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Abstract

Many chronic diseases possess a shared biology.
Therapies designed for patients at risk of multi-
ple diseases need to account for the shared im-
pact they may have on related diseases to ensure
maximum overall well-being. Learning from
data in this setting differs from classical sur-
vival analysis methods since the incidence of an
event of interest may be obscured by other re-
lated competing events. We develop a semi-
parametric Bayesian regression model for sur-
vival analysis with competing risks, which can be
used for jointly assessing a patient’s risk of multi-
ple (competing) adverse outcomes. We construct
a Hierarchical Bayesian Mixture (HBM) model
to describe survival paths in which a patient’s
covariates influence both the estimation of the
type of adverse event and the subsequent survival
trajectory through Multivariate Random Forests.
In addition variable importance measures, which
are essential for clinical interpretability are in-
duced naturally by our model. We aim with this
setting to provide accurate individual estimates
but also interpretable conclusions for use as a
clinical decision support tool. We compare our
method with various state-of-the-art benchmarks
on both synthetic and clinical data.

1 Introduction

Life expectancy has dramatically increased in industrial-
ized nations over the last 200 hundred years. The aging
of populations carries over to clinical research and leads
to an increasing representation of elderly and multimorbid
individuals in study populations. Elderly individuals are
likely to experience one of several disease endpoints other
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than the endpoint of main interest (Koller et al. 2012b).
In these settings the time to occurrence of one event of
interest may be obscured by other so called competing
events. In fact, (Koller et al. 2012b) in a review of 50
clinical studies performed in individuals susceptible to
competing risks published in high-impact clinical journals
found competing risks issues in 70% of all articles. As
an example, prediction of Coronary Heart Disease events
in elderly subjects is known to be complicated by the
fact that subjects may die from other causes prior to the
observation of the disease event of interest (Wolbers et al.
2009), (Koller et al. 2012a).
Survival analysis is a method for analyzing data where the
target variable is the time to the occurrence of a certain
event. Competing risks is an extension where we distin-
guish between multiple possible events. Conceptually, we
interpret a patient’s overall survival path as being generated
from a combination of latent trajectories related to the
possible end-points/causes he/she may be at risk of ( e.g.
different diseases for instance may contribute to survival)
even though a primary cause will be recorded for each
patient. We model the distribution of event time Ti ∈ R+

and primary event cause Zi jointly. We decompose the
joint distribution into a product of latent mixing variables
which we interpret as event causes, and the conditional
distribution of the times given a particular cause resulting
in a Mixture of distributions (Larson and Dinse 1985).
Figure 1 illustrates our approach. Conventional methods
for survival analysis such as the Kaplan Meier method
and standard Cox proportional hazards regression ignore
the dependence among competing events, and as a result
underestimate true survival probabilities (see related works
section) (Putter, Fiocco, and Geskus 2007). We propose a
Bayesian learning approach that leverages common factors
among competing events to predict parameter values
supported by the data. Probabilistic statements can be
made directly about the unknown model parameters and
confidence on the resulting survival estimates which are
needed in medical practice.

Contribution. We conceptualise the competing risks prob-
lem as a mixture of competing survival trajectories with la-
tent variables determining the weight of these different but
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Figure 1: Depiction of the proposed approach. Overall sur-
vival function is generated from a weighted average of la-
tent cause-dependent survival functions and probabilities of
these trajectories occurring. For example, this would cor-
respond to a patient susceptible to three diseases but with
different baseline risks for each of them.

related trajectories. The parameters of the cause-specific
distributions and assignment variables are modelled jointly
with Multivariate Random Forest (MRF), this allows us
to learn a ”shared representation” of the patients survival
times with respect to multiple related co-morbidities and
allow for nonlinear covariate influences. The proposed
model is Bayesian: we assign a prior distribution over
the space of parameters, and update the posterior distribu-
tion given time-to-event data from patients at risk of com-
peting events. This process gives rise to patient-specific
survival distribution, from which a patient-specific, cause-
related cumulative incidence function can be easily de-
rived. Through the use of latent variables we naturally fa-
cilitate the incorporation of domain knowledge such as un-
observed dependence hierarchies or expected prevalence of
disease into the model, which enables learning clusters and
groups from data. In addition, model-free variable selec-
tion and importance measures are naturally induced by our
model. The hierarchical Bayesian learning framework pro-
posed here, that leverages the interpretability of parametric
distributions and predictive ability of non-parametric meth-
ods can be accommodated to incorporate other parametric
distributions and regression functions to suit various appli-
cations, not necessarily in medicine.

