
Provable Defenses via the Convex Outer Adversarial Polytope

A. Adversarial Polytope
A.1. LP Formulation

Recall (4), which uses a convex outer bound of the adver-
sarial polytope.

minimize
ẑk

cT ẑk, subject to ẑk ∈ Z̃ε(x) (18)

With the convex outer bound on the ReLU constraint and
the adversarial perturbation on the input, this minimization
problem is the following linear program

minimize
ẑk

cT ẑk, subject to

ẑi+1 = Wizi + bi, i = 1, . . . , k − 1

z1 ≤ x+ ε

z1 ≥ x− ε
zi,j = 0, i = 2, . . . , k − 1, j ∈ I−i
zi,j = ẑi,j , i = 2, . . . , k − 1, j ∈ I+

i

zi,j ≥ 0,

zi,j ≥ ẑi,j ,(
(ui,j − `i,j)zi,j

− ui,j ẑi,j
)
≤ −ui,j`i,j


i = 2, . . . , k − 1, j ∈ Ii

(19)

A.2. Proof of Theorem 1

In this section we derive the dual of the LP in (19), in order
to prove Theorem 1, reproduced below:

Theorem. The dual of (4) is of the form

maximize
α

Jε(x, gθ(c, α))

subject to αi,j ∈ [0, 1], ∀i, j
(20)

where Jε(x, ν) =

−
k−1∑
i=1

νTi+1bi−xT ν̂1− ε‖ν̂1‖1 +

k−1∑
i=2

∑
j∈Ii

`i,j [νi,j]+ (21)

and gθ(c, α) is a k layer feedforward neural network given
by the equations

νk = −c
ν̂i = WT

i νi+1, for i = k − 1, . . . , 1

νi,j =


0 j ∈ I−i
ν̂i,j j ∈ I+

i
ui,j

ui,j−`i,j [ν̂i,j]+ − αi,j [ν̂i,j]− j ∈ Ii,

for i = k − 1, . . . , 2

(22)

where ν is shorthand for (νi, ν̂i) for all i (needed because
the objective J depends on all ν terms, not just the first),
and where I−i , I+

i , and Ii denote the sets of activations in
layer i where the lower and upper bounds are both negative,
both positive, or span zero respectively.

Proof. In detail, we associate the following dual variables
with each of the constraints

ẑi+1 = Wizi + bi ⇒ νi+1 ∈ R|ẑi+1|

z1 ≤ x+ ε⇒ ξ+ ∈ R|x|

−z1 ≤ −x+ ε⇒ ξ− ∈ R|x|

−zi,j ≤ 0⇒ µi,j ∈ R
ẑi,j − zi,j ≤ 0⇒ τi,j ∈ R

−ui,j ẑi,j + (ui,j − `i,j)zi,j ≤ −ui,j`i,j ⇒ λi,j ∈ R
(23)

where we note that can easily eliminate the dual variables
corresponding to the zi,j = 0 and zi,j = ẑi,j from the opti-
mization problem, so we don’t define explicit dual variables
for these; we also note that µi,j , τi,j , and λi,j are only de-
fined for i, j such that j ∈ Ii, but we keep the notation
as above for simplicity. With these definitions, the dual
problem becomes

maximize

(
− (x+ ε)T ξ+ + (x− ε)T ξ−

−
k−1∑
i=1

νTi+1bi +

k−1∑
i=2

λTi (ui`i)

)
subject to

νk = −c
νi,j = 0, j ∈ I−i
νi,j = (WT

i νi+1)j , j ∈ I+
i(

(ui,j − `i,j)λi,j

−µi,j − τi,j
)

= (WT
i νi+1)j

νi,j = ui,jλi,j − µi


i = 2, . . . , k − 1

j ∈ Ii

WT
1 ν2 = ξ+ − ξ−

λ, τ, µ, ξ+, ξ− ≥ 0
(24)

The key insight we highlight here is that the dual problem
can also be written in the form of a deep network, which
provides a trivial way to find feasible solutions to the dual
problem, which can then be optimized over. Specifically,
consider the constraints

(ui,j − `i,j)λi,j − µi,j − τi,j = (WT
i νi+1)j

νi,j = ui,jλi,j − µi.
(25)

