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Abstract

Sparsity is a basic property of real vectors that is
exploited in a wide variety of machine learning
applications. In this work, we describe property
testing algorithms for sparsity that observe a low-
dimensional projection of the input. We consider
two settings. In the first setting, we test sparsity
with respect to an unknown basis: given input
vectors yi,...,yp € R? whose concatenation as
columns forms Y € R%*P_does Y = AX for
matrices A € R4*™ and X € R™*P? such that
each column of X is k-sparse, or is Y “far” from
having such a decomposition? In the second set-
ting, we test sparsity with respect to a known ba-
sis: for a fixed design matrix A € R%*™ given
input vector y € RY, is y = Ax for some k-
sparse vector x or is y “far” from having such a
decomposition? We analyze our algorithms us-
ing tools from high-dimensional geometry and
probability.

1. Introduction

Property testing is the study of algorithms that query their
input a small number of times and distinguish between
whether their input satisfies a given property or is “far”
from satisfying that property. The quest for efficient testing
algorithms was initiated by (Blum et al., 1993) and (Babai
et al., 1991) and later explicitly formulated by (Rubinfeld &
Sudan, 1996) and (Goldreich et al., 1998). Property testing
can be viewed as a relaxation of the traditional notion of
a decision problem, where the relaxation is quantified in
terms of a distance parameter. There has been extensive
work in this area over the last couple of decades; see, for
instance, the surveys (Ron, 2008) and (Rubinfeld & Shapira,
2006) for some different perspectives.
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As evident from these surveys, research in property testing
has largely focused on properties of combinatorial and alge-
braic structures, such as bipartiteness of graphs, linearity of
Boolean functions on the hypercube, membership in error-
correcting codes or representability of functions as concise
Boolean formulae. In this work, we study the question
of testing properties of continuous structures, specifically
properties of vectors and matrices over the reals.

Our computational model is a natural extension of the stan-
dard property testing framework by allowing queries to be
linear measurements of the input. Let P C R< be a property
of real vectors. Let dist : R? — R>? be a “distance” func-
tion such that dist(x) = 0 for all x € P. We say that an
algorithm A is a tester for P with respect to dist and with
parameters €, > 0 if for any input y € R"™, the algorithm
A observes My where M € R7%? is a randomized matrix
and has the following guarantee:

() fy € P, Prp[A(My) accepts] > 1 — 6.
(ii) If dist(y) > ¢, Prp[A(My) accepts] < 6.

We call each inner product between the rows of M and y
a (linear) query, and the number of rows ¢ = ¢(g,0) is
the query complexity of the tester. The running time of the
tester 4 is its running time on the outcome of its queries.
As typical in property testing, we do not count the time
needed to evaluate the queries. If P C R¥*P is a prop-
erty of real matrices with an associated distance function
dist : R¥*P — R>9, testing is defined similarly: given an
input matrix Y € R9*P, the algorithm observes MY for
a random matrix M € R?*? with analogous completeness
and soundness properties. A linear projection of an input
vector or matrix to a low-dimensional space is also called
a linear sketch or a linear measurement. The technique of
obtaining small linear sketches of high-dimensional vectors
has been used to great effect in algorithms for streaming
(e.g., (Alon et al., 1996; McGregor, 2014)) and numerical
linear algebra (see (Woodruff, 2014) for an excellent sur-
vey). Because GPUs are specially designed to optimize
matrix-vector computation, many modern optimization and
learning algorithms work with linear sketches of their input.

We focus on testing whether a vector is sparse with respect
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to some basis.! A vector x is said to be k-sparse if it

has at most k£ nonzero coordinates. Sparsity is a structural
characteristic of signals of interest in a diverse range of
applications. It is a pervasive concept throughout modern
statistics and machine learning, and algorithms to solve
inverse problems under sparsity constraints are among the
most successful stories of the optimization community (see
the book (Hastie et al., 2015)). The natural property testing
question we consider is whether there exists a solution to a
linear inverse problem under a sparsity constraint.

There are two settings in which we investigate the sparsity
testing problem.

