
Testing Sparsity over Known and Unknown Bases

A. Proof of Theorem 3.2
We begin by defining the discretized sparse point set for ` = O(k/ε4):
Definition A.1 (Discretized sparse vectors).

Ŝp
m

` =

{
x : x ∈

{
0,± 1√

`

}m
, ‖x‖0 = `

}

The intent here is to get the sparse point set Ŝp
m

` distorted on projection, so that it forms an ε-cover of the unit sphere on
the smaller dimension. However, doing so rules out proofs that rely on simple union bound arguments. For instance, on
allowing the projections to become distorted, we run into the risk of lots of points collapsing together into a small fraction of
Sn−1. As a result, the set Φnorm(Ŝp

m

` ) could turn out to be insufficient for forming a cover of the unit sphere. These issues
are avoided by carefully relating the gaussian width of Φnorm(Ŝp

m

` ) to that of Sn−1, followed by a partitioning argument.
The partitioning crucially uses the block structure of elements in Ŝp

m

` , which results in independent and distributionally
identical blocks, allowing us to take union bounds effectively.

Proof. The proof of this Theorem proceeds in steps. We first partition Φ into L blocks of Nn columns each, for some
appropriately chosen N . So, Φ = [φ1 · · ·φL]. Note that φi is a n ×Nn submatrix of Φ ∈ Rn×m. Write φnorm

i (Ŝp`) to

denote φnorm
i (Ŝp

Nn

` ). Also, note that φnorm
i (Ŝp`) is equal to the set obtained by applying Φ to vectors in Ŝp` whose support

is contained in P , where P ⊂ [m] is the set of Nn columns of Φ that are present in φi.

For any such fixed partition φi, we show that the restriction φnorm
i (Ŝp`) has large expected gaussian width (Lemma A.2),

where again, φnorm
i (x) = φi(x)/‖φi(x)‖. Furthermore, using Lemma A.3 we argue that any fixed point on Sn−1 has

distance O(ε1/4) to φi(Ŝp`) with large probability. Now, we use the independence of the φi’s to argue that the probability
of x ∈ Sn−1 being simultaneously far away from all φnorm

i (Ŝp`) is exponentially small. Finally, taking a union bound over
the ε-net of Sn−1 completes the proof.

We fix the parameter N to be N =
√

m
k

(
log m

k

)−1

. Set the number of blocks L = m
Nn = O(ε2

√
m/k) blocks of Nn

coordinates each. By construction, for any fixed i ∈ [L], φi ∼ 1√
n
N(0, 1)n×Nn. The following lemma allows gives us a

lower bound on the gaussian width of each projection:

Lemma A.2. Let φ ∼ 1√
n
N (0, 1)n×Nn. Then for Ŝp` ⊂ SNn−1,

E
φ

[
ω(φnorm(Ŝp`))

]
> (1− 4ε)

√
n (6)

From Lemma A.2, we show the following lower bound on the gaussian width of the projections of Ŝp
Nn−1

` :
Eφi

[
ω(φnorm

i (Ŝp`))
]
> (1− 4ε)

√
n.

Now, we argue that because φnorm
i (Ŝp`) has gaussian width close to

√
n, it in fact covers any fixed point on Sn−1 with high

probability. We begin by stating the following lemma on concentration of minimum distance with respect to large gaussian
width sets.

Lemma A.3. Let T ⊂ Sn−1 be such that ω(T ) >
√
n(1− ε), where n = O

(
k
ε2 log m

k

)
. Let R : Rn 7→ Rn be a uniform

random rotation operator. Then for any x ∈ Sn−1

Pr
R

[
min

y∈R(T )
‖x− y‖2 > 2ε1/4

]
6 exp

(
−O

(k
ε

log
d

k

))
Observe that the distribution of φnorm

i is rotation-invariant; see B.4 for a formal proof. Fixing x ∈ Sn−1, we invoke Lemma
A.3 in our setting:

Pr
φi

[
min

y∈φnorm
i (Ŝp`)

‖y − x‖2 > 16ε
1
4

]
6 exp

(
−O

(k
ε

log
m

k

))
(7)
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Let Pε be an ε-cover of Sn−1 such that |Pε| = O(1/ε)n. Then:

Pr
Φ

[
∃x ∈ Pε : min

y∈Φnorm(Ŝp`)
‖y − x‖2 > 16ε

1
4

]

6 |Pε|Pr
Φ

[
∀ i ∈ [L] min

y∈φnorm
i (Ŝp`)

‖y − x‖2 > 16ε
1
4

]
1
= |Pε|

L∏
i=1

Pr
φi

[
min

y∈φnorm
i (Ŝp`)

‖y − x‖2 > 16ε
1
4

]

= |Pε|

(
Pr
φi

[
min

y∈φnorm
i (Ŝp`)

‖y − x‖2 > 16ε
1
4

])L

6 |Pε| exp
(
−O

(k
ε

log
m

k

))ε2O(
√
m/k)

6 exp
((

log
C ′

ε

)( k
ε2

log
m

k

)
− kε

√
m

k
log

m

k

)
6 exp

(
−O

(
k log

m

k

))

where step 1 uses the independence of the φi’s and the last step uses the fact that ε >
(
k
m

) 1
8

. The above inequality states

that Φnorm(Ŝp`) is an
(
16ε1/4 + ε

)
-cover of Sn−1 with positive probability, which completes the proof.

�

B. Auxiliary Lemmas for the proof of Theorem 3.2
In this section, we prove additional Lemmas used in the proof of Theorem 3.2.