2 Related Work

It is well understood that conventional survival models are
inadequate to discriminate between competing events. Var-
ious methods have been developed for the explicit analysis

of competing risk, mainly in the Statistics literature. One
of the earliest attempts is due to (Prentice et al. 1978), in
which they implemented standard survival models like Cox
regression (Cox 1972) on a cause-specific hazard. How-
ever, covariates influence survival independently of other
causes, thus not accounting for the shared structure com-
peting events exhibit. (Fine and Gray 1999) introduced a
joint regression approach focusing on the sub-distribution
hazard. Their approach offers a direct interpretation in
terms of survival probabilities for a particular failure type,
as opposed to the cause-specific hazard model. Other as-
sumptions such as proportional hazards and linear predic-
tors may limit their inference in heterogeneous cohorts
from modern studies even though particularly in medical
application their accessible interpretation has made both of
the above widely popular.
A different modelling approach was proposed by (Larson
and Dinse 1985) in which competing risks are modelled as
a mixture of distributions with hidden type of event assign-
ment variables. We view our model as a Bayesian general-
ization of this mixture, where we use a non-linear regres-
sion function and more general event distributions.
Recently a growing interest in studying survival and com-
peting risks is palpable also in the machine learning com-
munity. For example, Survival Random Forests (Ishwaran
et al. 2008) have been adapted and applied directly to the
competing risks problem in (Ishwaran et al. 2014). What
differs here are the splitting rules used to grow the tree and
the estimated values calculated within the terminal nodes,
both based on event-specific measures. This approach –
solely data-driven – gives great flexibility but often at the
expense of interpretability: clinicians are unable to ex-
plain model predictions which has limited practical med-
ical use (Lipton 2017). Many other methods have been
developed for survival analysis such as deep exponential
families (Ranganath et al. 2016), semi-parametric Bayesian
models based on Gaussian processes (Fernández, Rivera,
and Teh 2016) and deep survival neural networks (Katz-
man et al. 2016) but these are not directly applicable to the
competing risks problem.

3 Hierarchical Bayesian Mixture

3.1 Problem Setup

In numerous medical settings we deal with a heterogeneous
set of patients at risk of experiencing multiple mutually ex-
clusive events. Each subject (patient) i is characterized by
a d-dimensional vector of covariates Xi ∈ X (with real-
ization xi), an outcome variable Ti ∈ R+, the time un-
til one of the competing events occurs, which is drawn
from a distribution Ti ∼ P(.|Xi) and a categorical vari-
able Zi ∈ {∅, 1, ...,K} (with realization zi) which indi-
cates the type of event observed. We write zi = ∅ for a
right censored observation (i.e. a patient whose follow-up



Alexis Bellot, Mihaela van der Schaar

has been interrupted) and zi = 1...K denotes one of K
competing events. Figure 2 illustrates a typical competing
risks scenario. As mentioned we construct a shared repre-

Figure 2: Illustration of survival data under competing
risks.

sentation by interpreting survival as an ensemble of latent
cause-specific survival paths. Thus, all estimated cause-
specific survival paths potentially influence the final out-
come. (Note that this interpretation differs substantially
from recent machine learning methods which consider the
event time to be the minimum of a set of cause-specific sur-
vival times and learn a shared representation through cen-
sored observations, e.g. see (Alaa and van der Schaar 2017;
Lee et al. 2018)).
Similar to conventional survival analysis, two identifiable
quantities are of interest under competing risks: the cause-
specific hazard function and the cumulative incidence func-
tion. Our goal is to estimate from an observational data set
D that comprises n independent samples of the random tu-
ple {Xi, Zi, Ti} the cumulative incidence function (CIF),