Provable Defenses via the Convex Outer Adversarial Polytope

Note that the dual variable λ corresponds to the upper
bounds in the convex ReLU relaxation, while µ and τ corre-
spond to the lower bounds z ≥ 0 and z ≥ ẑ respectively; by
the complementarity property, we know that at the optimal
solution, these variables will be zero if the ReLU constraint
is non-tight, or non-zero if the ReLU constraint is tight.
Because we cannot have the upper and lower bounds be
simultaneously tight (this would imply that the ReLU input
ẑ would exceed its upper or lower bound otherwise), we
know that either λ or µ+ τ must be zero. This means that
at the optimal solution to the dual problem

(ui,j − `i,j)λi,j = [(WT
i νi+1)j]+

τi,j + µi,j = [(WT
i νi+1)j]−

(26)

i.e., the dual variables capture the positive and negative
portions of (WT

i νi+1)j respectively. Combining this with
the constraint that

νi,j = ui,jλi,j − µi (27)

means that

νi,j =
ui,j

ui,j − `i,j
[(WT

i νi+1)j]+−α[(WT
i νi+1)j]− (28)

for j ∈ Ii and for some 0 ≤ α ≤ 1 (this accounts for the
fact that we can either put the “weight” of [(WT

i νi+1)j]−
into µ or τ , which will or will not be passed to the next νi).
This is exactly a type of leaky ReLU operation, with a slope
in the positive portion of ui,j/(ui,j − `i,j) (a term between
0 and 1), and a negative slope anywhere between 0 and 1.
Similarly, and more simply, note that ξ+ and ξ− denote the
positive and negative portions of WT

1 ν2, so we can replace
these terms with an absolute value in the objective. Finally,
we note that although it is possible to have µi,j > 0 and
τi,j > 0 simultaneously, this corresponds to an activation
that is identically zero pre-ReLU (both constraints being
tight), and so is expected to be relatively rare. Putting this
all together, and using ν̂ to denote “pre-activation” variables
in the dual network, we can write the dual problem in terms
of the network

νk = −c
ν̂i = WT

i νi+1, i = k − 1, . . . , 1

νi,j =


0 j ∈ I−i
ν̂i,j j ∈ I+

i
ui,j

ui,j−`i,j [ν̂i,j]+ − αi,j [ν̂i,j]− j ∈ Ii,

for i = k − 1, . . . , 2

(29)

which we will abbreviate as ν = gθ(c, α) to emphasize the
fact that −c acts as the “input” to the network and α are per-
layer inputs we can also specify (for only those activations
in Ii), where ν in this case is shorthand for all the νi and ν̂i
activations.

The final objective we are seeking to optimize can also be
written

Jε(x, ν) =−
k−1∑
i=1

νTi+1bi − (x+ ε)T [ν̂1]+ + (x− ε)T [ν̂1]−

+

k−1∑
i=2

∑
j∈Ii

ui,j`i,j
ui,j − `i,j

[ν̂i,j]+

=−
k−1∑
i=1

νTi+1bi − xT ν̂1 − ε‖ν̂1‖1

+

k−1∑
i=2

∑
j∈Ii

`i,j [νi,j]+

(30)

A.3. Justification for Choice in α

While any choice of α results in a lower bound via the
dual problem, the specific choice of α =

ui,j
ui,j−`i,j is also

motivated by an alternate derivation of the dual problem
from the perspective of general conjugate functions. We can
represent the adversarial problem from (2) in the following,
general formulation

minimize cT ẑk + f1(z1) +

k−1∑
i=2

fi(ẑi, zi)

subject to ẑi+1 = Wizi + bi, i = 1, . . . , k − 1

(31)

where f1 represents some input condition and fi represents
some non-linear connection between layers. For example,
we can take fi(ẑi, zi) = I(max(ẑi, 0) = zi) to get ReLU
activations, and take f1 to be the indicator function for an
`∞ ball with radius ε to get the adversarial problem in an
`∞ ball for a ReLU network.