B.1. Proof of Lemma A.2

The proof of the lemma proceeds in two steps: we first restrict to the case where the maximum ‖ · ‖2 length of the projected
vectors is not much larger than the expected value. This is done by using Gordon’s theorem and Lipschitz concentration for
gaussians (see Theorem 2.3 and Corollary 2.5). Following that, we observe that conditioning the expectation by this high
probability event on the length of the projected vectors does not affect the expectation by much (Lemma B.1). The rest of
the proof follows using standard estimates of gaussian widths of Ŝp` (see Lemma B.2).

Upper Bound on the ‖ · ‖2 length: By setting D = Nn in Theorem 2.3, we upper bound the expected maximum ‖ · ‖2
length :

E
φ

[
max
x∈Ŝp`

‖φ(x)‖2

]
6 1 +

ω(Ŝp`)√
n

(8)

Furthermore, from Lemma B.2, we have ω(Ŝp`) =
√
C0` log Nn

` for some constant C0 > 0. Therefore by our choice of
parameters we have:

ω(Ŝp`)√
n

=
(Ck
ε2

log
m

k

)− 1
2

√
C0` log

Nn

`
=
C ′

ε
(9)

Note that Eq. 9 holds with an equality for some constant C ′. Now consider the event E where the maximum ‖ · ‖2 length
is at most 1 + C′

ε (1 + ε). Then by using gaussian concentration for Lipschitz functions (Corollary 2.5), we upper bound
probability of the event ¬E :
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Pr
φ∼ 1√

n
N(0,1)n×Nn

(
max
x∈Ŝp`

‖φ(x)‖2 > 1 +
C ′

ε
(1 + ε)

)
6 exp

(
− cε2ω(Ŝp`)

2
)

(Using Corollary2.5)

6 exp
(
−O

( k
ε2

log
m

k

))
= εk,m (10)

where εk,m can be made arbitrarily small by choosing k large enough.

Lower Bounding the gaussian width : Recall that the operator φnorm is defined as φnorm(x)
def
= φ(x)/‖φ(x)‖2. The

operational expression for the gaussian width of the projected set restricted to coordinates in [Nn] is given by :

ω(φnorm(Ŝp`)) = E
g∼N(0,1)n

[
max
x∈Ŝp`

g>φnorm(x)

]
(11)

We shall also need the following lemma which states that conditioning by the large probability event E does not reduce the
expectation by much.

Lemma B.1. There exists universal constants `0,m0 such that for all m > m0 and d > k > `0 and the event E defined as
above, we have

E
g∼N(0,1)n,φ

[
max
x∈Ŝp`

g>φ(x)
∣∣∣E] > E

g∼N(0,1)n,φ

[
max
x∈Ŝp`

g>φ(x)

]
− γk,m

where γk,m decays exponentially in k.

We defer the proof of the Lemma to Section B.6. Equipped with the above, we proceed to lower bound the expected
Gaussian width:

E
φ

E
g∼N(0,1)n

[
max
x∈Ŝp`

g>φnorm(x)

]

>(1− εk,m)E
φ

E
g∼N(0,1)n

[
max
x∈Ŝp`

g>φnorm(x)

∣∣∣∣ E
]

>
(1− εk,m)

1 + C′

ε (1 + ε)
E
φ

E
g∼N(0,1)n

[
max
x∈Ŝp`

g>φ(x)

∣∣∣∣ E
]

1' (1− εk,m)

1 + C′

ε (1 + ε)
E
φ

E
g∼N(0,1)n

[
max
x∈Ŝp`

g>φ(x)

]

where the first inequality follows from the fact that E is a large probability event, and step 1 follows from Lemma B.1.
Removing the conditioning allows us to relate the expectation term to the gaussian width of Ŝp`. Let B denote the event that
‖g‖2 ∈ [

√
n(1− ε/4),

√
n(1 + ε/4)]. Using concentration of χ2-variables, we get Pr(B) > 1− exp

(
− 4ε2n

)
> 1− ε

since k > C log 1
ε . Then,
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E
φ

E
g∼N(0,1)n

[
max
x∈Ŝp`

g>φ(x)

]
>(1− ε)E

φ
E

g∼N(0,1)n

[
max
x∈Ŝp`

g>φ(x)

∣∣∣∣B
]

2
=(1− ε) E

g∼N(0,1)n
E

g̃∼N

(
0,
‖g‖2
n

)Nn
[

max
x∈Ŝp`

g̃>x

∣∣∣∣B
]

(12)

3
>(1− ε) E

g∼N(0,1)n
E

g̃∼N
(

0,(1−ε/4)2
)Nn

[
max
x∈Ŝp`

g̃>x

∣∣∣∣B
]

=(1− ε) E
g̃∼N

(
0,(1−ε/4)2

)Nn
[

max
x∈Ŝp`

g̃>x

]

>(1− ε)2 E
g̃∼N(0,1)Nn

[
max
x∈Ŝp`

g̃>x

]
(13)

>(1− ε)2ω(Ŝp`)

In step 2, in the inner expectation g ∈ Rn is a fixed vector, and therefore gTφ is distributionally equivalent to a gaussian
vector in RNn, scaled by ‖g‖2√

n
(since the columns of φ are independent N(0, 1/n)Nn-gaussian vectors). Step 3 follows

from the lower bound on the ‖ · ‖2-length of g. Plugging in the lower bound on the expectation term, we get :

E
φ

E
g∼N(0,1)n

[
max
x∈Ŝp`

g>φnorm(x)

]
> (1− ε)2 (1− εk,m)

1 + C′

ε (1 + ε)
ω(Ŝp`)

= (1− ε)2 (1− εk,m)

1 + C′

ε (1 + ε)

(C ′
ε

√
n
)

>
√
n(1− 4ε)

for sufficiently small ε and large k.