F (t, k|Xi) = P(Ti < t, Zi = k|Xi)

i.e. the probability of experiencing event k before time t.
The overall distribution function is the sum of CIFs,

F (t|Xi) =
∑
k

P(Ti < t, Zi = k|Xi)

The cause-specific hazard function,

λ(t, k|Xi) = lim
dt→0

P(t ≤ Ti ≤ t+ dt, Zi = k| (1)

Ti ≥ t,Xi)/dt

represents the instantaneous risk of experiencing an end-
point related to cause k and indicates the rate at which
mortality with respect to that cause progresses with time.
A similar expression can be derived for the overall hazard.

3.2 Model

The conceptual structure is that of a generative probabilis-
tic mixture model constructed in a hierarchical fashion. We
compute patient-specific survival estimates by modelling
the survival time Ti directly as a function of the patients

covariates through a generative probabilistic mixture
model. We decompose the joint distribution (Ti, Zi) as
P(Ti, Zi) = P(Ti|Zi)P(Zi) and write,

Ti|Zi = k ∼ GG(βik, σi, λi) (2)
Zi ∼ Cat(πi1, ..., πiK) (3)

The time until an end-point related to cause k, Ti|Zi = k,
i = 1...n is assumed to be generated from a Generalized
Gamma distribution (GG) (Cox et al. 2007). The motiva-
tion is that it contains as special cases most of the familiar
distributions used in survival settings such as the Weibull
(λ = 1), Gamma (σ = λ) and Log-Normal (λ = 0) dis-
tributions but also its parameters relate to meaningful med-
ical quantities such as the hazard shape (which is unavail-
able in nonparametric models). Formally, a random vari-
able T ∈ R+ is GG(β, σ, λ) distributed if its probability
density function, for t > 0 is of the following form:

f(t) =
|λ|(λ−2)λ

−2

σtΓ(λ−2)
(e−βt)1/σλ exp{−λ−2(e−βt)λ/σ}

where Γ(x) denotes the gamma function. The parameters
(β, σ, λ) ∈ R×R+×R model the location, scale and shape
of the distribution respectively. β acts multiplicatively on
time only, thus for fixed parameters (σ, λ), β governs the
median survival time, i.e. β = log(median) + c(σ, λ), (c
a function independent of β). This makes parameter β a
natural candidate to express the influence of covariates.

Figure 3: Graphical model induced by the HBM model.
Observable variables are in double-circled nodes.

For patients in a competing risk setting we assume survival
time to be generated from a Bayesian mixture of GG distri-
butions. The density d of patient i is thus defined as:

d(t;xi) :=

K∑
k=1

πikf(t;βik, σk, λk), t > 0 (4)
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Prior distributions on all latent parameters are introduced
to exploit the hierarchical process from which the observed
data is assumed to be generated. The graphical model in
Figure 3 illustrates this hierarchical structure. Motivated
by ensemble methods we leverage the relationship between
the functional terms, each optimizing a specific aspect of
the survival distribution. For instance, the distributional
shape is cause-specific while the median survival and base-
line risk for a disease are unique to each individual.

Mixture Regression model. The latent variables enable
a shared representation to explicitly model the influence
of competing events. It consists of the variables βi =
(βi1, ..., βiK) and πi = (πi1, ..., πiK) which propagate
the influence of covariates through a multivariate regres-
sion model. In particular Ti, Zi ⊥⊥ Xi|βi,πi. Let gβ , gπ :
Rd → RK be multivariate regression functions, we write
generally,

βi|xi ∼ gβ(xi) + εβ,i, εβ,i ∼ N (0, α2
β) (5)