(a) In the first setting, the basis is not known in advance.
For input vectors y1,ya2, - - ., y, € RY, the property to
test is whether there exists a matrix A € R4*™ and
k-sparse unit vectors X1, Xg,...X, € R™ such that
yi = Ax; for all i € [p]. Note that m is specified
as a parameter and could be much larger than d (the
overcomplete case). In this setting, we restrict the
unknown A to be a (&, k)-RIP matrix which means
that (1 — ¢)||x|| < [|Ax| < (1 4+ ¢)||x] for any k-
sparse x. This is a standard assumption made in many
related works (see Section 1.2 for details).

In this setting, we design an efficient tester for this prop-
erty that projects the inputs to O (¢ =2 log p) dimensions
and, informally speaking, rejects if for all (&, k)-RIP
matrices A, there is some y; such that y; — Ax; has
large norm for all “approximately sparse” x;.

(b) In the second setting, a design matrix A € RZ*™ is
known explicitly, and the property to test is whether a
given input vector y € R? equals Ax for a k-sparse
vector x € R™. For instance, A can be the Fourier
basis or an overcomplete dictionary in an image pro-
cessing application. We approach this problem in full
generality, without putting any restriction on the struc-
ture of A.

Informally, our main result in this setting is that for
any design matrix A, there exists a tester projecting the
input y to O(k log m) dimensions that rejects if y — Ax
has large norm for any O(k)-sparse x. The running
time of the tester is polynomial in m. As we describe in
Section 1.2, previous work in numerical linear algebra
yields a tester with the same query complexity and with
qualitatively similar soundness guarantees but which
requires running time exponential in m or assumptions
about the matrix A.

Remark 1.1 (Problem Formulation). Note that the settings
considered in the known and unknown design matrix settings

"With slight abuse of notation, we use the term basis to denote
the set of columns of a design matrix. The columns might not be
linearly independent.

are quite different from each other. In particular, for the
known design setting, the input is a single vector. However,
given a single input vector y € RY, the analogous unknown
design testing question would be moot, since one can always
consider the vector'y to be the design matrix A, in which
it trivially admits a 1-sparse representation. For the same
reason, unknown design testing is interesting only when the
number of vectors p exceeds m.

In both of the above tests, the measurement matrix is a
random matrix with iid gaussian entries, chosen so as to
preserve norms and certain other geometric properties upon
dimensionality reduction.” In particular, our testers are
oblivious to the input. It is a very interesting open question
as to whether non-oblivious testers can strengthen the above
results.

1.1. Our Results

We now present our results more formally. For integer
m > 0,let S = {x € R™ : ||x|| = 1}, and let
Sppt ={xe 8™ 1 |x|o < k}.?

Theorem 1.2 (Unknown Design Matrix). Fixe,d € (0,1)
and positive integers d, k,m and p, such that (k/m)/8 <
€< ﬁ and k > 10log % There exists a tester with query
complexity O(e=2 log (p/d)) which, given as input vectors
Y1,¥2,---,¥p € R?, has the following behavior (where Y

is the matrix having y1,y2, ...,y as columns):

— Completeness: If'Y admits a decomposition Y =
AX, where A € RY*™ satisfies (¢, k)-RIP and X €
R™*P with each column of X in Spy.', then the tester
accepts with probability > 1 — 6.

— Soundness: Suppose Y does not admit a decomposi-
tionY = A(X +Z) + W with

1. The design matrix A € R¥™™ being (e, k)-RIP,
with ||a;|| = 1 for every i € [m)].

2. The coefficient matrix X € R™*P being column
wise (-sparse, where { = O(k/e*).

3. The error matrices Z. € R™*P and W € RI*P
satisfying

lziloe <% willa <OEYY)  foralli€ [p).

Then the tester rejects with probability > 1 — 6.

2If evaluating the queries efficiently was an objective, one
could also use sparse dimension reduction matrices (Dasgupta
et al., 2010; Kane & Nelson, 2014; Bourgain et al., 2015), but we
do not pursue this direction here.

