b=1 I
= Z Z P(I, =1|X1.1,,Y3) (Yb log P(Y, = 1|T) + (1 — Y3) log P(Y; = OIb)> (28)
b=1 I

As we showed in our Dynamic Programming approach, we can transform our model into an equivalent model by in-
troducing count variables N}, ..., NbT ® to represent the counts of positive instances in bag b. Recall that I} € {0,1}.
Consequently, the positive bag probability P(Y}, = 1|I,) can be equivalently computed using the total number of positive
instances in the bag NbTb = 2721 I} as follows:

_ ZtTipH It exp(wl}) NbTb exp(w)

P(Y, = 1|N}*) —
zip+1 exp(wlf) NbTb exp(w)JrTb—prbT”

(29)

In the denominator above, the term 7, — p — N, l:[ ® corresponds to the number of negative instances in the bag (since the
instance labels are predicted starting on ¢ = p + 1). Using this representation and using C to represent the total number of
positive instances in bag b, we can similarly rewrite (28) as:

i)
|

p

M=

Uw) = PN = C|X; ™.V, |[Yy log P(Y, = 1IN = C) + (1 — Y}) log P(Y;, = O|N,/* = C)}

o
I
—

Ja
B O

Z PN = C|X; ™, V,) | Yy log (
1C L
Tb—

I
M=

C'exp(w) T,—p—C
1-Y,)1
Cexp(w)+prC>+( ) Og(Cexp(w)+prC'>

o
Il
I
<

bS]

Il
M=

P(N]* = C|X}™,V}) | Vs log(C exp(w)) — Yy log(Cexp(w) + Ty — p — C) + (1 — Y3) log(Ty, — p — C)

i
I

C=

~ (1= Vi) log(Cexp(w) + Ty~ p = O)

[}
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B Ty—p

= Z Z P(Nl:f” = C|X11;Tb, Yy) [Y}, log(C exp(w)) — Yy log(Cexp(w) + Ty —p — C) + log(Ty, —p — C)
b=1 C=0

—Yylog(Tp, —p—C) —log(Cexp(w) +Tp, —p— C) + Yy log(Cexp(w) + T, —p — C)
B Ty—p

=> > PN =Cx; ", v3) [Yb log(C exp(w)) + log(Ty — p — C) — Yy log(Ty, — p — C)
b=1 C=0

~log(Cexpl) + Ty~ p ~ C)]
B Ty—p

=Y PN, = 1%, V) [Yb log(C exp(w)) — log(Cexp(w) + Ty, — p — C) +log(Tp —p — C)
b=1 C=0

— Yy log(Th —p— C)}

Ignoring the terms that don’t involve w, we get:

Sy}

Z (N = C1X, ™ V) [Yb~w—log (Cexp(w)+Tp—p—0C)

b=1 C=0
B Ty—p B Ty,—p
=> > PN/ =CX)T V)Y w =Y Y PN =CIX, ", Y;) log (Cexp(w) + Ty, —p — C)
b=1 C=0 b=1 C=0
B B Ty—p
=> Yrw—» > P(N/*=CX}", V) log (Cexp(w) + Ty —p — C) (30)
b=1 b=1 C=0

The first-order gradient of the (30) with respect to w is:

B Ty—

¢ C exp(w)

2 Vo= > PN = O Y e
b=1 C=0
b—Pp

hS]

Cexpw)+Tp —p—C

=

B
b=1

=y [ P(N» = CIX; ™, V})P(Y, = 1|N}* = C) G1)
C=0

The second-order gradient of the (30) with respect to w is:
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.. . . . U (word)
Combining Equation 31 and 32, the update rule for w with a newton step iS Wyew = Word — For the efficiency of

l//( )

M-step update, we choose to update the w with only one gradient step per E-M iteration.
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4. Experiment Results
4.1. Running Time Illustration
We demonstrate the running time comparison with/without the dynamic programing speedup with an illustrative example.

The exhaustive enumeration in the E-step has a runtime complexity of O(B(2K)™), where K is the number of clusters and
T is the bag length. In contrast, the dynamic programming approach we proposed runs in polynomial time O(BK?T?).
On Fig. 4 on the left, to keep the running time of exhaustive enumeration under 24 hours, we varied the bag length from 4
to 10 with a total of 20 bags.

6 Running Time Per Iteration With Different Bag Lengths
10°1

Il Dynamic Programming
Il Exhaustive Enumeration

Seconds

Bag Length

Figure 4. Left: The running time comparison between the exhaustive approach and dynamic programming. The black error bars denote
the 95% confidence interval.

The experiment at each bag length is repeated 10 times, and the average running time per E-M iteration is reported. We
make the scale on the y-axis to grow exponentially on Fig. 4, so it is clear to see that the dynamic programming approach
we proposed has made the exact inference by running in quadratic time; by contrast, the exhaustive enumeration is running
in exponential time.