B.2. Proof of Lemma A.3

We begin by looking at the expression of the square of the ‖ · ‖2 distance. For any fixed x,y ∈ Sn−1, we have

‖y − x‖22 = 2− 2x>y (14)

Therefore, minimizing the ‖ · ‖2 norm would be equivalent to maximizing the dot product term. Furthermore, it is known
that a random gaussian vector g ∼ N(0, 1)n can be rewritten as Zr where r unif∼ Sn−1 and Z2 is a χ2-random variable with
n degrees of freedom. Using this decomposition, we get :
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Pr
g∼N(0,1)n

(
max
y∈T

g>y 6
√
n(1− ε−

√
ε)

)
=Pr

r,Z

(
Z max

y∈T
r>y 6

√
n(1− ε−

√
ε)

)
>Pr

r,Z

(
Z max

y∈T
r>y 6

√
n(1− ε−

√
ε)
∣∣∣Z 6 √n(1 + ε)

)
Pr

(
Z 6

√
n(1 + ε)

)
1
>Pr

r,Z

(
Z max

y∈T
r>y 6

√
n(1− ε−

√
ε)
∣∣∣Z 6 √n(1 + ε)

)
(1− ε)

>
1

2
Pr
r

(
max
y∈T

r>y 6
1− ε−

√
ε

1 + ε

)
>

1

2
Pr
r

(
max
y∈T

r>y 6 (1− 2
√
ε)

)

where in step 1, we used concentration for χ2-random variables and use the fact that k > C log 1
ε . We now relate the

behavior of the maximum dot product of a set with respect to a random vector to the maximum dot product of a fixed vector
with respect to a randomly rotated set.

Pr
r

(
max
y∈T

r>y 6 (1− 2
√
ε)

)
2
=Pr

R

(
max
y∈T

R(x)>y 6 (1− 2
√
ε)

)
=Pr

R

(
max
y∈T

x>R−1(y) 6 (1− 2
√
ε)

)
3
=Pr

R

(
max
y∈T

x>R(y) 6 (1− 2
√
ε)

)
=Pr

R

(
max

y∈R(T )
x>y 6 (1− 2

√
ε)

)
(15)

Step 2 follows from the fact that applying a uniformly random rotation on a unit vector is equivalent to sampling uniformly
from the unit sphere Sn−1, and step 3 follows from the fact that if R is uniformly random rotation, then R−1 is also a
uniformly random rotation. Furthermore, using gaussian concentration for Lipschitz functions :

Pr
g∼N(0,1)n

(
max
y∈T

g>y 6
√
n(1− ε−

√
ε)
)
6 exp

(
−O

(k
ε

log
m

k

))
(16)

and the l.h.s is an upper bound on 1
2 PrR

(
maxy∈R(T ) x

>y 6 (1− 2
√
ε)
)

(Eq. 15). Therefore rearranging the equations,
we have:

Pr
R

(
min

y∈R(T )
‖x− y‖ > 2ε1/4

)
= Pr

R

(
max

y∈R(T )
x>y 6 (1− 2

√
ε)
)
6 2 exp

(
−O

(k
ε

log
m

k

))
(17)

B.3. Gaussian Width of the discretized sparse set Ŝpk

Lemma B.2. Let Ŝp` ⊂ Sm−1 be the discrete k-sparse set on the unit sphere. Then,

ω(Ŝp`) = Θ
(√

` log
m

`

)
(18)

Proof. For the upper bound, observe that Ŝp` ⊂ Spm` and gaussian width is monotonic. Therefore, from Lemma 1.9, we
have ω(Ŝp`) = O

(√
` log m

`

)
. Towards proving the asymptotic lower bound: Given independent gaussians g1, . . . , gn ∼
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N(0, 1), it is known that

E
g1,...,gn

[
max
gi

gi

]
> C0

√
log n (19)

for some constant C0 > 0 independent of the number of gaussians. Now, without loss of generality let m be divisible by `.
We partition the m coordinates into ` blocks B1, . . . , B` of m` coordinates each. Then,

E
g

[
max
x∈Ŝp`

g>x
]
>

1√
`
E
[ ∑
j∈[`]

max
gij∈Bj

gij

]
(20)

The inequality follows from the following observation: For any fixed realization of g ∼ N(0, 1)m, let ij be the index of the
maximum in the jth block. Then there exists a vector in Ŝp` which is supported on i1, . . . , i`. Therefore, the dot product
would be at least the sum of maximum Gaussians from each of the blocks scaled by 1√

`
. The lemma now follows from

applying the lower bound from Eq. 19.

�

B.4. Proof of Lemma 3.1

The proof of this Lemma uses the following comparison inequality for suprema of gaussian processes:

Lemma B.3 (Slepian’s lemma (Slepian, 1962)). Let {Xu}u∈U and {Yu}u∈U be two almost surely bounded centered
Gaussian processes, indexed by the same compact set U . If for every u1, u2 ∈ U :

E

[
|Xu1

−Xu2
|2
]
6 E

[
|Yu1
− Yu2

|2
]

then we have

E

[
sup
u∈U

Xu

]
6 E

[
sup
u∈U

Yu

]
Equipped with the above Lemma, we now prove Lemma 3.1:

Proof. First we prove the upper bound. Let Ψ : X 7→ S be the ε-isometric embedding map. Given g ∼ N(0,
√

1 + ε)m

and h ∼ N(0, 1)d, we define the gaussian processes {Gx}x∈X and {Hx}x∈X as follows

Gx
def
= g>x

Hx
def
= h>Ψ(x)

Fix x,y ∈ X . Using the ε-isometry of Ψ we get:

E
h∼N(0,1)d

[∣∣∣Hx −Hy

∣∣∣2] = E
h∼N(0,1)d

[∣∣∣h>Ψ(x)− h>Ψ(y)
∣∣∣2]

1
= ‖Ψ(x)−Ψ(y)‖2
2
6 (1 + ε)‖x− y‖2

= E
g∼N(0,1+ε)m

[∣∣∣Gx −Gy

∣∣∣2]



Testing Sparsity over Known and Unknown Bases

where step 1 follows from the fact that the variance h in the direction of a vector v is ‖v‖22, and inequality 2 follows from
the isometric property. Therefore, using Lemma B.3, we have

E
h∼N(0,1)d

[
max
x∈S

g>Ψ(x)
]
6 E

g∼
√

1+εN(0,1)m

[
max
x∈S

g>x
]

(21)

which directly gives us ω(S) 6
√

1 + ε · ω(X) 6 (1 + ε)ω(X). The other direction follows by using the lower bound
given by isometry.

