Proportional allocation

A. Proof of Theorem 2

Without loss of generality, let’s assume that ry,,x is 1. This
can be obtained by dividing all r; 4 by I'ypip. Ty in the pro-
cessed instance is then in fact the ratio of ry,j, and ry,, of
the original instance. Let x7*, and ﬁ denote the value of as-
signments and priority scores at the end of R iterations of Al-
gorithm 2 (before the processing in the last step was done to
handle over-allocated advertisers). And, let x% denote the
feasible assignments obtained after the processing in the last
step of the algorithm. Let weight(M) := 3,  cx T X},
denote the weight of this feasible fractional matching M.

(1 + €)= %. From Lemma 3, we have
that for every a, either Y, .y X7, € [(14€)72C,, (1 +

€)2C,], i.e., the advertiser budget constraint is approxi-
mately satisﬁed; or, we will have that 3, was continuously
increased/decreased by (1 + ¢€) factor for all R iterations, so
that B% is either 1 or (1 + €) =2, Let us call the first set of
advertisers where the budget constraint is approximately sat-
isfied as £€. For these advertisers, |Ca—2ieNa X; o] < 3eC,
for any ¢ < 1. Also, 8% > (1 + ¢)=2%. Among the
second set, let O be the set of advertisers a € A with
B2 = (1+ €)~2R. Here, B, was continuously decreased in
order to decrease the allocation, and these advertisers will be
over-allocated in the end. For the remaining a ¢ £, a ¢ O,
we have 87 =

Now, initially, 3, =

Using the upper bound from (10), and substituting the value
of ,Bf, we have that
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The terms for rest of the advertisers a ¢ O,a ¢ & do not
appear in above because log(1/8%) = log(1) = 0 for those
a.

Next, we relate the above upper bound to the weight and
entropy of the feasible fractional matching M The match-
ing M was created by removing ZleN — C, edges
from {XM} for every over-allocated advertlser a. Therefore,
weight of matching M is at least
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i a i€Ng

> Zrz Xl

723€C - Z(Z Xfa —C,)*t

a€cé a€O iEN,

weight(M) >

Also, M retains all the edges allocated to a € £ within a

(1 + ¢)? factor, so that

weight(M 2 r“““ ' Z C., (16)

Substituting these observations in above upper bound for
OPT,, along with

1
R= 30 (1+ Alog(N)), (17)

(where N = max, ‘g—“‘) we get
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Now, let
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so that the first term in the upper bound of (18) is at most
(14 $)weight(M). Now, we show that the next two terms
approximate Entropy(M) = >, X, log(XM ). Recall

that x

M, i.e., the assignment obtained after adjusting x ., in the
last step of Algorithm 2. This adjustment step ensures that
x;%, > x;,, and for any a with x°, — x;;, > 0, we have
M > Cq
z,a N

N

., 1s the assignment of 7, a in the fractional matchmg

> % Therefore, it is easy to see that
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Then, using | >, , X . — Cq| < 3€C, fora € &, relating
> aceCa to welght(M) as in (16), and substituting the
choice of ¢, we obtain,
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Substituting back in (18),
OPT, < (14 §)weight(M) + AEntropy(M)

Finally, from (17), substituting value of € from (19), we
have the number of iterations

8 (1+ Alog(N))?
Fmin Ad

1 _

Then, the theorem statement is obtained on substituting back

rmin/rmax for I'min-