πi|xi ∼ l(gπ(xi) + επ,i), επ,i ∼ N (0, α2
π) (6)

where l(x)i = xi/
∑
i xi, xi > 0,∀i and (α2

β , α
2
π) are

fixed hyper-parameters. To accommodate for the wide vari-
ability in individual features and their impact on observed
survival dynamics, we model g with a Multivariate Random
Forest. Multivariate random trees and forests (Segal 1992;
Segal and Xiao 2011) are extensions to the regression tree
framework described in (Breiman 2001). Following (Segal
and Xiao 2011), the empirical covariance matrix is used
as part of a node impurity measure based on the mean
squared error to determine homogeneous children nodes.
The prediction for each leaf of a constituent regression tree
is the vector of mean values for covariates reaching that
leaf.
Our approach departs from other tree-based methods be-
cause we adopt a Bayesian setting. We repeatedly sample
tree structures to approximate the posterior distribution.
We interpret this process as exploring different multi-
output tree configurations supported by the data, described
probabilistically in terms of a posterior distribution. The
use of Multivariate Random Forest allows us to jointly
represent complex interactions with covariates without the
need to assume a predefined non-linear transformation
on the covariate space as it is the case in standard linear
regression. Tree based methods are appealing in medical
contexts since they have the advantage of providing prog-
nosis based on multiple features without prior selection
and are robust (not affected by monotonic transformations
such as scaling or shifting of the data) to measurement
errors and outliers often present in medical data. We note
however that other regression function choices can be
easily incorporated.

Heterogeneous cohorts at different levels of risk to
various death causes might behave very differently within

a population. The hazard shape of each cause-specific sur-
vival distribution in particular may exhibit different forms.
For instance, cancer patients undergoing chemotherapy
may see higher risk of death in the short term in contrast
with the longer term than patients with higher cardiovas-
cular disease risk. Methodologies not accounting for this
heterogeneity –which although may work well on average–
will likely provide inaccurate estimates for large parts of
the population (”one size does not fit all”). To deal with
this heterogeneity, we allow for different behaviours to be
learned effectively from data without prior specifications
by using the rich distributional family GG (Cox et al.
2007). Let Cj , j = 1, ...,K denote the index set of patients
experiencing event cause j. We model,

σi ∼
K∑
j=1

1{i ∈ Cj}τj , τj ∼ G(η0, η1) (7)

λi ∼
K∑
j=1

1{i ∈ Cj}γj , γj ∼ N (γ0, γ1) (8)

G denotes the Gamma distribution and (η0, η1, γ0, γ1) are
fixed hyper-parameters. Prior distributions will be set in
practice with previous domain knowledge, if available, to
encourage a known survival behaviour. For a domain ag-
nostic approach we propose choosing prior distributions
by sampling to be weakly informative about the survival
shapes, that is prior samples generate plausible and general
survival curves not restricting posterior inference.

3.3 Learning and Inference

In the Bayesian paradigm learning parameter values and
predicting hidden variables θ = (β,σ,λ,π) rests on com-
puting the posterior distribution given the data and model,
which provides uncertainty estimates and parameter values
minimizing a variety of Bayesian loss functions. The pos-
terior is given by Bayes formula,

p(θ|D) ∝ p(D|θ)p(θ)

and thus under the assumption that model parameters are
related by the dependency structure in Figure 3 the joint
posterior is given by,

p(β,σ,λ,π|D) ∝ p(D|β,σ,λ,π)

×
∏
i

p(βi)p(πi)p(σi)p(λi) (9)