�

B.5. Rotational Invariance of φnorm

Lemma B.4. For any finite set T ⊂ SNn−1, the distribution of Φnorm(S) is rotation invariant.

Proof. Fix any N = |T | vectors {z′1, . . . , z′N}. Let R : RNn 7→ RNn be a fixed rotation. With a slight abuse of notation,
we shall use Prφ(·) to denote the pdf of the distribution here. Then,

Pr
φ

(
φnorm(T ) =

{ z′1
‖z′1‖2

, . . . ,
z′N
‖z′N‖2

})
= Pr

φ

(
φ(T ) = {z′1, . . . , z′N}

)
1
= Pr

φ

(
φ(T ) = {R(z′1), . . . , R(z′N )}

)
= Pr

φ

(
φnorm(T ) =

{ R(z′1)

‖R(z′1)‖2
, . . . ,

R(z′N )

‖R(z′N )‖2

})
2
= Pr

φ

(
φnorm(T ) =

{ R(z′1)

‖(z′1)‖2
, . . . ,

R(z′N )

‖(z′N )‖2

})
= Pr

φ

(
φnorm(T ) = R

({ z′1
‖z′1‖2

, . . . ,
z′N
‖z′N‖2

}))

where step 1 follows from the rotational invariance of φ, and step 2 uses the observation that rotating a vector does not
change it’s `2-length. Since the equality holds for any rotation, the statement follows. �

B.6. Proof of Lemma B.1

Proof. The proof uses the more general observation relating conditional expectations to their unconditioned counterparts :

Proposition B.5. Let E be an event such that Pr(E) > 1− η. Let Z : Rn 7→ R+ be a non-negative random variable. Let
t0 > 0 be such that ∫ ∞

t0

Pr(Z > t)dt 6 α

Then, the following holds true : E[Z|E ] > E[Z]− ηt0 − α.

Proof. We begin by observing that for any event B,

Pr(B|E) > Pr(B)− η

which follows from the definition of conditional expectation. Therefore,
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E[Z|E ] =

∫ ∞
0

Pr(Z > t|E)dt >
∫ t0

0

Pr(Z > t|E)dt

>
∫ t0

0

(
Pr(Z > t)− η

)
dt

>
∫ t0

0

Pr(Z > t)dt−
∫ t0

0

ηdt

= E[Z]− α− ηt0

�

We apply the above lemma to our setting: let E be the event as described in the proof of Lemma A.2 and let Z be the random
variable :

Z := max
x∈Ŝp`

g>φ(x)

From Eq. 10, we know that Pr(¬E) = εk,m = ηk,m. Abusing notation, we denote ω∗ = ω(Ŝp`). Let t0 = 4ω(Ŝp`) = 4ω∗.
For a fixed choice of δ > 0, let Bδ be the event that ‖g‖2 6

√
n(2 + δ). Then,

Pr
g∼N(0,1)n,φ

(
max
x∈Ŝp`

g>φ(x) > (2 + δ)2ω∗
)

6Pr(¬Bδ) + Pr
g∼N(0,1)n,φ

(
max
x∈Ŝp`

g>φ(x) > (2 + δ)2ω∗
∣∣∣Bδ)

1
6 exp

(
−O((1 + δ)2n)

)
+ Pr

g∼N(0,1)n,φ

(
max
x∈Ŝp`

g>φ(x) > (2 + δ)2ω∗|Bδ
)

(22)

where inequality 1 follows by concentration on χ2 variables. We upper bound the remaining probability term as :

Pr
g∼N(0,1)n,φ

(
max
x∈Ŝp`

g>φ(x) > (2 + δ)2ω∗|Bδ
)

2
6 Pr

g̃∼N(0,1)Nn

(
max
x∈Ŝp`

g̃>x >
(2 + δ)2

2 + δ
ω∗|Bδ

)
6 Pr

g̃∼N(0,1)Nn

(
max
x∈Ŝp`

g̃>x > (2 + δ)ω∗
)

(23)

3
6 exp

(
−O((1 + δ)ω∗)2

)
6 exp

(
−O

(
(1 + δ)2k log

m

k

))
(24)

Step 2 can be shown using arguments identical to the ones used in steps 12-13 in the proof of Lemma 3.2, and step 3 follows
from gaussian concentration. Now we proceed to upper bound the quantity α (as in Proposition B.5 ):
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∫ ∞
t0

Pr(Z > t)dt =

∫ ∞
0

Pr
g∼N(0,1)n,φ

(
max
x∈Ŝp`

g>φ(x) > 4ω∗ + t
)
dt

1
=

∫ ∞
0

2(2 + δ)ω∗ Pr
g∼N(0,1)n,φ

(
max
x∈Ŝp`

g>φ(x) > (2 + δ)2ω∗
)
dδ

2
6

∫ ∞
0

(2 + δ)ω∗ exp
(
−O((1 + δ)2k log

m

k
)
)
dδ

6
∫ ∞

0

exp
(
−O((1 + δ)2k log

m

k
)
)
dδ = αk,m (25)

where step 1 is a change of variables argument where we set t = (2 + δ)2ω∗ − 4ω∗, and the second step follows from by
combining upper bounds from 22 and 24.

