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Appendix A Proof of Theorem

Before presenting the proof of Theorem [I} we need two lemmas first. Lemma [I| shows that a S-smooth function
can be bounded by quadratic functions from above and below. Lemma [2] shows the concavity of continuous
DR-~submodular functions along non-negative and non-positive directions.

Lemma 1. If f is B-smooth, then we have for any x andy,

|f(x) — fly) - Vi) (x—y)| <

|f(x) = fly) = VIly) (x—y)| <

Proof. Let us define an auxiliary function g(t) = f(x+¢(y — x)). We observe that ¢g(0) = f(x) and g(1) = f(y).
The derivative of g(t) is

Jt)=Vix+tly-x) (y —x).
We have . )
) — (%) = g(1) — g(0) = / § (t)dt = / VFx+ by — %) (y - x)dt.
0 0

The left-hand side of the first inequality is equal to

[V iy =306yt = V69T y>|

/0 (VF (x4 t(y — x)) — Vf(X))T(X—y)‘ it

1
< / (VF(x + 1y —x)) - V()T (x — y)| dt
< / IV F(x + ty — %)) — V1% — yldt

1
< / Btlx — y|2dt
0

= Zlx—yl.
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Exchanging x and y in the first inequality, we obtain the second one immediately. O

Lemma 2 (Proposition 4 in [Bian et al.| (2017))). A continuous DR-submodular function is concave along any
non-negative direction and any non-positive direction.

Lemma implies that if f is continuous DR-submodular, fixing any z in its domain, g(z) £ f(x+ zv) is concave
in z as long as v > 0 holds elementwise. Now we present the proof of Theorem

Proof. As the first step, let us fix ¢t and k. Since f; is S-smooth, by Lemmam for any ¢ > 0 and x,v € RY, we
have B

il +€9) — 1,00~ V()T () 2~ flev]?

Let L £ BR?. We deduce

il + 1)) = fibealk)) = Fulbea() + ovE) = Fulsa(R)) 2 (VB Dbk — 57
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We sum the above equation over ¢ and obtain

- ~1 LT
> felxe(k +1)) = filxe(k E (vE, Vhi(xe(k) = o5
t=1 t=1

The RFTL algorithm instance £¥ finds {vF : 1 <t < T} such that

T T
Z o , Vf(xe(k Z Vtavft x¢(k))) < rk < QDG\/Ta
t=1 t=1
where
T
Vi = argmaxz (v, V fe(x:(k)))
veP

and ¥ is the total regret that the RFTL instance suffers by the end of the T'th iteration. According to the regret
bound of the RFTL, we know that r* < 2DG+/T. Therefore,

3 k ) > 4 S L\ LT
> ik + 1) = fulxe(k) = 2 [ SO VAR —1* ) = 5

t=1

We define x* £ arg maxvep Zt | fi(v) and wF = (x* —Xt(k))\/O For every t, we have wF = (x*—x,(k))V0 < x*

It is obvious that w¥ > 0. Therefore we deduce that w¥ € X. Due to the concavity of f; along any non- negatlve
direction (see Lemma [2)), we have

fe(xe(k) +wi) — fi(xe(k)) < (wf, V fi(xe(K))).

In light of the above equation, we obtain a lower bound for ZtT:l<vk*, V fi(x¢(k))):

(x*, V fi(x:(K)))
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(Wi, V fi(xe(k)))

~~
Il
-

(fe(xe(k) + wy) = fe(xi(K)))

o~
I
—

-

(fe(x* vV xi(K)) = fe(x:(K)))
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We use the fact that V f;(x;(k)) > 0 and x* > w¥ entrywise in the inequality (a).

T k 1 f 1 T k k LT
2 S+ 1) = fiosalh)) 2 gz { 2 (") = fibsalh) =7 | = 575

t=1

After rearrangement,

> (il + 1) = flx)) = (1 - )Y loak) — fix) — ot —



Lin Chen'?, Hamed Hassani®, Amin Karbasi':?