3Here, ||x||o denotes the the sparsity of the vector, |x||o :=
[{i € [m] | z; # 0}|. Without any subscript, || - || denotes the

lo-norm: ||x|| := /Y, a?.
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The contrapositive of the soundness guarantee from the
above theorem states that if the tester accepts, then matrix Y
admits a factorization of the formY = A(X+Z)+W, with
error matrices Z and W having ¢, and /5 error bounds. The
matrix X + Z is a sparse matrix with ¢..-based thresholding,
and W is an additive ¢s-error term.*

Theorem 1.3 (Known Design Matrix). Fixe,d € (0,1) and
positive integers d, k, m and a matrix A € R*™ such that
lla;|| = 1 for every i € [m)]. There exists a tester with query
complexity O(ke~2log(m/§)) that behaves as follows for
an input vector y € R9:

— Completeness: If y = Ax for some x € Sp}', then
the tester accepts with probability 1.

— Soundness: If |Ax — y|l2 > ¢ for every x : [|x[o <
K, then the tester rejects with probability > 1 — 0.
Here, K = O(k/£?).

The running time of the tester is poly(m, k,1/¢).

A different way of stating the result is that the tester, using
O(ke=2log(m/§)) linear queries, accepts with probability
1ify = Ax for a k-sparse x € R™ and rejects with
probability 1 — § if | Ax — y|| > ¢|x|| for every O(k/c?)-
sparse x. To complement this result, we show that a better
tradeoff between the sparsity and reconstruction error is
likely to be impossible.

Theorem 1.4 (Hardness). Assume SAT does not have
nOUoglogn) time algorithms, and let 1 be any constant less
than 1. Then, there does not exist a polynomial time algo-
rithm that, given input A € R¥*™ (where ||a;|| = 1 for
everyi € [m]), y € R? and ¢ > 0, distinguishes with
constant probability between the following two cases: (i)
y = Ax for a k-sparse x, and (ii) ||ly — Ax|| > ||x]||" for
every (k/e%)-sparse x.

Note that the above hardness applies to any polynomial time
algorithm, not just sketching algorithms.

We also give tolerant variants of these testers (Theorems
H.1 and H.2) which can handle bounded noise for the com-
pleteness case. Moreover, the tester for the known design
case can be converted into a new sketching algorithm for
sparse recovery (Theorem D.1).

Finally, we also give an algorithm for testing dimensionality,
which is based on similar techniques.

Theorem 1.5 (Testing Dimensionality). Fix e,6 € (0, 1),
positive integers d, k and p, where k > 10e2logd. There
exists a tester with query complexity O(plog6=1), which

“Theorem 1.2 can be restated in terms of incoherent (instead
of RIP) design matrices as well. This follows from the fact that
the incoherence and RIP constants of a matrix are order-wise
equivalent. This observation is formalized in Appendix F.

gives as input vectors yi, ...,y C S971, has the following

behavior:

— Completeness: [f rank(Y) < k, then the tester ac-
cepts with probability > 1 — 0.

— Soundness: [frank.(Y) > k', then the tester rejects
with probability > 1 — 6. Here, k' = 20k /&>

The soundness criteria in the above Theorem is stated in
terms of the e-approximate rank of a matrix (see Defini-
tion E.1). This is a well-studied relaxation of the standard
definition of rank, and has applications in approximation
algorithms, communication complexity and learning theory
(see (Alon et al., 2013) and references therein).

1.2. Related Work

Although, to the best of our knowledge, the testing problems
we consider have not been explicitly investigated before,
there are several related areas of study that frame our results
in their proper context.

Unknown Design setting. In the setting of the unknown
design matrix, the question of recovering the design matrix
and the sparse representation (as opposed to our problem
of testing their existence) is called the dictionary learning
or sparse coding problem. The first work to give a dic-
tionary learning algorithm with provable guarantees was
(Spielman et al., 2012) where the dictionary was restricted
to be square. For the more common overcomplete setting,
(Aroraet al., 2014) and (Agarwal et al., 2014) independently
gave algorithms with provable guarantees for dictionaries
satisfying incoherence and RIP respectively. All of these
(as well as other more recent) works assume distributions
from which the input samples are generated in an i.i.d fash-
ion. In contrast, our work is in the agnostic setting and
hence, is incomparable with these results.

It is known that the dictionary learning problem is NP-hard,
even for square dictionaries (Razaviyayn et al., 2014; Till-
mann, 2015). In fact, (Tillmann, 2015) shows that unless
SAT has a quasi-polynomial time algorithm, it is impossible,
given Y € R¥*P, to approximate in polynomial time the
minimum & upto a factor glog'~“d (for any € > 0) such that
Y = AX where each column of X € R¥*P is k-sparse.
This motivates our bicriteria relaxation of both the sparsity
as well as the additive error in Theorem 1.2.