Plugging in the upper bounds from Equations 22,24 and 25, we get

E[Z|E ] > E[Z]− αk,m − 4(ω∗)ηk,m = E[Z]− γk,m

where γk,m decays exponentially in k.

�

B.7. Proof of Lemma 3.3

The proof uses the observation that for R ∼ Od, for any i ∈ [d] marginal distribution of the vector ri is that of a uniformly
random vector drawn from Sd−1 (c.f., Exercise 5 (Vershynin, 2011)). Therefore, it suffices to show large probability upper
bounds for a single random vector r ∼ Sd−1, which can then be used to complete the proof by a union bound argument.

.

Concentration for random unit vectors: Let C > 0 be a constant which is fixed later. The first step follows from replacing
the unit vector by a normalized gaussian vector:

Pr
r∼Sd−1

[
max
x∈S

r>x > Cω(S)/
√
d

]
= Pr

g∼N(0,1)d

[
max
x∈S

g>x > Cω(S)
‖g‖√
d

]

6 Pr
g∼N(0,1)d

[
g>x > Cω(S)

‖g‖√
d

∣∣∣‖g‖ > √d/2]+ Pr
g∼N(0,1)d

[
‖g‖ 6

√
d/2

]

6 2 Pr
g∼N(0,1)d

[
g>x > Cω(S)/2

]
+ Pr

g∼N(0,1)d

[
‖g‖ 6

√
d/2

]

6 4 max

(
exp(−C ′ω2(S)), exp(−C ′d)

)

where the first term is upper bounded using Lemma 2.6, and the second term is bounded using χ2-concentration.

Concentration for random rotations: We now extend the above concentration bound to an expectation bound for random
rotations. Let E denote the event for R ∼ Od, there exists x ∈ S such that ‖Rx‖∞ > Cω(S)/

√
d.
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Pr
R∼Od

[
max
x∈S
‖Rx‖∞ > Cω(S)/

√
d

]
= Pr

R∼Od

[
max
i∈[d]

max
x∈S

r>i x > Cω(S)/
√
d

]

6
∑
i∈[d]

Pr
R∼Od

[
max
x∈S

r>i x > Cω(S)/
√
d

]

6 4 max

(
exp(−C ′ω2(S)), exp(−C ′d)

)
6

1

2

where the last step follows from the fact that d >> log d and by choice C ′ω(S) > 10 log d, when C is chosen to be large
enough.

C. Intractability Results for Testing Sparsity
In this section, we show that the additive error/sparsity tradeoff achieved by Theorem 1.3 is asymptotically the best possible
for efficient algorithms. In fact, we shall prove a stronger statement, which rules out algorithms with multiplicative sparsity
of the order 1/εlog1−δm.

For ease of notation, we say that an algorithm is a η-bicriteria approximation algorithm for testing sparsity, if it has the
following guarantees. On inputs matrix A ∈ Rd×m (where ‖ai‖ = 1 for every i ∈ [m]),vector y ∈ Rd, parameters
k 6 m, ε > 0, it satisfies the following:

– Completeness: If y = Ax for some x ∈ Rm such that ‖x‖0 6 k, the tester accepts.

– Soundness: If for all choices of x ∈ Rm such that ‖x‖0 6 k/εlog1−δm, it satisfies ‖Ax−y‖ > ε‖x‖η , then the tester
rejects.

The following Theorem shows the tightness of error/sparsity tradeoff.

Theorem C.1. Assuming SAT does not have nO(log logn)-time algorithm, there does not exist polynomial7 time η-bicriteria
approximation algorithm for testing sparsity, for any η < 1.

Proof. The proof uses the construction of hard sparse recovery instances from (Foster et al., 2015). It reduces Feige’s hard
instances for SET COVER to hard instances of Sparse Recovery with the following guarantees:

Theorem C.2. Given B ∈ {0, 1}d×m and a parameter k 6 m, there does not exist polynomial time algorithm which can
distinguish between the following cases:

– YES: There exist k-support disjoint columns bi1 , . . . ,bik such that
∑
j∈[k] bij = e

– NO: There does not exist i1, . . . , ik′ ∈ [m] and coefficients ci1 , . . . , ci′k ∈ R such that∥∥∥ ∑
j∈[k′]

cijbij − e
∥∥∥2

6 1

where k′ = C2log1−δm, for all δ ∈ (0, 1) and some constant C > 0, assuming SAT has no nO(log logn)-time algorithm.

As in (Foster et al., 2015), we now construct a new sparse recovery instance as follows. Let r = dd
1
δ e−1. Let A ∈ Rrd×m

be the matrix constructed by stacking r-copies of B. We set y ∈ Rrd to be the vector of all ones. Finally, we construct
Aunit from A by normalizing all the columns to have unit length in `2-norm. By construction, the following properties hold:

– If (B, k) is a YES instance, then there exist k-support disjoint columns ai1 , . . . ,aik such that
∑
j∈[k] aij = y

7Since we are dealing with bicriteria algorithms, this is polynomial in the input size and ε−1
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– If (B, k) is a NO instance, there does not exist i1, . . . , ik′ ∈ [m] and coefficients ci1 , . . . , cik′ ∈ R such that∥∥∥ ∑
j∈[k′]

cijaij − e
∥∥∥2

6 r

Furthermore, since A is a {0, 1}-matrix, we have ‖ai‖ 6
√
rd. Therefore, in the YES case, there exists x∗ ∈ Rq such that

‖x∗‖0 = k, ‖x∗‖2 6
√
krd and Aunitx∗ = y. Additionally, since the columns chosen in the YES case are support disjoint,

we have k 6 d.