Forming the Lagrangian, we get

L(z, ν, ξ) = cT ẑk + νTk ẑk + f1(z1)− νT2 W1z1

+

k−1∑
i=2

(
fi(ẑi, zi)− νTi+1Wizi + νTi ẑi

)
−
k−1∑
i=1

νTi+1bi

(32)

Conjugate functions We can re-express this using conju-
gate functions defined as

f∗(y) = max
x

yTx− f(x)

but specifically used as

−f∗(y) = min
x
f(x)− yTx

Provable Defenses via the Convex Outer Adversarial Polytope

Plugging this in, we can minimize over each ẑi, zi pair
independently

min
z1

f1(z1)− νT2 W1z1 = −f∗1 (WT
1 ν2)

min
ẑi,zi

fi(ẑi, zi)− νTi+1Wizi + νTi ẑi

= −f∗i (−νi,WT
i νi+1), i = 2, . . . , k − 1

min
ẑk

cT ẑk + νTk ẑk = I(νk = −c)

(33)

Substituting the conjugate functions into the Lagrangian,
and letting ν̂i = WT

i νi+1, we get

maximize
ν

− f∗1 (ν̂1)−
k−1∑
i=2

f∗i (−νi, ν̂i)−
k−1∑
i=1

νTi+1bi

subject to νk = −c
ν̂i = WT

i νi+1, i = 1, . . . , k − 1
(34)

This is almost the form of the dual network. The last step is
to plug in the indicator function for the outer bound of the
ReLU activation (we denote the ReLU polytope) for fi and
derive f∗i .

ReLU polytope Suppose we have a ReLU polytope

Si = {(ẑi, zi) : ẑi,j ≥ 0,

zi,j ≥ ẑi,j ,
−ui,j ẑi,j + (ui,j − `i,j)zi,j ≤ −ui,j`i,j}

(35)

So IS is the indicator for this set, and I∗S is its conjugate.
We will omit subscripts (i, j) for brevity, but we can do this
case by case elementwise.

1. If u ≤ 0 then S ⊂ {(ẑ, z) : z = 0}.
Then, I∗S(ŷ, y) ≤ maxẑ ŷ · ẑ = I(ŷ = 0).

2. If ` ≥ 0 then S ⊂ {(ẑ, z) : ẑ = z}.
Then, I∗S(ŷ, y) ≤ maxz ŷ · z + y · z = (ŷ + y)z =
I(ŷ + y = 0).

3. Otherwise S = {(ẑ, z) : ẑ ≥ 0, z ≥ ẑ,−uẑ + (u −
`)z = −u`}. The maximum must occur either on the
line −uẑ + (u − `)z = −u` over the interval [0, u],
or at the point (ẑ, z) = (0, 0) (so the maximum must
have value at least 0). We proceed to examine this last
case.

Let S be the set of the third case. Then:

I∗S(ŷ, y)

=

[
max

0<ẑ<u
y · u

u− `
(ẑ − `) + ŷ · ẑ

]
+

=

[
max

0<ẑ<u

(
u

u− `
y + ŷ

)
ẑ − u`

u− `
y

]
+

=

[
max

0<ẑ<u
y · u

u− `
(ẑ − `) + ŷ · ẑ = g(ŷ, y)

]
+

=


[
− u`

u− `
y

]
+

if
u

u− `
y + ŷ ≤ 0[(

u

u− `
y + ŷ

)
u− u`

u− `
y

]
+

if
u

u− `
y + ŷ > 0

(36)
Observe that the second case is always larger than first, so
we get a tighter upper bound when u

u−`y + ŷ ≤ 0. If we
plug in ŷ = −ν and y = ν̂, this condition is equivalent to

u

u− `
ν̂ ≤ ν

Recall that in the LP form, the forward pass in this case was
defined by

ν =
u

u− `
[ν̂]+ + α[ν̂]−

Then, α = u
u−l can be interpreted as the largest choice of

α which does not increase the bound (because if α was any
larger, we would enter the second case and add an additional(

u
u−` ν̂ − ν

)
u term to the bound).

We can verify that using α = u
u−` results in the same dual

problem by first simplifying the above to

I∗S (ν, ν̂) = −l[ν]+

Combining this with the earlier two cases and plugging into
(34) using f∗i = I∗S results in

maximize
ν

− xT ν̂1 − f∗1 (ν̂1)−
k−1∑
i=1

νTi+1bi

+

k−1∑
i=2

∑
j∈I

li,j [νi,j]+


subject to

νk = −c
ν̂i = WT

i νi+1, i = 1, . . . , k − 1

νi,j = 0, i = 2, . . . , k − 1, j ∈ I−i
νi,j = ν̂i,j , , i = 2, . . . , k − 1, j ∈ I+

i

νi,j =
ui,j

ui,j − li,j
ν̂i,j , i = 2, . . . , k − 1, j ∈ Ii

(37)
where the dual network here matches the one from (7) ex-
actly when α =

ui,j
ui,j−li,j .

