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1 The Empirical Results for the 20k Datasets of single cell RNA-seq and Netflix
users

Figure 8: Small single cell dataset: We computed
the true medoid of the dataset by brute force. The y-
axis shows the probability that the estimated medoid
does not correspond to the true medoid as a func-
tion of the number of pulls per arm. We note that
Med-dit has a stopping condition while RAND does
not. However we ignore the stopping condition for
Med-dit here. Med-dit stops after 80 distance eval-
uations per point without failing in any of the 1000
trials, while RAND takes around 650 distance evalua-
tions to reach a 2% probability of error.

On the 20, 000 cell dataset, we note that Med-dit
stopped within 140 distance evaluations per arm in each
of the 1000 trials (with 80 distance evaluations per arm
on average) and never returned the wrong answer. RAND
needs around 700 distance evaluations per point to ob-
tain 2% error rate.

On the 20, 000 user dataset, we note that Med-dit
stopped within 600 distance evaluations per arm in each
of the 1000 trials (with 500 distance evaluations per arm
on average) and never returned the wrong answer. RAND
needs around 4500 distance evaluations per point to ob-
tain 2% error rate.

Figure 9: Small Netflix-prize dataset: We com-
puted the true medoid of the data-set by brute force.
The y-axis shows the probability that the estimated
medoid does not correspond to the true medoid as
a function of the number of pulls per arm. We note
that Med-dit has a stopping condition while RAND
does not. However we ignore the stopping condition
for Med-dit here. Med-dit stops after 500 distance
evaluations per point without failing in any of the
1000 trials, while RAND takes around 4500 distance
evaluations to reach a 2% probability of error.
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2 The O(n log n) Distance Evaluations Under Gaussian Prior

We assume that the mean distances of each point µi are i.i.d. samples of N(�, 1). We note that this implies that
�i, 1  i  n are n i.i.d. random variables. Let � be a random variable with the same law as �i.

From the concentration of the minimum of n gaussians, we have that

min
i

µi +
p
2 log n

p! �.

This gives us that

��
p
2 log n

d! N (0, 1).

We note that by Eq (2), we have that the expected number of distance evaluations M is of the order of
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^ n

�
,

where the expection is taken with respect to the randomness of �.

To show this, it is enough to show that,
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for some constant C.
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where we use the Bounded Convergence Theorem to establish II.

We next show that all three terms in the above equation are of O(log n). We first show the easy cases of I and
III and then proceed to II.

• To establish that I is O(log n), we start by defining, q1 = P [� <

p
logn
n ]

E

nI
✓
� 

p
log n

n

◆�
= nq1.



Bagaria, Kamath, Ntranos, Zhang, and Tse

Further note that,
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• To establish that III is O(log n), we note that,
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• Finally to establish that II is O(log n), we note that,
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Letting � to go to 0 faster than ✏, we see that,
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This gives us that under this model, we have that under this model,

E[M ]  O(n log n).
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3 Proof of Theorem 1

Let M be the total number of distance evaluations when the algorithm stops. As defined above, let Ti(t) be the
number of distance evaluations of point i up to time t.

We first assume that [µ̂i(t)�Ci(t), µ̂i(t)�Ci(t)] are true
�
1� 2

n3

�
-confidence interval (Recall that � = 2

n3 ) and
show the result. Then we prove this statement.

Let i⇤ be the true medoid. We note that if we choose to update arm i 6= i
⇤ at time t, then we have

µ̂i(t)� Ci(t)  µ̂i⇤(t)� Ci⇤(t).

For this to occur, at least one of the following three events must occur:

E1 = {µ̂i⇤(t) � µi⇤(t) + Ci⇤(t)} ,
E2 = {µ̂i(t)  µi(t)� Ci(t)} ,
E3 = {�i = µi � µi⇤  2Ci(t)} .

To see this, note that if none of E1, E2, E3 occur, we have

µ̂i(t)� Ci(t)
(a)
> µi � 2Ci(t)

(b)
> µ1

(c)
> µ̂1 � C1(t),

where (a), (b), and (c) follow because E2, E3, and E1 do not hold respectively.

We note that as we compute
�
1� 2

n3

�
-confidence intervals at most n times for each point. Thus we have at most

n
2 computations of

�
1� 2

n3

�
-confidence intervals in total.