Now consider a η-bicriteria approximation algorithm for sparse recovery. For ε− log1−δm = C2log1−δm, we must have
ε2‖x∗‖2η > r = d1/δ−1 (otherwise the approximation algorithm can be used to distinguish between the YES and NO
cases). On the other hand,

ε2‖x∗‖2η 6 (rkd)η(
C2log1−δm

)2/ log1−δm
6 (d1/δk)η 6 dη(1/δ+1)

Comparing the lower and upper bound for ε2‖x∗‖2 we get η > 1/δ−1
1/δ+1 which goes to 1 as δ goes to 0. This completes the

proof.

�

D. Sparse Recovery via Sketching
The techniques used to prove Theorem 1.3 can also be used to give a sketching algorithm for sparse recovery, as stated by
the following Theorem:

Theorem D.1. Given matrix A ∈ Rd×m (where ‖ai‖2 = 1 for every i ∈ [m]) and vector y = Ax (for some unknown
x ∈ Rm such that ‖x‖0 6 k). Then for every choice of ε > 0 and δ ∈ (0, 1), there exists a randomized sketching algorithm
which returns x̂ ∈ Rm such that ‖x̂‖0 6 k/ε2 and ‖Ax̂− y‖ 6 Cε‖x‖, with probability at least 1− δ. The number of

linear queries made by the algorithm is O
(
k
ε2 log m

δ

)
.

Proof. The algorithm follows from the soundness analysis for Theorem 1.3. Consider the setting where ‖x‖ 6 1 (the bound
as stated in the Theorem can be recovered by rescaling) and let y = Ax. Let Φ, Aε/

√
k and Ãε/√k be as in the proof of

Theorem 1.3. By identical arguments, it follows that with probability 1− δ, we have ỹ ∈
√
k · conv

(
Ã±

)
. By construction,

there exist z ∈ Aε/√k be such that ẑ = Φ(z). Since the choice of the projection dimension ensures that with probability at

least 1 − δ, the set Aε/√k ∪ {y} is ε-isometric to Ãε/√k ∪ {ỹ} it follows that ‖z − y‖ 6 (1 − ε−1)‖ẑ − ỹ‖ 6 2ε. But
z = Ax̂ for some x̂ ∈ Rm such that ‖x̂‖0 6 k/ε2.

Considering the above arguments, the algorithm for sparse recovery is the following. On input y, it computes linear sketch
ỹ = Φ(y), and using the constructive variant of Approximate Caratheodory’s Theorem (Blum et al., 2016), it outputs
x̂ ∈ Rm such that ‖Ãx̂− ỹ‖ 6 C.ε and ‖x̂‖0 6 k/ε2. The guarantees follow using the above arguments. �

E. Analysis for the Dimensionality Tester
We state the definition of ε-approximate rank of a matrix, as defined in (Alon et al., 2013):

Definition E.1 (Approximate Rank). Given a matrix Y ∈ Rm×n and an ε > 0, the ε-approximate rank of the matrix
(denoted by rankε(Y)) is defined as follows:

rankε(Y) = min

({
rank(Ŷ) : Ŷ ∈ Rm×n, ‖Y − Ŷ‖∞,∞ 6 ε

})
(26)

where ‖ · ‖∞,∞ is norm defined as the largest absolute value of an entry in the matrix.
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We first prove Lemma E.2 which relates the approximate rank of a matrix in terms of the gaussian width, and use that to
analyze the tester.

Lemma E.2. For a matrix Y ∈ Rd×n, where ‖yi‖ = 1 ∀ i ∈ [n], the following holds:

rankε(Y) 6 O

(
1

ε2
max

(
ω2(Y), log d

))
(27)

for any ε > O(1/
√
d).

Proof. Let Y = {y1, . . . ,yn} be the set of columns from the matrix Y. Let Y0 = Y ∪ Id where Id is the set of standard
basis vectors {ei}i∈[d]. It is known that gaussian width is subadditive, and therefore

ω(Y0) 6 ω(Y ) + ω(Id) 6 2 max
(
ω(Y ), 2

√
log d

)
(28)

Let d′ = 16C
ε2 max

(
log d, ω2(Y )

)
whereC is the constant given by the generalized JL-lemma and let G ∼ 1√

d′
N(0, 1)d

′×d.
Then with high probability, G(Y0) is ε-isometric to Y0. For every i ∈ [d] and j ∈ [n], we observe that:

1. 1− ε > ‖Gei‖2, ‖Gyj‖2 6 1 + ε

2. (1−ε)‖ei−yj‖2 6 ‖Gei−Gyj‖2 6 (1+ε)‖ei−yj‖2 which in turn implies that |〈Gei,Gyj〉−〈ei,yj〉| 6 O(ε).

Let Y′ = G>GY. Since the above observation is true for any i ∈ [d], j ∈ [n], it follows that Y′ is entry wise O(ε)-close
to Y, and by construction rank(Y′) 6 d′. Hence, the claim follows.

�

The algorithm for testing dimensionality is the following:

Algorithm 3 TestDimension

1: Use Lemma 2.8 to obtain ω̂, an estimate of ω(S) within additive error
√
k/2 with probability at least 1− δ.

2: Accept if ω̂ 6 2
√
k, else reject.

We now show completeness and soundness for the tester:

Proof of Theorem 1.5. Let S denote the set {y1, . . . ,yp}. The tester obtains ω̂ that approximates ω(S) to an additive error
of
√
k and accepts iff ω̂ 6 2

√
k. By Lemma 2.8, the tester requires O(p log δ−1) linear queries to obtain ω̂.

If dim(S) 6 k, then by Lemma 1.9, ω̂ 6 2
√
k with probability at least 1 − δ, so that the tester accepts with the same

probability.