Known Design setting. Some results about testing spar-
sity in the known design setting are implicit in recent work
on streaming algorithms and oblivious subspace embed-
dings. Of particular interest are the following results:

Theorem 1.6 (Implicit in (Kane et al., 2010)). Fix ¢ €
(0, 1), positive integers m, k and an invertible matrix A €
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R™>™_ Then, there is a tester with query complexity

O(e=2log(m)) that, for an input y € R™, accepts with
probability at least 2/3 if y = Ax for some k-sparse
x € Z™, and rejects with probability 2/3 if y # Ax for all
(14 ¢&)k-sparse x € Z™. The running time of the algorithm
is poly(m,1/e).

Theorem 1.7 (Implicit in prior work, see (Woodruff, 2014)).
Fix e,d € (0,1) and positive integers d, k, m and a matrix
A € R¥X™_ Then, there is a tester with query complexity
O(ke=2log(m/d)) that, for an input vector y € R?, ac-
cepts with probability 1 if y = AX for some k-sparse x and
rejects with probability at least 1 — ¢ if ||y — Ax|| > ¢ for
all k-sparse x. The running time of the tester is the time
required to solve the following optimization problem:

X = arg min ||[SAx’ — Sy|| = arg min ||S(Ax" —y)||
x'€K x' €K
(1

where S € R9*? is a random sketch matrix (where ¢ < d)
and K = {x : ||x|lo < k}

Detailed descriptions of the algorithms and proof sketches
for the above Theorems are given in Section B.4. The
algorithms from the above theorems come with significant
limitations. In particular, the guarantees for Theorem 1.6
hold only when the design matrix is invertible. On the other
hand, the running time for the algorithm in Theorem 1.7 is
the cost of solving the optimization problem in Equation
(1), which is known to be NP-hard for general matrices.

The problem of testing sparsity has also been studied in
non-sketching settings as well, where the algorithm is al-
lowed access to the entire input. In particular, (Natarajan,
1995) gave a bicriteria-approximation algorithm, where the
blowup in the sparsity is proportional to || A||3 (which can
be large if A is ill conditioned).

Testing Dimensionality. In (Czumaj et al., 2000), some
problems in computational geometry were studied from the
property testing perspective, but the problems involved only
discrete structures. (Krauthgamer & Sasson, 2003) studied
the problem of testing dimensionality, but their notion of
farness from being low-dimensional is different from ours”.
(Chierichetti et al., 2017) gave approximation algorithms
for computing approximate rank of the matrix, in the setting
where the algorithms have full access to the input.

1.3. Discussion

A standard approach to designing a testing algorithm for a
property P is the following: we identify an alternative prop-
erty P’ which can be fested efficiently and exactly, while
satisfying the following:

>In their setup, a sequence of vectors y1, . . .,y is e-far from
being d-dimensional if at least ep vectors need to be removed to
make it be of dimension d

(i) Completeness: If an instance satisfies P, then it satis-
fies P’.

(ii) Soundness: If an instance satisfies P’, the it is close
to satisfying P.

In other words, we reduce the property testing problem to
that of finding a efficiently testable property P’, which can
be interpreted as a surrogate for property P. The inherent
geometric nature of the problems looked at in this paper
motivate us to look for P’s which are based around convex
geometry and high dimensional probability.

For the unknown design setting, we are intuitively looking
for a P’ based on a quantity w that robustly captures sparsity
and is easily computable using linear queries, in the sense
that w is small when the input vectors have a sparse coding
and large when they are “far” from any sparse coding. More-
over, w needs to be invariant with respect to isometries and
nearly invariant with respect to near-isometries. A natural
and widely-used measure of structure that satisfies the above
mentioned properties is the gaussian width.

Definition 1.8. The gaussian width of a set S C R js:
w(S) = Eg[supycg(g, v)] where g € R is a random
vector drawn from N (0,1)%, i.e., a vector of independent
standard normal variables.