Let fk(ti; θi) denote the pdf of the random variable
Ti|Zi = k and P(Zi = k) = πik. The contribution to
the likelihood of an individual with end-point ti of cause k
is πikfk(ti;θ) while a censored observation j contributes
S(tj ;θ) = 1 − F (tj ;θ). The likelihood of the observed
data is given by,

p(D|θ) =
∏
i

∑
k

(πikfk(ti;θ))
1{zi=k} S(ti;θ)1{zi=0}

(10)
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The expressions involved make direct posterior inference
intractable. To approximate the posterior we rely on sam-
pling from a Markov Chain with target distribution the pos-
terior in (9) using an adaptive Metropolis within Gibbs
Markov Chain Monte Carlo (MCMC) scheme (Hastings
1970). We update the distributional parameters and la-
tent variables by cycling through the parameter space up-
dating each component sequentially. In each iteration the
prior means of the latent variables β and π are updated
with the multi-output tree structure (each sequence β and
π jointly) that inform the prior likelihood of these param-
eters, thus through these latent variables a patient’s co-
variates indirectly influences posterior parameter estimates.
Next we update the distributional parameters (β,π,σ,λ)
by cycling through the parameter space sequentially with
a metropolis step (tractable since the likelihood and priors
are fully specified). The proposal distribution for sampling
new states in the markov chain is taken to be a gaussian dis-
tribution with an adaptive step size (its variance) updated
every 50 iterations to ensure an acceptance rate of around
40%. Algorithm 1 details the complete procedure.

3.4 Posterior Variable Importance Learning

We interpret variable importance as a stochastic quantity
related the latent variables β and π. In the context of com-
peting risks, within our learning algorithm we are able to
differentiate between the variables that are influential in
determining the absolute risk of a specific end-point e.g.
probability of death due to CVD as opposed to Cancer, and
the influential variables that determine the latent survival
trajectory for a specific cause through gβ and gπ . For this,
we leverage the model-free variable importance summaries
provided by tree-based algorithms introduced in (Ishwaran
and others 2007). They proposed a permutation-based ap-
proach, as the difference between normalized prediction er-
ror (mean squared error) when the variable of interest is
randomly permuted versus the normalized prediction error
otherwise. Let e∗j,β and e∗j,π denote the mean squared error
of models ĝβ and ĝβ over the training data with variable j
randomly shuffled. Then define the importance of variable
j, vj , as,

vk,j := |ek − e∗j,k|, k = β, π (11)

where ek, k = β, π denotes the mean squared error with-
out shuffling. The intuition is that variables that signifi-
cantly alter individual predictions will have been used as
splitting rules in many tree configurations suggesting high
predictive power relative to other variables. Our model in-
duces a Bayesian, probabilistic variable importance distri-
bution explored by the MCMC sampler, each iteration lead-
ing to a different tree configuration and thus associations
and variable importance summaries. The variable configu-
rations that are strongly supported by the data may appear
in most of the MCMC samples, while others with less ev-
idence may appear less often. This approach accounts for

the uncertainty in the data and gives a measure of variable
importance for each one of the event causes considered and
also differentiates the variables that influence the mixing
components versus the mixing distributions that form the
mixture model. This process gives rise to a distribution of
variable importance for each covariate from which we can
compute the probability of no effect (0 error or less) which
in turn relates to the probability of a false positive if the
variable being considered were called a discovery or sig-
nificant. Thus, we can interpret this value as a Bayesian
q-value, as in (Storey and others 2003). We could then pro-
ceed by controlling for a desired global false discovery rate
(FDR) bound and determine the significance threshold con-
trolling for the expected global Bayesian FDR as discussed
in Section 4 of (Morris et al. 2008).

Algorithm 1: HBM Learning
Input: Dataset D, number of iterations T .
Set prior distributions for θ = (β,σ,λ,π);
Initialize θ(0) = (β(0),σ(0),λ(0),π(0));
for t from 1 to T do

• Learn g(t−1)π : X → π(t−1) and
g
(t−1)
β : X → β(t−1);

• Compute variable importance v(t)β := (vβ,j)j and

v
(t)
π := (vπ,j)j with (11);

• Update prior means E
(
π(t)

)
:= g

(t−1)
π (X) and

E
(
β(t)

)
:= g

(t−1)
β (X) ;