If the tester accepts, then with probability at least 1− δ, ω(S) 6 3
√
k. Therefore, from Lemma E.2, we have rankε(Y ) 6

O(k/ε2) which completes the proof. �

F. On the relationship between RIP and Incoherence
Even though our results are stated in terms of dictionaries which satisfy RIP, they can be stated in terms of incoherence as
well. This is because the incoherence8 and RIP constants of the dictionary matrix are roughly equivalent. We formalize this
observation in the following lemma:

Proposition F.1. Let A ∈ Rd×m be a matrix with ‖a‖i = 1 for every i ∈ [m]. Then,

– If A is (2k, ζ)-RIP then it is ζ-incoherent.

8Here incoherence is stated in dimension free terms i.e., |〈ai,aj〉| 6 µ for every i 6= j
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– If A is µ-incoherent, then it is (2k, 4kµ)-RIP

Proof. Suppose A is (2k, ζ)-RIP. Then for any i, j ∈ [m]

|〈ai,aj〉| = 1− ‖ai − aj‖2

2

1
∈ 1− (1± ζ) = ±ζ (29)

where 1 follows using the RIP guarantee. On the other hand, let A be µ-incoherent. Then for any S ⊂ [m] of size 2k let
M = A>SAS where AS is the submatrix induced by columns in S. Then we observe that Mii = ‖ai‖2 = 1 for every
i ∈ [2k] and off-diagonal entries satisfy |Mij | 6 µ. Therefore, using the Gershgorin’s disk theorem λ(M) ∈ [1 ± 2µk].
Therefore for every x supported on S we have ‖Ax‖2 ∈ (1 ± 2µk)2‖x‖2 ∈ (1 ± 4µk)‖x‖2. Since this is true for any
arbitrary 2k-sized subset S, the result follows.

�

Note that quantitatively, incoherence is a stronger property than RIP since µ-incoherence implies (2k, 4kµ)-RIP but
(2k, 4kµ)-RIP only implies 4kµ-incoherence. Naturally, Theorem 1.2 can be restated in terms of incoherent linear
transformations as well.

G. Implicit results for Known Design setting
In this section, we discuss results that follow implicitly from previous work.

Sketching in the Streaming Model. In the streaming model, one has a series of updates (i, v) where each i ∈ [n] and
v ∈ {−T, . . . , T}. Each update modifies a vector x, initialized at 0, to x + vei. The L0-estimation problem in streaming is
to estimate the sparsity of x upto a multiplicative (1± ε) factor. A linear sketch algorithm maintains Mx during the stream,
where M ∈ Rs×n is a randomized matrix.

A linear sketch algorithm for the L0-estimation problem directly yields a tester in the setting where the design matrix is
known to be the identity matrix. By invoking the space-optimal L0-estimation result from (Kane et al., 2010), we obtain:

Theorem G.1 (Implicit in (Kane et al., 2010)). Fix ε ∈ (0, 1), positive integers m, k and an invertible matrix A ∈ Rm×m.
Then, there is a tester with query complexity O(ε−2 log(m)) that, for an input y ∈ Rm, accepts with probability at least
2/3 if y = Ax for some k-sparse x ∈ Zm, and rejects with probability 2/3 if y = Ax for some (1 + ε)k-sparse x ∈ Zm.
The running time of the algorithm is poly(m, 1/ε).

We believe that the theorem should also extend (albeit with a mild change in parameters) to the setting where x is an arbitrary
real vector (not necessarily discrete), but the assumption that A is invertible seems hard to circumvent.

Sketching in Numerical Linear Algebra. Low-dimensional sketches used in numerical linear algebra can also yield
testers in the known design matrix case of our model. For a matrix A ∈ Rd×m, suppose we want a property tester that, for
input y ∈ Rd, distinguishes between the case y = Ax∗ for some k-sparse x∗, and the case mink-sparse x ‖Ax− y‖ > ε.

In the sketching approach, one looks to solve the optimization problem mink-sparse x ‖Ax− y‖ in a smaller dimension i.e.,
one looks at:

x̂ = arg min
x′∈K

‖SAx′ − Sy‖ = arg min
x′∈K

‖S(Ax′ − y)‖ (30)

where S ∈ Rq×d is a sketch matrix (where q � d) and K = {x : ‖x‖0 6 k}. The intent here is that the vector x̂ would
also be an approximate minimizer to the original optimization problem.

An oblivious `2-subspace embedding with parameters (d,m, ε, δ) is a distribution on q × d matrices M such that with
probability at least 1− δ, for any fixed d×m matrix A, (1− ε)‖Ax‖ 6 ‖MAx‖ 6 (1 + ε)‖Ax‖ for all x ∈ Rm. For our
application, suppose we draw S from an oblivious subspace embedding with parameters9

(
d, k+ 1, ε, δ/

(
m
k

))
. Then, we get

a valid property tester with query complexity q if we accept when ‖SAx̂− Sy‖ = 0 and reject when it is at least ε(1− ε).

9That is, consider all possible choices of supports Ω ∈
(

[m]
6k

)
and let AΩ be the submatrix corresponding to the columns of Ω. For the

given choice of parameters, it follows that with probability > 1− δ, every x ∈ Rm will satisfy ‖S(AΩx− y)‖ ∈ (1± ε)‖AΩx− y‖
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Algorithm 4 SparseTestKnown-Noisy

1: Set n = 200k
ε2 log m

δ , sample projection matrix Φ ∼ 1√
n
N(0, 1)n×d

2: Observe linear sketch ỹ = Φ(y)
3: Let A± = A ∪ −A
4: Accept iff dist

(
ỹ,
√
k.conv

(
Φ(A±)

))
6 2ε

Using the oblivious subspace embedding from Theorem 2.3 in (Woodruff, 2014), we get the following theorem:

Theorem G.2 (Implicit in prior work). Fix ε, δ ∈ (0, 1) and positive integers d, k,m and a matrix A ∈ Rd×m. Then, there
is a tester with query complexity O(kε−2 log(m/δ)) that, for an input vector y ∈ Rd, accepts with probability 1 if y = Ax
for some k-sparse x and rejects with probability at least 1− δ if ‖y −Ax‖ > ε for all k-sparse x. The running time of the
tester is the time required to solve Equation (30).