Thus E1 and E2 do not occur during any iteration with probability
�
1� 2

n

�
, because

w.p. (1� 2

n
) : |µi � µ̂i(t)|  Ci(t), 8 i 2 [n], 8 t. (3)

This also implies that with probability 1�⇥
�
1
n

�
the algorithm does not stop unless the event E3, a deterministic

condition stops occurring.

Let ⇣i be the iteration of the algorithm when it evaluates a distance to point i for the last time. From the
previous discussion, we have that the algorithm stops evaluating distances to points i when the following holds.

Ci(⇣i) 
�i

2
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2
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s
2�2 log n3
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=) Ti(⇣i) �
24�2

�2
i

log n or Ti(⇣i) � 2n.

Thus with probability (1� o(1)), the algorithm returns i⇤ as the medoid with at most M distance evaluations,
where

M 
X

i2[n]

Ti(⇣i) 
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.

To complete the proof, we next show that [µ̂i(t) � Ci(t), µ̂i(t) � Ci(t)] are true
�
1� 2

n3

�
-confidence intervals of

µi.

We observe that if point i is picked by Med-dit less than n times at time t, then Ti(t) is equal to the number of
times the point is picked. Further Ci(t) is the true (1� �)-confidence interval from Eq (1).

However, if point i is picked for the n-th time at iteration t ( line 7 of Algorithm 1) then the empirical mean is
computed by evaluating all n � 1 distances (many distances again). Hence Ti(t) = 2(n � 1). As we know the
mean distance of point i exactly, Ci(t) = 0 is still the true confidence interval.
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We remark that if a point i is picked to be updated the (n+ 1)-th time, as Ci(t) = 0, we have that 8j 6= i,

µ̂i(t) + Ci(t) = µ̂i(t)� Ci(t) < µ̂j(t)� Cj(t).

This gives us that the stopping criterion is satisfied and point i is declared as the medoid.

4 Extensions to the Theoretical Results

In this section we discuss two extensions to the theoretical results presented in the main article: 1. we can
actually relax the sub-Gaussian condition to the condition that the random variables have finite variances while
still having the same O(n log n) sample complexity; 2. there exists a medoid algorithm with a O(n log log n)
distance evaluations, which improves the sample complexity of Med-dit by a log n factor and is essentially
almost-lienar.

In short, the sub-Gaussian condition can be weakened the condition that the random variables of sampling with
replacement from Di have finite variances. This is by using some refined estimator to estimate the average
distance rather than using the empirical mean [Bubeck et al., 2013].

The O(n log log n) sample complexity can be achieved by another best-arm algorithm called exponential-gap
[Karnin et al., 2013]. This algorithm is log n faster than UCB-medoid. But this improvement is at the sacrifice
of a much larger constant factor.

4.1 Weakening the Sub-Gaussian Assumption

Careful readers may notice that in order to have the O(n log n) sample complexity, UCB-medoid relies on a
concentration bound where the tail probability decays exponentially. In the main article, this is achieved by
assuming that for each point xi, the random variable of sampling with replacement from Di is �-sub-Gaussian.
As a result, we can have the sub-Gaussian tail bound that for any point xi at time t, with probability at least
1� �, the empirical mean µ̂i satisfies

|µi � µ̂i| 

s
2�2 log 2

�

Ti(t)
.

In fact, as pointed out by Bubeck et al. [2013], to achieve the O(n log n) sample complexity, all we need is
a performance guarantee like the one shown above for the empirical mean. To be more precise, we need the
following property:

Assumption 1. [Bubeck et al., 2013] Let ✏ 2 (0, 1] be a positive parameter and let c, v be positive constants.
Let X1, · · · , XT be i.i.d. random variables with finite mean µ. Suppose that for all � 2 (0, 1), there exists an
estimator µ̂ = µ̂(T, �) such that, with probability at least 1� �,

|µ� µ̂|  v
1

1+✏

✓
c log 2

�

T

◆ ✏
1+✏

.

Remark 2. If the distribution of Xj satisfies �-sub-Gaussian condition, then Assumption 1 is satisfied for ✏ = 1,
c = 2, and variance factor v = �

2.

However, Assumption 1 can be satisfied with conditions much weaker than the sub-Gaussian condition. One way
is by substituing the empirical mean estimator by some refined mean estimator that gives the exponential tail
bound. Specifically, as suggested by Bubeck et al. [2013], we can use Catoni’s M estimator [Catoni et al., 2012].