• for i from 1 to N do
β
(t)
i ← sample from Markov chain with target

p(βi|β(t−1)
−i ,σ(t−1),λ(t−1),π(t−1),D);

end

• for i from 1 to N do
π

(t)
i ← sample from Markov chain with target

p(πi|π(t−1)
−i ,σ(t−1),λ(t−1),β(t),D);

end

• σ(t) ← sample from Markov chain with target
p(σ|β(t),σ(t−1),λ(t−1),π(t),D);

• λ(t) ← sample from Markov chain with target
p(λ|β(t),σ(t),λ(t−1),π(t),D);

end
Output: Approximate samples

(
θ(t)
)T
t=1

from p(θ|D)

and Variable Importance samples
(
v(t)
)T
t=1

Given the elaborate nature of medical survival dynamics, it
is of clinical interest to explore the interactions and effects
of covariates on survival. This method discovers influential
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variables, quantifies the uncertainty around its estimates via
credible intervals and controls for false discovery rates.

4 Experiments

The purpose of the model is to provide accurate individu-
alized predictions but also provide a description of survival
dynamics. We validate our model by conducting a set of
experiments on synthetic and observational data.

4.1 Performance Assessment

Due to the presence of censoring and competing risks in
survival data, traditional performance metrics need to be
accommodated to account for this partial information. In
this paper we adopt a common approach used in the litera-
ture: the cause-specific concordance index (C-index). For-
mally, we define the (time-dependent) concordance index
(C-index) for a cause k as follows (Wolbers et al. 2014):

Ck(t) :=P(F̂k(t;Xi) > F̂k(t;Xj)|{zi = k}∧
{Ti ≤ t} ∧ {Ti < Tj ∨ δj 6= k}) (12)

where Fk(t;Xi) := P(Ti < t|Zi = k,Xi) is the cause-
specific cdf . The time-dependentC-index as defined above
corresponds to the probability that predicted cause-specific
survival probabilities are ranked in accordance to the
actual observed survival times given the occurrence of
an event and corresponding cause. The C-index thus
serves as a measure of the discriminative power for a
cause of interest of a model. The measure is bound on the
interval [0.5, 1] in which random guessing corresponds to a
C-index of 0.5 and perfect prediction to a C-index of 1. In
all experiments the C-index is adjusted for censoring using
inverse probability of censoring weights and approximated
with the implementations in the R package pec.

Benchmarks. We compare our model with three baseline
algorithms specifically modelling survival data under
competing risks. We consider first the Cox proportional
hazards model (CPH) (Cox 1972) studied in (Austin, Lee,
and Fine 2016) by modelling directly the cause-specific
hazard function shown in equation (1). As a second base-
line the Fine-Gray proportional subdistribution hazards
model (FG) which also imposes proportional hazards was
introduced in (Fine and Gray 1999) but differs from CPH
by modelling the sub-distribution hazard and thus enables
a direct interpretation in terms of cause-specific survival
probabilities, unavailable in CPH. These two baselines
encode a linear effects of covariates on survival. As a
nonparametric alternative we consider Competing Risks
Random Forests (CRF) introduced in (Ishwaran et al.
2014), which mimic the construction of Random Forests
adapting its splitting rules and leaf node predictions to
cause-specific survival outcomes. Both CPH and FG do
not require hyperparameter tuning and are implemented

off the shelf with the R package riskRegression. For
CRF, we followed the recommended hyper-parameter set-
tings in (Ishwaran et al. 2014), the forest was grown with
1000 trees using a modified weighted log-rank splitting
rule modelled after Grays test and minimum terminal node
size was set to 6.

4.2 Synthetic data

We demonstrate the ability of our model to cope with
heterogeneous populations by evaluating our model on a
synthetic model with different cause-dependent interac-
tions between survival times and covariates. We consider
two scenarios with two competing events – Zi ∈ {∅, 1, 2}.