The gaussian width of S measures how well on average
the vectors in S correlate with a randomly chosen direc-
tion. It is invariant under orthogonal transformations of S
as the distribution of g is spherically symmetric. It is a
well-studied quantity in high-dimensional geometry ((Ver-
shynin, 2015; Mendelson & Vershynin, 2002)), optimization
((Chandrasekaran et al., 2012; Amelunxen et al., 2013)) and
statistical learning theory ((Bartlett & Mendelson, 2002)).
The following bounds are well-known.

Lemma 1.9 (See, for example, (Rudelson & Vershynin,
2008; Vershynin, 2015)).

(i) If S is a finite subset of S*™*, then w(S) < /21og S].
(ii) w(S4) < Vd
(iii) If S C S~V is of dimension k, then w(S) < Vk.
(iv) w(Spy) < 24/3klog(d/k) when d/k > 2 and k > 4.

In the context of Theorems 1.2 and 1.5, one can observe
that whenever a given set satisfies sparsity or dimensionality
constraints, the gaussian width of such sets are small (points
(>iii) and (iv) from the above Lemma). Therefore, one can
hope to test dimensionality or sparsity by computing an
empirical estimate of the gaussian width and comparing the
estimate to the results in Lemma 1.9. While completeness
of such testers would follow directly from concentration of
measure, establishing soundness would require us to show
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that approximate converses of points (iii) and (iv) hold as
well i.e., whenever the gaussian width of the set .S is small,
it can be approximated by sets which are approximately
sparse in some design matrix (or have low rank).

For the soundness direction of Theorem 1.2, the above argu-
ments are made precise using Lemma 3.3 and Theorem 3.2,
which show that small gaussian width sets can be approxi-
mated by random projections of sparse vectors and vectors
with small /..-norm. For Theorem 1.5, we use lemma E.2
which shows that sets with small gaussian width have small
approximate rank.

For the known design setting, we are looking for a P/, which
would ensure that if a given point y € R? satisfies P/, then
it is close to having a sparse representation in the matrix A.
Towards this end, the approximate Carathéodory’s theorem
states that if a point y € R belonging to the convex-hull
of A, then it is close to another point which admits a sparse
representation. On the other hand, if a unit vector x €
ST NRY were k-sparse to begin with , then it can be seen
that the corresponding y = Ax would belong to the convex
hull of vk - A. These observations taken together, seem
to suggest that one can take P’ to be membership in the
convex-hull of v/k - A. This intuition is made precise in the
analysis of the tester in Section 4.

1.4. Organization

Section 2 introduces notations and preliminaries used in
the rest of the paper. In Sections 3 and 4, we design and
analyze the testers for the unknown and known basis setting
respectively. Section 5 contains empirical results which
supplement Section 3. In Section B we prove additional
lemmas used in the proof of Theorem 3.2, and in Section
A we prove Theorem 3.2. In Section C, we prove Theorem
C.1, a stronger version of Theorem 1.4. In Section D, we
show that Theorem 1.3 yields a sketching algorithm for
sparse recovery. In Section E, we design and analyze the
dimensionality tester. In Section G, we describe the results
for testing sparsity in the known case implicit in previous
work. Finally, in Section H, we give noise tolerant testers
for the known and unknown basis settings.

2. Preliminaries

Given S C R%, we shall use conv(.S) to denote the convex
hull of S. For a vector x € RY, we use || - ||, to denote
its £,-norm, and we will drop the indexing when p = 2.
We denote the /-distance of the point x to the set S by
dist(x, .S). We recall the definition of e-isometry:

Definition 2.1. Given sets S C R™ and S’ C R™ (for some
m,n € N), we say that S’ is an e-isometry of S, if there
exists a mapping 1) : S — S’ which satisfies the following

property:

Vx,y € 5 (I=g)[x—y| <[[¥x)—p @)l < (1+e)lx—yl

For the unknown design setting, we shall require the notion
of Restricted Isometry Property, which is defined as follows:

Definition 2.2 ((¢, k)-RIP). A matrix A € R¥™ satisfies
(e, k)-RIP, if for every x € Spy" the following holds:

(1 =e)lx|l < [[Ax]| < (1 + )]l 2)

We use the following version of Gordon’s Theorem repeat-
edly in this work.

Theorem 2.3 (Gordon’s Theorem (Gordon, 1985)). Given
S c SP7! and a random gaussian matrix G~

1d/ N(0,1)4*P e have

ﬂ

w(S)
Vd'

E [maXHGxHQ} <1+
G L xes

It directly implies the following generalization of the
Johnson-Lindenstrauss lemma.