Provable Defenses via the Convex Outer Adversarial Polytope

A.4. Proof of Theorem 2

In this section, we prove Theorem 2, reproduced below:
Theorem. Let L be a monotonic loss function that satisfies
Property 1. For any data point (x, y), and ε > 0, the worst
case adversarial loss from (11) can be upper bounded with

max
‖∆‖∞≤ε

L(fθ(x+ ∆), y) ≤ L(−Jε(x, gθ(ey1T − I)), y)

where Jε is as defined in (6) for a given x and ε, and gθ is
as defined in (7) for the given model parameters θ.

Proof. First, we rewrite the problem using the adversarial
polytope Zε(x).

max
‖∆‖∞≤ε

L(fθ(x+ ∆), y) = max
ẑk∈Zε(x)

L(ẑk, y)

Since L(x, y) ≤ L(x− a1, y) for all a, we have

max
ẑk∈Zε(x)

L(ẑk, y) ≤ max
ẑk∈Zε(x)

L(ẑk − (ẑk)y1, y)

= max
ẑk∈Zε(x)

L((I − ey1T)ẑk, y)

= max
ẑk∈Zε(x)

L(Cẑk, y)

(38)

where C = (I − ey1T). Since L is a monotone loss func-
tion, we can upper bound this further by using the element-
wise maximum over [Cẑk]i for i 6= y, and elementwise-
minimum for i = y (note, however, that for i = y,
[Cẑk]i = 0). Specifically, we bound it as

max
ẑk∈Zε(x)

L(Cẑk, y) ≤ L(h(ẑk))

where, if Ci is the ith row of C, h(zk) is defined element-
wise as

h(zk)i = max
ẑk∈Zε(x)

Ciẑk

This is exactly the adversarial problem from (2) (in its max-
imization form instead of a minimization). Recall that J
from (6) is a lower bound on (2) (using c = −Ci).

Jε(x, gθ(−Ci)) ≤ min
ẑk∈Zε(x)

−CTi ẑk (39)

Multiplying both sides by −1 gives us the following upper
bound

−Jε(x, gθ(−Ci)) ≥ max
ẑk∈Zε(x)

CTi ẑk

Applying this upper bound to h(zk)i, we conclude

h(zk)i ≤ −Jε(x, gθ(−Ci))

Applying this to all elements of h gives the final upper
bound on the adversarial loss.

max
‖∆‖∞≤ε

L(fθ(x+ ∆), y) ≤ L(−Jε(x, gθ(ey1T − I)), y)

A.5. Proof of Corollary 1

In this section, we prove Corollary 1, reproduced below:

Theorem. For a data point x and ε > 0, if

min
y 6=f(x)

[Jε(x, gθ(ef(x)1
T − I, α))]y ≥ 0 (40)

then the model is guaranteed to be robust around this data
point. Specifically, there does not exist an adversarial exam-
ple x̃ such that |x̃− x|∞ ≤ ε and fθ(x̃) 6= fθ(x).

Proof. Recall that J from (6) is a lower bound on (2). Com-
bining this fact with the certificate in (40), we get that for
all y 6= f(x),

min
ẑk∈Zε(x)

(ẑk)f(x) − (ẑk)y ≥ 0

Crucially, this means that for every point in the adversarial
polytope and for any alternative label y, (ẑk)f(x) ≥ (ẑk)y,
so the classifier cannot change its output within the adver-
sarial polytope and is robust around x.

B. Experimental Details
B.1. 2D Example

Problem Generation We incrementally randomly sample
12 points within the [0, 1] xy-plane, at each point waiting
until we find a sample that is at least 0.16 away from other
points via `∞ distance, and assign each point a random label.
We then attempt to learn a robust classifier that will correctly
classify all points with an `∞ ball of ε = 0.08.

Parameters We use the Adam optimizer (Kingma & Ba,
2015) (over the entire batch of samples) with a learning rate
of 0.001.