Catoni’s M estimator is defined as follows: let  : R ! R be a continuous strictly increasing function satisfying

� log(1� x+
x
2

2
)   (x)  log(1 + x+

x
2

2
).

Let � 2 (0, 1) be such that T > 2 log( 1� ) and introduce

↵� =

vuut
2 log 1

�

T (�2 +
2�2 log 1

�

T�2 log 1
�
)
.
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If X1, · · · , XT are i.i.d. random variables, the Catoni’s estimator is defined as the unique value µ̂C = µ̂C(T, �)
such that

nX

i=1

 (↵�(Xi � µ̂C)) = 0.

Catoni [Catoni et al., 2012] proves that if T � 4 log 1
� and the Xj have mean µ and variance at most �2, then

with probability at least 1� �,

|µ̂C � µ|  2

s
�2 log 2

�

T
. (4)

The corresponding modification to Med-dit is as follows.

1. For the initialization step, sample each point 4 log 1
� times to meet the condition for the concentration bound

of the Catoni’s M estimator.

2. For each arm i, if Ti(t) < n, maintain the 1� � confidence interval [µ̂C,i �Ci(t), µ̂C,i +Ci(t)], where µ̂C,i is
the Catoni’s estimator of µi, and

Ci(t) = 2

s
�2 log 2

�

Ti(t)
.

Proposition 1. For i 2 [n], let �i = µi � µ
⇤. If we pick � = 1

n3 in the above algorithm, then with probability
1� o(1), it returns the true medoid with the with number of distance evaluations M such that,

M  12n log n+
X

i2[n]

✓
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�2
i

log n ^ 2n

◆

Proof. Let � = 2
n3 . The initialization step takes an extra 12n log n distance computations. Following the same

proof as Theorem 1, we can show that the modified algorithm returns the true medoid with probability at least
1 � ⇥( 1n ), and apart from the initialization, the total number of distance computations can be upper bounded
by

X

i2[n]

✓
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�2
i

log n ^ 2n
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.

So the total number of distance computations can be upper bounded by

M  12n log n+
X

i2[n]

✓
48�2

�2
i

log n ^ 2n

◆
.

Remark 3. By using the Catoni’s estimator, instead of the sub-Gaussian assumption, we only require a much
weaker assumption that the distance evaluations have finite variance. Yet, we achieve the same order of the
distance evaluation complexity.

4.2 On the O(n log log n) Algorithm

The best-arm algrithm exponential-gap [Karnin et al., 2013] can be directly applied on the medoid problem,
which takes O(

P
i 6=i⇤ �

�2
i log log��2

i ) distance evaluations, essentially O(n log log n) if �i are constants. It is an
variation of the familiy of action elimination algorithm for the best-arm problem. A typical action elimination
algorithm proceeds as follows: Maintaining a set ⌦k for k = 1, 2, · · · , initialized as ⌦1 = [n]. Then it proceeds in
epoches by sampling the arms in ⌦k a predetermined number of times rk, and maintains arms according to the
rule:

⌦k+1 = {i 2 ⌦k : µ̂a + Ca(t) < µ̂i � Ci(t)},
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where a 2 ⌦k is a reference arm, e.g. the arm with the smallest µ̂i +Ci(t). Then the algorithm terminates when
⌦k contains only one element.

The above vanilla version of the action elimination algorithm takes O(n log n) distance evaluations, same as
Med-dit. The improvement by exponential-gap is by observing that the suboptimal log n factor is due to
the large deviations of |µ̂a � µa| with a = argmini2⌦k µ̂i. Instead, exponential-gap use a subroutine median
elimination [Even-Dar et al., 2006] to determine an alternative reference arm a with smaller deviations and
allows for the removal of the log n term, where median elimination takes O( n

✏2 log
1
� ) distance evaluations to

return a ✏-optimal arm. However, this will introduce a prohibitively large constant due to the use of median
elimination. Regarding the technical details, we note both paper [Karnin et al., 2013, Even-Dar et al., 2006]
assume the boundedness of the random variables for their proof, which is only used to have the hoe✏ding
concentration bound. Therefore, with our sub-Gaussian assumption, the proof will follow symbol by symbol,
line by line.