Theorem 2.4 (Generalized Johnson-Lindenstrauss lemma).
Let S C S™~'. Then there exists linear transformation

d:R" — Rd/,for d = O(w(gsz)2>, such that ® is an

e-isometry on S. Moreover, & ~ ﬁN(O, D¥*" s an

e-isometry on S with high probability.

It can be easily verified that the quantity maxxcg ||Gx||2 is
1-Lipschitz with respect to G. Therefore, using Gaussian
concentration for Lipschitz functions, we get the following
corollary :

Corollary 2.5. Let S and G be as in Theorem 2.3. Then for
all e > 0, we have

w(S5)
Pr (ngcan S1 o4 (1+e) \/07>
< exp (- 0(w(9)?)
The following lemma gives concentration for the gaussian
width:

Lemma 2.6 (Concentration on the gaussian width
(Boucheron et al., 2013)). Let S C R% Let W =
SUpycg(g, v) where g is drawn from N(0,1)%. Then:

w2
Pr[[W —EW| > u] < 2e” 202

where 0° = supycg (|v|3). Notice that the bound is di-

mension independent.

Lastly, we shall use the ¢5-variant of the approximate
Carathéodory’s Theorem:
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Theorem 2.7. (Theorem 0.1.2 (Vershynin, 2016) ) Given
X = {wi,...,w,} where ||w;|| < 1 for everyi € [p].
Then for every choice z € conv (X ) and k € N, there exists
Wiy, Wiy, ..., Wy, such that

g

JE[K]

2
< —F—= 3
Sk ®

2.1. Algorithmic Estimation of Gaussian Width and
Norm of a vector

We record here simple lemmas bounding the number of
linear queries needed to estimate the gaussian width of a set
and the length of a vector.

Lemma 2.8 (Estimating Gaussian Width using linear
queries). For any u > 4, € € (0,1/2) and § > 0, there
is a randomized algorithm that given a set S C R? and
vl € [1 £ €] for all v € S, computes & such that
w(S) —u < ® < w(S) + u with probability at least 1 — 4.
The algorithm makes O(log(1/9) - |S|) linear queries to S.

Proof. By Lemma 2.6, for a random g ~ N(0,1)4,
sup,cg(8g, v) is away from w(.S) by u with probability at
most 2¢~16/45 < 0.1. By the Chernoff bound, the median
of O(log 6~ 1) trials will satisfy the conditions required of
w with probability at least 1 — 4. O

Lemma 2.9 (Estimating norm using linear queries). Given
e € (0,1/2) and § > 0, for any vector x € R?, only
O(e2log 87 1) linear queries to x suffice to decide whether
Ix|| € [1 — €, 1+ €] with success probability 1 — 4.

Proof. Itis easy to verify that Egx(0,1)2[(g, X)?] = [|x]|*.
Therefore, it can be estimated to a multiplicative error of
(1 £ £/2) by taking the average of the squares of linear

measurements using O(S% log %)-queries. For the case

Ix||2 < 2, a multiplicative error (1 £ £/2) implies an addi-
tive error of . Furthermore, when ||x||2 > 2, a multiplica-
tive error of (1 £¢/2) implies that L > 2(1 —¢/2) > 14«
fore < 1/2. O

3. Analysis for Unknown Design setting

In this section, we prove Theorem 1.2. Let .S denote the set
{¥1,.-.,¥p}. Our testing algorithm is shown in Algorithm
1.

The number of linear queries made by the tester is
O(pe~%1log(p/d)) in Line 1 and O(plog 1) in Line 2.
3.1. Completeness

Assume that for each i € [p], y; = Ax; for a matrix A €
R*™ satisfying (e, k)-RIP and x; € Spj". By definition

Algorithm 1 SparseTestUnknown

1: Use Lemma 2.9 to decide with probability at least 1 —
0/2 if there exists y; such that ||y;|| & [1 — 2¢,1 + 2¢].
Reject if so.

2: Use Lemma 2.8 to obtain &, an estimate of w(S) within
additive error \/3k log(m/k) with probability at least
1-4/2.