Visualizations of the Convex Outer Adversarial Poly-
tope We consider some simple cases of visualizing the
outer approximation to the adversarial polytope for random
networks in Figure 6. Because the output space is two-
dimensional we can easily visualize the polytopes in the
output layer, and because the input space is two dimen-
sional, we can easily cover the entire input space densely to
enumerate the true adversarial polytope. In this experiment,
we initialized the weights of the all layers to be normal
N (0, 1/

√
nin) and biases normal N (0, 1) (due to scaling,

the actual absolute value of weights is not particularly im-
portant except as it relates to ε). Although obviously not
too much should be read into these experiments with ran-
dom networks, the main takeaways are that 1) for “small”
ε, the outer bound is an extremely good approximation to
the adversarial polytope; 2) as ε increases, the bound gets
substantially weaker. This is to be expected: for small ε, the
number of elements in I will also be relatively small, and

Provable Defenses via the Convex Outer Adversarial Polytope

1.810 1.815 1.820 1.825 1.830 1.835 1.840 1.845 1.850
ẑk, 1

1.330

1.325

1.320

1.315

1.310

1.305

1.300

1.295

1.290
ẑ
k
,2

Outer approximation
True adversarial polytope

0.345 0.350 0.355 0.360 0.365 0.370 0.375 0.380 0.385
ẑk, 1

0.335

0.340

0.345

0.350

0.355

0.360

0.365

ẑ
k
,2

0.094 0.096 0.098 0.100 0.102 0.104 0.106 0.108
ẑk, 1

0.64

0.65

0.66

0.67

0.68

0.69

0.70

ẑ
k
,2

0.82 0.80 0.78 0.76 0.74 0.72 0.70
ẑk, 1

0.330

0.325

0.320

0.315

0.310

0.305

0.300

0.295

0.290

ẑ
k
,2

0.32 0.31 0.30 0.29 0.28 0.27 0.26
ẑk, 1

0.67

0.68

0.69

0.70

0.71

ẑ
k
,2

1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11
ẑk, 1

1.33

1.32

1.31

1.30

1.29

ẑ
k
,2

0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85
ẑk, 1

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ẑ
k
,2

1.70 1.75 1.80 1.85 1.90 1.95 2.00 2.05
ẑk, 1

3.2

3.1

3.0

2.9

2.8

2.7

2.6

ẑ
k
,2

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
ẑk, 1

1.5

1.6

1.7

1.8

1.9

2.0

2.1

ẑ
k
,2

Figure 6. Illustrations of the true adversarial polytope (gray) and our convex outer approximation (green) for a random 2-100-100-100-
100-2 network withN (0, 1/

√
n) weight initialization. Polytopes are shown for ε = 0.05 (top row), ε = 0.1 (middle row), and ε = 0.25

(bottom row).

thus additional terms that make the bound lose are expected
to be relatively small (in the extreme, when no activation
can change, the bound will be exact, and the adversarial
polytope will be a convex set). However, as ε gets larger,
more activations enter the set I, and the available freedom
in the convex relaxation of each ReLU increases substan-
tially, making the bound looser. Naturally, the question of
interest is how tight this bound is for networks that are actu-
ally trained to minimize the robust loss, which we will look
at shortly.

Comparison to Naive Layerwise Bounds One addi-
tional point is worth making in regards to the bounds we
propose. It would also be possible to achieve a naive “layer-
wise” bound by iteratively determining absolute allowable
ranges for each activation in a network (via a simple norm
bound), then for future layers, assuming each activation can
vary arbitrarily within this range. This provides a simple iter-
ative formula for computing layer-by-layer absolute bounds
on the coefficients, and similar techniques have been used
e.g. in Parseval Networks (Cisse et al., 2017) to produce

more robust classifiers (albeit there considering `2 pertur-
bations instead of `∞ perturbations, which likely are better
suited for such an approach). Unfortunately, these naive
bounds are extremely loose for multi-layer networks (in the
first hidden layer, they naturally match our bounds exactly).
For instance, for the adversarial polytope shown in Figure 6
(top left), the actual adversarial polytope is contained within
the range

ẑk,1 ∈ [1.81, 1.85], ẑk,2 ∈ [−1.33,−1.29] (41)

with the convex outer approximation mirroring it rather
closely. In contrast, the layerwise bounds produce the
bound:

ẑk,1 ∈ [−11.68, 13.47], ẑk,2 ∈ [−16.36, 11.48]. (42)

Such bounds are essentially vacuous in our case, which
makes sense intuitively. The naive bound has no way to
exploit the “tightness” of activations that lie entirely in the
positive space, and effectively replaces the convex ReLU
approximation with a (larger) box covering the entire space.
Thus, such bounds are not of particular use when consider-
ing robust classification.

