
Proportional allocation

A. Proof of Theorem 2
Without loss of generality, let’s assume that rmax is 1. This
can be obtained by dividing all ri,a by rmin. rmin in the pro-
cessed instance is then in fact the ratio of rmin and rmax of
the original instance. Let xRi,a and βRa denote the value of as-
signments and priority scores at the end ofR iterations of Al-
gorithm 2 (before the processing in the last step was done to
handle over-allocated advertisers). And, let xMi,a denote the
feasible assignments obtained after the processing in the last
step of the algorithm. Let weight(M) :=

∑
i,a∈E ri,axMi,a

denote the weight of this feasible fractional matching M .

Now, initially, βa = (1 + ε)−R. From Lemma 3, we have
that for every a, either

∑
i∈Na xRi,a ∈ [(1 + ε)−2Ca, (1 +

ε)2Ca], i.e., the advertiser budget constraint is approxi-
mately satisfied; or, we will have that βa was continuously
increased/decreased by (1 + ε) factor for all R iterations, so
that βRa is either 1 or (1 + ε)−2R. Let us call the first set of
advertisers where the budget constraint is approximately sat-
isfied as E . For these advertisers, |Ca−

∑
i∈Na xi,a| ≤ 3εCa

for any ε ≤ 1. Also, βRa ≥ (1 + ε)−2R. Among the
second set, let O be the set of advertisers a ∈ A with
βRa = (1 + ε)−2R. Here, βa was continuously decreased in
order to decrease the allocation, and these advertisers will be
over-allocated in the end. For the remaining a /∈ E , a /∈ O,
we have βRa = 1.

Using the upper bound from (10), and substituting the value
of βRa , we have that

OPTλ ≤
∑
i,a

ri,axRi,a +
∑
a∈O

2Rελ(Ca −
∑
i∈Na

xRi,a)

+
∑
a∈E

2Rελ(3εCa) + λ
∑
i,a

xRi,a log(1/xRi,a)

The terms for rest of the advertisers a /∈ O, a /∈ E do not
appear in above because log(1/βRa ) = log(1) = 0 for those
a.

Next, we relate the above upper bound to the weight and
entropy of the feasible fractional matching M . The match-
ing M was created by removing

∑
i∈Na xRi,a − Ca edges

from {xRi,a} for every over-allocated advertiser a. Therefore,
weight of matching M is at least

weight(M) ≥
∑
i,a

ri,axRi,a −
∑
a

(
∑
i∈Na

xRi,a − Ca)+

≥
∑
i,a

ri,axRi,a

−
∑
a∈E

3εCa −
∑
a∈O

(
∑
i∈Na

xRi,a − Ca)+

Also, M retains all the edges allocated to a ∈ E within a

(1 + ε)2 factor, so that

weight(M) ≥ rmin

(1 + ε)2

∑
a∈E

Ca (16)

Substituting these observations in above upper bound for
OPTλ, along with

R =
1

2ελ

(
1 + λ log(N̄)

)
, (17)

(where N̄ = maxa
Ca
|Na| ) we get

OPTλ ≤ weight(M)(1 + 3ε(2 + λ log(N̄))
(1 + ε)2

rmin
)

−
∑
a∈O

λ log(N̄)(
∑
i∈Na

xRi,a − Ca)+

+
∑
i,a

λxRi,a log(
1

xRi,a
) (18)

Now, let
ε =

rmin

8(2 + λ log(N̄))
δ, (19)

so that the first term in the upper bound of (18) is at most
(1 + δ

2 )weight(M). Now, we show that the next two terms
approximate Entropy(M) :=

∑
i,a xMi,a log( 1

xMi,a
). Recall

that xMi,a is the assignment of i, a in the fractional matching
M , i.e., the assignment obtained after adjusting xRi,a in the
last step of Algorithm 2. This adjustment step ensures that
xRi,a ≥ xMi,a, and for any a with xRi,a − xMi,a > 0, we have
xMi,a ≥ Ca

|Na| ≥
1
N̄

. Therefore, it is easy to see that

∑
i,a

xRi,a log(
1

xRi,a
)−

∑
i,a

xMi,a log(
1

xMi,a
)

≤ (
∑
i,a

xRi,a − xMi,a) log(N̄)

=
∑
a

(
∑
i

xRi,a − Ca)+ log(N̄).

Then, using |
∑
i,a xRi,a − Ca| ≤ 3εCa for a ∈ E , relating∑

a∈E Ca to weight(M) as in (16), and substituting the
choice of ε, we obtain,∑

i,a

xRi,a log(
1

xRi,a
)−

∑
i,a

xMi,a log(
1

xMi,a
)

≤
∑
a

(
∑
i∈Na

(xRi,a − Ca))+ log(N̄)

≤
∑
a∈O

(
∑
i∈Na

(xRi,a − Ca))+ log(N̄) +
∑
a∈E

3εCa log(N̄)

≤
∑
a∈O

(
∑
i∈Na

xRi,a − Ca)+ log(N̄) +
δ

2λ
weight(M)
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Substituting back in (18),

OPTλ ≤ (1 + δ)weight(M) + λEntropy(M)

Finally, from (17), substituting value of ε from (19), we
have the number of iterations

R =
1

2ελ

(
1 + λ log(N̄)

)
≤ 8

rmin
(1 + λ log(N̄))2

λδ

Then, the theorem statement is obtained on substituting back
rmin/rmax for rmin.