Unfortunately, for general design matrices A, solving the optimization problem in Equation (30) is NP-hard. When A
satisfies (ε, k)-RIP, then it is easy to verify that with probability at least 1 − δ, SA is also (O(ε), k)-RIP. In such cases,
which as we explain next, Equation (30) can be solved efficiently, which in turn implies that the above property tester has
polynomial running time.

H. Tolerant testers for Known and Unknown Designs
The simplicity of the testers for the known and unknown design settings directly translates to their robustness to noise. In
this section, we state and prove our results for the tolerant variants of these problems.

Theorem H.1. Fix ε ∈ (0, 1) and positive integers d, k,m and a matrix A ∈ Rd×m such that ‖ai‖ = 1 for every i ∈ [m].
There exists a randomized testing algorithm which makes linear queries to the input vector y ∈ Rd and has the following
properties:

– Completeness: If y = Ax + e for some x ∈ Spmk such that ‖e‖ 6 ε, then the tester accepts with probability > 1− δ.

– Soundness: If ‖Ax − y‖ > ε for every x : ‖x‖0 6 K, then the tester rejects with probability > 1 − δ. Here,
K = O(k/ε2).

The query complexity of the tester is O(kε−2 log m
δ ).

The tolerant testing algorithm is the following:

The difference here is in the final step, where instead of checking exact membership of the point ỹ inside the convex hull,
we check if the point is close enough to it. We now prove Theorem H.1:

Proof. We again consider the set Aε/√k from the soundness analysis of Theorem 1.3. As before, by our choice of n,

with probability at least 1 − δ/2, the set Φ
(
{y} ∪ Aε/√k

)
is ε-isometric to {y} ∪ Aε/√k. Given this observation, for

completeness we observe that

y = Ax + e ⇒ dist
(
y,
√
k · conv

(
A±
))
6 ε

⇒ dist
(
y, Aε/

√
k

)
6 2ε

1⇒ dist
(
ỹ,
√
k.conv

(
Φ(A±)

))
6 ε(1 + ε) 6 2ε

where 1 follows from the ε-isometry guarantee, and hence the tester accepts. The arguments for the soundness direction are
identical to the ones used in Theorem 1.3, and hence the claim follows. �

The noise-tolerant algorithm for testing sparsity in the unknown design setting is the same as the one for Theorem 1.2.
Hence, we just state and prove the guarantees in the noisy setting:
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Theorem H.2 (Testing Noisy Sparse representations). Fix ε, η, δ ∈ (0, 1) and positive integers d, k,m and p, such that
(k/d)1/8 < ε < 1

100 , k > C ′ log 1
ε and m > 20kε−4, η 6 (

√
2− 1)

ω(Spmk )√
log p

. There exists a randomized testing algorithm

which makes linear queries to input vectors ŷ1, ŷ2, . . . , ŷp ∈ Rd and has the following properties (where Ŷ is the matrix
having ŷ1, ŷ2, . . . , ŷp as columns):

– Completeness: If there exists Y with ‖yi − ŷi‖ 6 η for every i ∈ [p] and Y = AX such for some (ε, k)-RIP matrix
A ∈ Rd×m and X ∈ Rm×p with each column of X in Spmk , then the tester accepts with probability > 1− δ.

– Soundness: If Y does not admit factorization Y = A(X + Z) + W with

1. The design matrix A ∈ Rd×m being (ε, k)-RIP, with ‖ai‖ = 1 for every i ∈ [m]

2. The coefficient matrix X ∈ Rm×p being column wise `-sparse, where ` = O(k/ε4).
3. The error matrices Z ∈ Rm×p and W ∈ Rd×p satisfying

‖zi‖∞ 6 ε2, ‖wi‖2 6 O(ε1/4) for all i ∈ [p].

Then the tester rejects with probability > 1− δ.

The query complexity of the tester is O(ε−2 log (p/δ)).

Proof. For the completeness, let there be a Y ∈ Rd×n s.t. dH(Y, Ŷ ) 6 η i.e., Y is column wise η-close to Ŷ in the `2-norm,
as in the completeness criteria. We can then upper bound the gaussian width of the perturbed set as :

ω(Ŷ ) = E
g

[
max
ŷ∈Ŷ

g>ŷ

]
= E

g

[
max
ŷ∈Ŷ

g>y + g>
(
ŷ − y

)]
6 E

g

[
max
ŷ∈Ŷ

g>y

]
+ E

g

[
g>
(
ŷ − y

)]
1
6 E

g

[
max
y∈Y

g>y

]
+ Cη

√
log p

6 ω(Sp2k)

where step 1 follows from the observation that the maximum of p (not-necessarily i.i.d) gaussians (with variance at most
η2) is upper bounded by O(η

√
log p), and the last step follows from our choice of η. Now as in Theorem 1.2, with high

probability the gaussian width estimated by the tester is at most ω(Spm4k) and therefore the tester accepts. For the soundness,
if the tester accepts with high probability then ω(Ŷ ) 6 ω(Spm6k), and therefore soundness follows using arguments identical
to the main theorem. �

Remark H.3. Note that the noise model being considered here is adversarial as opposed to the standard gaussian noise.
This is a relatively stronger assumption in the sense that an adversary can perturb the vectors depending on the instance i.e.,
the noise here can be worst case.