Provable Defenses via the Convex Outer Adversarial Polytope

3 4 5 6 7 8 9 10 11 12
ẑk, 1 − ẑk, 2

0.20

0.15

0.10

0.05

0.00

ẑ
k
,1

+
ẑ
k
,2

Outer approximation
True adversarial polytope

Figure 7. Illustration of the actual adversarial polytope and the
convex outer approximation for one of the training points after the
robust optimization procedure.

Outer Bound after Training It is of some interest to see
what the true adversarial polytope for the examples in this
data set looks like versus the convex approximation, eval-
uated at the solution of the robust optimization problem.
Figure 7 shows one of these figures, highlighting the fact
that for the final network weights and choice of epsilon, the
outer bound is empirically quite tight in this case. In Ap-
pendix B.2 we calculate exactly the gap between the primal
problem and the dual bound on the MNIST convolutional
model. In Appendix B.4, we will see that when training on
the HAR dataset, even for larger ε, the bound is empirically
tight.

B.2. MNIST

Parameters We use the Adam optimizer (Kingma & Ba,
2015) with a learning rate of 0.001 (the default option) with
no additional hyperparameter selection. We use minibatches
of size 50 and train for 100 epochs.

ε scheduling Depending on the random weight initial-
ization of the network, the optimization process for train-
ing a robust MNIST classifier may get stuck and not con-
verge. To improve convergence, it is helpful to start with
a smaller value of ε and slowly increment it over epochs.
For MNIST, all random seeds that we observed to not con-
verge for ε = 0.1 were able to converge when started with
ε = 0.05 and taking uniform steps to ε = 0.1 in the first
half of all epochs (so in this case, 50 epochs).

MNIST convolutional filters Random filters from the
two convolutional layers of the MNIST classifier after ro-
bust training are plotted in Figure 9. We see a similar story

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Figure 8. Learned convolutional filters for MNIST of the first layer
of a trained robust convolutional network, which are quite sparse
due to the `1 term in (6).

in both layers: they are highly sparse, and some filters have
all zero weights.

Activation index counts We plot histograms to visualize
the distributions of pre-activation bounds over examples in
Figure 10. We see that in the first layer, examples have
on average more than half of all their activations in the
I−1 set, with a relatively small number of activations in the
I1 set. The second layer has significantly more values in
the I+

2 set than in the I−2 set, with a comparably small
number of activations in the I2 set. The third layer has
extremely few activations in the I3 set, with 90% all of
the activations in the I−3 set. Crucially, we see that in
all three layers, the number of activations in the Ii set is
small, which benefits the method in two ways: a) it makes
the bound tighter (since the bound is tight for activations
through the I+

i and I−i sets) and b) it makes the bound more
computationally efficient to compute (since the last term of
(6) is only summed over activations in the Ii set).

Tightness of bound We empirically evaluate the tight-
ness of the bound by exactly computing the primal LP and
comparing it to the lower bound computed from the dual
problem via our method. We find that the bounds, when
computed on the robustly trained classifier, are extremely
tight, especially when compared to bounds computed for
random networks and networks that have been trained under
standard training, as can be seen in Figure 11.

Provable Defenses via the Convex Outer Adversarial Polytope

4

2

0

2

4

Figure 9. Learned convolutional filters for MNIST of the second
layer of a trained robust convolutional network, which are quite
sparse due to the `1 term in (6).

B.3. Fashion-MNIST

Parameters We use exactly the same parameters as for
MNIST: Adam optimizer with the default learning rate
0.001, minibatches of size 50, and trained for 100 epochs.

Learning curves Figure 12 plots the error and loss curves
(and their robust variants) of the model over epochs. We
observe no overfitting, and suspect that the performance on
this problem is limited by model capacity.

B.4. HAR

Parameters We use the Adam optimizer with a learning
rate 0.0001, minibatches of size 50, and trained for 100
epochs.

Learning Curves Figure 13 plots the error and loss
curves (and their robust variants) of the model over epochs.
The bottleneck here is likely due to the simplicity of the
problem and the difficulty level implied by the value of ε, as
we observed that scaling to more more layers in this setting
did not help.