Therefore,
T T K—1
; (fe(xe(K)) = frlx")) = (1 - %)K ; (fe(x:(0)) = fu(x*)) = % k=0 s %
T K-1
= (= S0~ i) - S I
t=1 =
Since (1 %)K < e~ ! we have
- 1 ko 1=, I
D ) = fibalKN) < (1= )3 (RO) = SulO) + ¢ D r+ g
T K-1
<Y () — )+ Yt
t=1 —
After rearrangement, we have
- - d 1o
> Aa(K) = (1=1/0) > flx) +e Y fi0) = = Dk -
t=1 t=1 t=1 k=0

Plugging in the definition of 7* gives

- - - = LT
D filxe) =) filxi(K) > (1 1/e) Z ) et fi(0) = 2DGVT - .

Recall that x;(K) is exactly x;. Thus equivalently, we have

1—1/6

HM’%

T T
- ;ft(xt) < et ;ft( )+ 2DGVT + ﬁfKT.

Appendix B Proof of Theorem

B.1 Gradient Ascent Case

The theoretical guarantee of gradient ascent methods applied to concave functions relies on a pivotal property
that characterizes concavity: if F' is concave, then F(y) — F(x) < (VF(x),y —x). Fortunately, there is a similar
property that holds for monotone weakly DR-submodular functions, which is presented in Lemma

Lemma 3. Let F: X — Ry be a monotone and weakly DR-submodular function with parameter ~y. For any two
vector X,y € X, we have

F) - (14 5) 0 < 2 (9FG0y - %),

The proof of Lemma [3[ can be found in the proof of Theorem 4.2 in (Hassani et al., 2017). Now we can prove
Theorem |2 in the gradient ascent case.

Proof. Let x* = argmax, cp Zthl fi(x). We define V; £ Vf(x;). By the definition of x;4; and properties of
the projection operator for a convex set, we have

e 1 —x*|* = [T (xe + 06 Vi) = x71° < [l + 06 Ve = x7[° < |lsee — x| + 07 | Vil|* = 20,V (%7 = x0).
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Therefore we deduce

2 2
| — x*|1? = [|xe1 — x| + 02 | V|
2m

< Ixe = x*|° = lIxe41 — x*[° | neG?

V:(x* —x¢) < |

By Lemma [3] we obtain that

) = (1423 ) 1) < (9 =),

If we define 7%0 £ 0, it can be deduced that

i 16 = (14 73 ) )| < 2 30VT 6 =)
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< Z—DG\/T.
After rearrangement, it is clear that
o T T
~y . 3vyDGVT
72+1th(x )_th( t) < 2(72 +1)
=1 t=1

B.2 Stochastic Gradient Ascent Case

Proof. The strategy for the stochastic gradient ascent case is similar to that of the gradient ascent case. Again,
by the definition of x;41, we have

Ixeer = X7 = [T (e + o) — %2 < e + e — X717 < e — %17 402 el — 2 (6" — x0)
Therefore we deduce

gtT(X —Xt) S

* 112 * (12 2 * 112 * 12
* ) < [[x: — x H — [|%41 — x| +77152 [ < llx: — x*||” = []x¢41 — x7| + 77tG2
277t - 27’]t 2
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Similarly, if we define nio £ 0 and in light of Lemma |3 it can be deduced that

T

T
1 1
> E [ft(x*) - (1 + 2> ft(xt)] < - S E[V/(x —x)]
t=1 i 7=
1 T
= - E[E[V/(x" —x)lx]]
’ytzl
1 T
==Y E[E[g (x"—x)x]]
’ytzl
- i
1 ]‘ * 12 *112 G2
<2 2mti_jllﬁ[xt—xn = lxess —x ||}+2;77t]
S ;
111 a1, 1 1 G?
< |z E —x* - bl
<31 (; [l —'1P] (= m_1>> +< t_lnt]
1 [ 2 G2 T
< | = 4L =
Ty _277T 2 tz_;m]
< 3 DGVT.
2y

After rearrangement, it is clear that