Scenario 1
Xi ∼ U(−2, 2)

T 1
i ∼ X3

i +N (15, 1)
T 2
i ∼ 5X2

i +N (5, 1)

Ti :=

{
T 1
i , w. prob. 0.8 · I + 0.2 · (1− I)

T 2
i , w. prob. 0.2 · I + 0.8 · (1− I)

Scenario 2
Xi ∼ U(0, 1)

T 1
i ∼ logN

(
4 + cosh(γT1 Xi), 2

)
T 2
i ∼ W(1/2, 4 + γT2 Xi)

Ti :=

{
T 1
i , w. prob. Φ(γT3 Xi)

T 2
i , w. prob. 1− Φ(γT3 Xi)

Where I := 1{Xi ∈ (−1, 1)} and 1 is the indicator
function. We assume two very different scenarios to
illustrate our model. Scenario 1 posits quadratic and cubic
covariate effects on survival for the two causes drawn from
a normal distribution which a priori is unfavourable to our
model which has an asymmetric form. We draw a dataset
with 500 observations from this scenario. The experiment
is designed to favour cause 1 events for generated event
times with covariate values in the interval (−1, 1) and
favour cause 2 otherwise. These are shown as red and
blue dots respectively on Figure 4, the solid lines are
the median cause-specific survival time estimated by our
model and the shaded areas are 95% credible intervals.
Overall the median estimates of cause-specific survival
capture the non-linear relationships for the two causes but
accuracy is impacted by the large imbalance of events in
the covariate distribution which results in wider credible
intervals. In these cases we believe that HBM learns
from the inbuilt shared representation to provide more
conservative estimates closer to observations from other
causes, as appears to be the case in the lower spectrum of
X .
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Figure 4: Generated survival times (dots) and estimated
median survival times (curves) plotted against the covari-
ate X . Blue and red colored objects correspond to obser-
vations from cause 1 and 2 respectively. Shaded areas are
95% credible intervals.

Scenario 2 simulates a more realistic heterogeneous patient
population in which an end-point due to cause 1 is drawn
from a log-normal distribution and an end-point due to
cause 2 from a Weibull distribution (two common survival
distributions). The parameters γ1, γ2 and γ3 are 4 dimen-
sional vectors we fix to generate reasonable event times.
We draw 10 data sets D of 500 instances from scenario
2 setting aside 250 of each of them for testing, reported
performance estimates are averaged over all data sets. We
induce censoring by randomly selecting 20% of observed
events, and for each of those set Ci ← U(0, Ti), their cen-
soring time. As we can see in Table 1 HBM outperforms
all other algorithms. This is because scenario 2 displays a
highly nonlinear relationships between covariates and sur-
vival times, and in addition, it assumes different forms for
the cause-specific distributions of the survival times, all of
which are features that can be captured well by HBM but
not by the other benchmarks.

Algorithms C1 C2

CPH 0.575± 0.01 0.573± 0.01
FG 0.564± 0.01 0.581± 0.01
CRF 0.580± 0.01 0.593± 0.01
HBM 0.637± 0.01 0.666± 0.01

Table 1: Cause-specific C−index at the last observed time
on the testing set of Scenario 2. Uncertainty bands are stan-
dard deviations.

4.3 SEER data

Cardiovascular disease (CVD) and breast cancer are the
largest contributors to the burden of chronic disease in
the United States (Hoyert, Xu, and others 2012). There
is increasing evidence of overlap in risk factors and dis-

ease prevention for CVD and breast cancer suggesting that
these seemingly diverse diseases have some common bio-
logical traits (Koene et al. 2016). Moreover, breast can-
cer treatments are suspected to accelerate or worsen pre-
existing cardiac disease since both chemotherapy and radi-
ation causes long term cardiovascular side effects. Overall
mortality for these patients cannot be assessed without joint
prognosis of both CVD and cancer related risk.
We investigate a patient population extracted from the
Surveillance, Epidemiology, and End Results (SEER) Pro-
gram. SEER is a public database 1 which provides infor-
mation on cancer statistics in an effort to reduce the cancer
burden among the U.S. population. The extracted cohort
comprises 1000 patients described by 12 covariates includ-
ing: age, gender, tumor size and type, morphology infor-
mation, surgery information and a number of physiological
markers related to cancer. Overall mortality was 28.2% di-
vided into death due to CVD (2%), Cancer (17.5%) and
Other (8.7%).