3: Acceptif @ < 44/3klog(m/k), else reject.

of RIP, we know that 1 — ¢ < ||ly;|| < 1+ €, so that Line 1
of the algorithm will pass with probability at least 1 — §/2.

From Lemma 1.9, we know that w({xi,...x,}) <
24/3klog(m/k). Lemma 3.1 shows that the gaussian width
of S is approximately the same; its proof, deferred to the ap-
pendix (Section B.4), uses Slepian’s Lemma (Lemma B.3).

Lemma 3.1. Let X C 8™ ! be a finite set, and let S C R?
be an e-isometric embedding of X. Then

(1 -g)w(X) <w(S) < (1+e)w(X) 4)

Hence, the gaussian width of y1,...,y, is at most 2(1 +

€)+/3klog(m/k). Taking into account the additive error
in Line 2, we see that with probability at least 1 — §/2,

@ < (34 2¢)/3klog(m/k) < 44/3klog(m/k). Hence,
the tester accepts with probability at least 1 — 4.

3.2. Soundness

As mentioned before, in order to prove soundness we need to
show that whenever the gaussian width of the set S is small,
itis close to some sparse point-set. Let w* = 4,/3k log 7*.
‘We shall break the analysis into two cases:

Case (i) {w* > (6/0)2\/&}: For this case, we use the

fact random projection of discretized sparse point-sets (Def-
inition A.1) form an appropriated cover of S. This is for-
malized in the following theorem, which in a sense shows
an approximate inverse of Gordon’s Theorem for sparse
vectors:

Theorem 3.2. Given ¢ > 0 and integers C,d,k and

m, let n = O(E%log(m/k:)). Suppose m > k/e8.
Let & : R™ — R"™ be drawn from ﬁN(OJ)”Xm.

Then, for { = O(ke™*), with high probability, the
set ®"°™(Sp, ) is an O(c'/*)-cover of S™~', where
o (x) = &(x)/||®(x)[[2-

The proof of the above Theorem is deferred to Section A.
From the choice of parameters we have d < % log %
Therefore, using the above Theorem we know that there
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exists (g, k)-RIP matrix ® € R**™ such that "°"™ (Sp}*)

is an O(g'/*)-cover of S?~! (and therefore it is a e'/4-
cover of S). Therefore, there exists X € R™*? such that
Y = ®(X) + E where the columns of X and E satisfy the
respective || - ||o and || - ||2-upper bounds respectively.

Case (ii) {w* < (5/0)2\/3}: For this case, we use the
following result on the concentration of ¢.,-norm:

Lemma 3.3. Given S C 8%, we have

w(S)] 1

Pr

< —
ey ylfenrg(g)l\yllm\ 75| 25

where Qg is the orthogonal group in R i.e., R is a uniform
random rotation.

Although this concentration bound is known, for complete-
ness we give a proof in the appendix (Section B.7). From
the above lemma, it follows that there exists R € O, such
that for any z € Z := R(S) we have ||z|o < £? and
therefore Y = R~!Z. Furthermore, since R is orthogonal,
therefore the matrix R ! is also orthogonal, and therefore
it satisfies (¢, k)-RIP.

To complete the proof, we observe that even though the
given factorization has inner dimension d, we can triv-
ially extend it to one with inner dimension m. This
can be done by constructing ¢ = [Rfl G] with G ~
ﬁN(O, 1)4xm=4_ Since w* < d, from Theorem 2.4 it
follows that with high probability G (and consequently ®)
will satisfy (e, k)-RIP. Finally, we construct Z € R™*"
by padding Z with m — d rows of zeros. Therefore, by
construction Y = & - Z, where for every i € [p] we have
||lz; || o < £2. Hence the claim follows.

4. Analysis for the Known Design setting

In this section, we describe and analyze the tester for the
known design matrix case. The algorithm itself is a simple
convex-hull membership test, which can be solved using a
linear program.

Algorithm 2 SparseTest-KnownDesign

1: Set n = 100klog ¢, sample projection matrix ® ~

ﬁ (071)n><d

2: Observe linear sketch y = ®(y)
Let AL =AU-A
4: Acceptiff § € vk - conv(®(Ay))

ol

We shall now prove the completeness and soundness guar-
antees of the above tester. The running time bound follows
because convex hull membership reduces to linear program-
ming.