Tightness of bound with increasing ε Earlier, we ob-
served that on random networks, the bound gets progres-
sively looser with increasing ε in Figure 6. In contrast, we
find that even if we vary the value of ε, after robust training

1200 1300 1400
0

10000

20000

30000

40000

50000

60000

of

 e
xa

m
pl

es
 in

 l
ay

er
 0

1700 1800 1900 0 50 100 150

1100 1150 1200 1250
0

10000

20000

30000

40000

50000

60000

of

 e
xa

m
pl

es
 in

 l
ay

er
 1

200 250 300 350 100 200

6 8 10
of positive indices

0

10000

20000

30000

40000

50000

60000

of

 e
xa

m
pl

es
 in

 l
ay

er
 2

90 91 92 93
of negative indices

0 2 4
of origin crossing indices

Figure 10. Histograms of the portion of each type of index set (as
defined in 10 when passing training examples through the network.

Table 2. Tightness of the bound on a single layer neural network
with 500 hidden units after training on the HAR dataset with
various values of ε. We observe that regardless of how large ε is,
after training, the bound matches the error achievable by FGSM,
implying that in this case the robust bound is tight.

ε TEST ERROR FGSM ERROR ROBUST BOUND

0.05 9.20% 22.20% 22.80%
0.1 15.74% 36.62% 37.09%

0.25 47.66% 64.24% 64.47%
0.5 47.08% 67.32% 67.86%
1 81.80% 81.80% 81.80%

on the HAR dataset with a single hidden layer, the bound
still stays quite tight, as seen in Table 2. As expected, train-
ing a robust model with larger ε results in a less accurate
model since the adversarial problem is more difficult (and
potentially impossible to solve for some data points), how-
ever the key point is that the robust bounds are extremely
close to the achievable error rate by FGSM, implying that
in this case, the bound is tight.

B.5. SVHN

Parameters We use the Adam optimizer with the default
learning rate 0.001, minibatches of size 20, and trained for
100 epochs. We used an ε schedule which took uniform
steps from ε = 0.001 to ε = 0.01 over the first 50 epochs.

Provable Defenses via the Convex Outer Adversarial Polytope

0 1000 2000
Linear program #

0

10

20

Ad
ve

rs
ar

ia
l l

os
s

0 1000 2000
Linear program #

3.5

3.0

2.5

2.0

Lower bound Primal solution

0 1000 2000
Linear program #

10000

8000

6000

4000

Figure 11. Plots of the exact solution of the primal linear program and the corresponding lower bound from the dual problem for a (left)
robustly trained model, (middle) randomly intialized model, and (right) model with standard training.

Learning Curves Note that the robust testing curve is the
only curve calculated with ε = 0.01 throughout all 100
epochs. The robust training curve was computed with the
scheduled value of ε at each epoch. We see that all metrics
calculated with the scheduled ε value steadily increase after
the first few epochs until the desired ε is reached. On the
other hand, the robust testing metrics for ε = 0.01 steadily
decrease until the desired ε is reached. Since the error
rate here increases with ε, it suggests that for the given
model capacity, the robust training cannot achieve better
performance on SVHN, and a larger model is needed.

0 20 40 60 80 100
Epoch

10
0

6 × 10
1

2 × 10
0

C
ro

ss
 e

nt
ro

py
 lo

ss
robust train
normal train
robust test
normal test

0 20 40 60 80 100
Epoch

2 × 10
1

3 × 10
1

4 × 10
1

6 × 10
1

Er
ro

r r
at

e

robust train
normal train
robust test
normal test

Figure 12. Loss (top) and error rate (bottom) when training a robust
convolutional network on the Fashion-MNIST dataset.

Provable Defenses via the Convex Outer Adversarial Polytope

0 20 40 60 80 100
Epoch

10
1

10
0

C
ro

ss
 e

nt
ro

py
 lo

ss

robust train
normal train
robust test
normal test

0 20 40 60 80 100
Epoch

10
2

10
1

10
0

Er
ro

r r
at

e

robust train
normal train
robust test
normal test

Figure 13. Loss (top) and error rate (bottom) when training a robust
fully connected network on the HAR dataset with one hidden layer
of 500 units.

0 20 40 60 80 100
Epoch

10
0

10
1

C
ro

ss
 e

nt
ro

py
 lo

ss

robust train
normal train
robust test
normal test

0 20 40 60 80 100
Epoch

10
1

10
0

Er
ro

r r
at

e

robust train
normal train
robust test
normal test

Figure 14. Loss (top) and error rate (bottom) when training a robust
convolutional network on the SVHN dataset. The robust test curve
is the only curve calculated with ε = 0.01 throughout; the other
curves are calculated with the scheduled ε value.