Figure 5: Variable importance for selected covariates from
the SEER data set. The upper panel shows variable impor-
tance with respect to median survival while the lower panel
shows variable importance with respect to baseline risk for
the various causes. Confidence around mean estimates are
90% credible intervals.

1Available at https://seer.cancer.gov/
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Algorithms Cancer Cardiovasc. Other
CPH 0.630± 0.02 0.602± 0.08 0.647± 0.07
FG 0.627± 0.01 0.595± 0.06 0.632± 0.06
CRF 0.690± 0.04 0.651± 0.09 0.683± 0.04
HBM 0.721± 0.02 0.634± 0.07 0.711± 0.08

Table 2: C−index for all algorithms on the extracted dataset from SEER. Confidence bands are standard deviations.

It is of clinical interest to discover the strength of rela-
tionships between conditions or factors and survival to
guide treatment design and further our understanding of
the disease. The described variable importance method
distinguishes between factors influential in different causes
but also factors influential in predicting the marginal risk
of experiencing cause k, P(Z = k) in contrast to factors
influential in predicting median survival conditional on
experiencing a particular cause k, median(T |Z = k).
Figure 5 shows our findings for the variables and patients
extracted from the SEER data. We notice for instance
that for median cause-specific survival (the upper panel),
most variables recorded are more predictive of breast
cancer than of cardiovascular diseases. Less divergence in
variable predictive power is observed for event probability
prediction (lower panel) which suggests that at onset,
no recorded variable (besides ”Lymph nodes”) has more
influence in determining baseline risk for one disease
versus another. We applied the proposed variable selection
procedure controlling for a global FDR bound of 5%,
we find that only the first 5 variables namely, number
of lymph nodes, cytology, the extent of disease, tumor
marker and the number of malignant tumors significantly
impact cancer outcomes. In turn for Cardiocavscular
disease outcomes the 4 variables: number of lymph nodes,
cytology, the extent of disease and tumor marker have
a significant effect (for both survival and event cause
prediction).

Table 2 provides performance estimates for all algorithms
and causes at time horizon 7 years. We computed the
C−index by 3 fold cross-validation. As was observed in
Figure 5 most covariates are predictive of mortality due
to breast cancer and ”other causes” in the SEER dataset,
which we believe explains the under-performance of all
models in predicting death related to cardiovascular dis-
eases. We note also the large confidence intervals in all esti-
mates, the SEER data has very low mortality and thus vari-
ability is expected since censored observations contribute
only indirectly to the C-index. HBM provides competi-
tive performance in average estimates compared to CRF
and substantial improvements with respect to CPH and FG
which suggests that a shared representation with a non-
linear predictor is helpful in explaining the complex nature
of competing risks.

5 Conclusion

Competing risks settings are complex and interlaced, it
happens that most real world medical problems are of this
type. To improve clinical practice in the prognosis and
treatment of complex diseases, and discover what factors
and how they affect different diseases, it is crucial to ac-
count for heterogeneous cohorts and shared influences of
covariates on survival from a specific cause. We have pro-
posed a Bayesian model specifying these relationships in
different aspects of the overall survival path to provide an
intuitive representation. We provide confidence estimates
and assess the importance of variables for each cause. Al-
though the methods presented here represent only some
steps along the way, they yield quantitative and qualitative
improvements over previous methods.
From a medical perspective our model contributes towards
the field of precision medicine, there is growing awareness
among clinicians that to improve the response to therapy
and long term prognosis, treatment must be specifically
tailored to the disease and the patient. Based on overall
as well as cause-specific individual survival estimates pro-
vided by our model clinicians can optimize treatment allo-
cation schemes and more accurately weight the benefits of
a treatment for a particular disease which may have side-
effects on the risk of related diseases. Through the person-
alized estimates of survival and variable importance offered
by our model, we hope clinicians can further their under-
standing of connected diseases and improve health care de-
livery.
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