Completeness Lety = Ax where A € R "™ is an arbi-
trary matrix with ||a;|| = 1 for every i € [m]. Furthermore
Ix|l2 =1 and ||x|lo < k. Therefore, by Cauchy-Schwartz
we have ||x||; < VE|x||2 = Vk. Hence, it follows that
y € Vk - conv(AL). Since ® : R™ — R? is a linear trans-
formation, we have ®(y) € V& - conv(®(Ax)). Therefore,
the tester accepts with probability 1.

Soundness Consider the set A eV which is the set of all

(2k /£?)-uniform convex combinations of vk (A ) i.e.,

2 . 2k /&2
A= { E:Q Vi multiset Q2 € (\/E.Ai) }
Vi€
(&)

Then, from the approximate Carathéodory theorem, it fol-
lows that A_ IVE is an e-cover of vk - conv (Ai). Further-

2k /&2

more, |Aa/\/E| < (2m) By our choice of n, with

probability at least 1 — §/2, the set @({y} U As/\/E) is
e-isometric to {y } U As/\/E'

Let 1215/\/; = (I)(As/\/E)- Agair~1, by the approximate
Carathéodory’s theorem, the set A /R is an e-cover of

®(Vk - conv(AL)). Now suppose the test accepts y with
probability at least 6. Then, with probability at least §/2,
the test accepts and the above e-isometry conditions hold
simultaneously. Then,

¥ € Vk - conv(®(AL))
= dist(y,4,,5) <e
2 dist(y,AE/\/E) <e(l-— E)_l < 2
= dist(y, Vk - conv(Ai)) < 2

where step 1 follows from the e-cover guarantee of fls IR
step 2 follows from the e-isometry guarantee. Invoking the
approximate Carathéodory theorem, we get that there exists
¥ = Ax € Vk-conv(£A) such that | %]|g < O(k/e?) and
Il — y|| < O(e). This completes the soundness direction.

5. Experimental Results

Our algorithm for the unknown design setting is based on
the principle that the property of sparse representability
in some basis admits an approximate characterization in
terms of gaussian width. This section provides experimental
evidence which supplements our theoretical results. For the
empirical study, we use the classic Barbara image (which is
of size 512 x 512 pixels). Specifically, we consider 9 sub-
images of size 100 x 100 pixels each (see Figure 1). For
each such sub-image, we compute a matrix representation
(by the standard technique of subdividing the images into
patches, see, e.g., (Elad & Aharon, 2006)). In particular,
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Figure 1. Sub-images used as data points.

each sub-image is represented as a matrix Y of dimension
64 x 8649. Then, for each matrix Y corresponding to a
sub-image, we estimate the gaussian width of the £5-column
normalized matrix. In addition, setting the number of atoms
m = 100 and sparsity £ = 10, we run the k-SVD algorithm
for 50 iterations and record the reconstruction error.®

Figure 2 shows the comparison between gaussian width and
reconstruction error, in which we observe that there is an
approximate correlation between the two quantities. In par-
ticular, for sub-images 2,7 and 8—which mostly consist of
background—both the gaussian width and the reconstruc-
tion error is small. On the other hand, images 3, 6 and 9,
which consist of intricate patterns and objects, have large
gaussian width as well as large reconstruction error. Con-
sequently, we can deduce that for sub-images with large
gaussian width, in order to achieve low reconstruction error,
one would have consider a larger number of atoms m or
larger sparsity k.

6. Conclusion and Open Questions

In this paper, we studied the problem of testing sparsity
with respect to unknown and known bases. While the op-
timization variants of these problems (namely Dictionary
Learning and Sparse Recovery) are known to be NP-hard
in the worst case, our results show that under appropriate
relaxations, these problems admit efficient property testing
algorithms. Future work include designing testing algo-
rithms for sparsity over an unknown basis with stronger

®For a matrix Y € R**™ approximated by overcomplete basis
A and coefficient matrix X, the reconstruction error is equal to
2
1Y — AX[[5/(n.d).

Reconstruction Error
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Figure 2. Correlation of gaussian width and recon-
struction error.

guarantees or developing impossibility results. We also
hope that this paper leads to study of property testing of
other widely studied hypotheses in machine learning such
as nonnegative rank and VC-dimension.
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