Matrix completability analysis via graph k-connectivity

A Details on the MaxKCD algorithm

In this section, we expand on the details of the proposed
MaxKCD algorithm for identifying k-edge-connected com-
ponents, i.e. for Problem [3. Aside from connections
to completability, k-connected components have been
recognized as an important structure in applications
ranging from behavior mining, social network analy-
sis, e-commerce, biology, and more [26]. For a fixed
small k (e.g. k=1,2,3) and a graph G = (V, E), all
maximal k£-CCs can be found in O (k(|]V| + |E|)) time
by algorithms based on depth-first-search [21] 28]. For
a general k, the global min-cut routine can be itera-
tively applied to remove cuts smaller than k; however,
the worst case run-time for such a vanilla algorithm
is O(|V|T), where T is the run-time of the global min
cut algorithm, e.g., T = O (|V| (|E| + |V]log |V])) for
Stoer-Wagner algorithm [25]. Heuristic improvements
have been proposed, for example in [33].

Several groups have proposed modifying the black box
min-cut algorithms [1} [7} 26]. While the worst-case
performance is generally unchanged, the empirical run-
time decreases significantly. The improvement stems
from the fact that an algorithm for finding k-CCs relies
largely on finding a cut of size specifically less than
k, and that this subroutine can be implemented more
efficiently than the black-box min cut algorithms. In
[7,26], the authors proposed an algorithm based on the
Stoer-Wagner global min-cut algorithm incorporating
the knowledge of k for a gain in efficiency. Instead, Ak-
iba et al. in [1] proposed a randomized approach based
on Karger’s algorithm; however, it has been shown to
be inefficient compared to Stoer-Wagner-based algo-
rithms.

The algorithm we propose, which is called MaxKCD,
works by iteratively finding a cut of size less than k
in G until such a cut does not exist, and only k-CCs
or singleton vertices remain; the pseudocode is shown
in Algorithm [2. At step 5, the algorithm applies a
subroutine called kCut to find a cut of size less than
k. The subroutine is based on the Stoer-Wagner al-
gorithm [25] and improves upon the works in [26] [7].
Using the returned cut, the graph is split at step 9 of
MaxKCD and each part is pushed for the next iteration.

In MaxKCD, the main kCut subroutine utilizes three
core operations: EarlyStop, ForceContraction, and
Batch-EarlyMerge. First, we observe that the core
component, mazimal adjacency search (MAS), can be ac-
celerated by a batch-like approach, Batch-EarlyMerge,
which allows kCut to be more efficient while retaining
accuracy for the the K-CONNECTED COMPONENT DE-
COMPOSITON Problem. We also incorporate a vertex-
merging technique, called Force-Contraction, which
results in a more aggressive merging technique than

© 0 N O oA W N

10

Algorithm 2: Maximal k-CC Decomposition (MaxKCD)

Input :Graph G = (V, E) and the target cut size k
Output : The vertex partition ¢

Initialize ® = () and 'y to be the whole graph G
while T; # 0 do
Initialize T;41 =0
forall G' = (V',E’) €T, do
Find a cut C' = (V{,VJ) = kCut(G', k)
if C=0or|V'|=1then
‘ Add V' to @
else
‘ Add G§/1 and G/‘/Q to Fi-i—l
end
end
end
return ¢

those in [26] [I]. We also incorporated the EarlyStop
routine proposed in |7}, [26]. As a side note, the kCut
subroutine can be used in turn to speed up the origi-
nal Stoer-Wagner algorithm by actively updating the
k, starting from infinity, as the current smallest cut.
In what follows we dive into the details of the kCut
algorithm proposed in this work.

A.1 The kCut algorithm

The kCut algorithm is based on the Stoer-Wagner al-
gorithm for finding a global min-cut. Shown in Al-
gorithm [3, kCut is composed of two parts: the kMAS
algorithm in step |4, and the Merge routine in step [5.
The former obtains information on the (s,¢)-min-cut
via graph traversal, and the later utilizes the target
value k to leave a strictly smaller graph for the next
step.

The kMAS routine is based on a core procedure in Stoer-
Wagner: the MAS algorithm for finding an (s, ¢)-min-
cut in G. Unlike other (s,t)-min-cut algorithms, the
vertices s and t are not received as input. Instead,
MAS visits vertices in a particular order, and outputs
the size of the (s, ¢)-min-cut between the two vertices
visited last. The order is dictated by connectivity to
the already-visited set, and we refer the reader to [25]
for more details. The key property of MAS is that at
any iteration, MAS records the (s,t)-min-cut between
two vertices most recently visited on the subgraph
induced by all visited vertices. More formally, let L; =
(u1,...,u;) be the ordered set of already visited vertices
at iteration ¢ and u; 41 be the vertex to be visited next.
Then we have that w (L;,u;11) is the (s,t)-min-cut
between u; and u; 1 on the induced subgraph G, .
Note that w (L;, u;4+1) is the sum of the edges weights

® N o oo W N

Dehua Cheng?, Natali Ruchansky?, Yan Liu

Algorithm 3: Finding a cut with size less than k&

Algorithm 4: Accelerated MAS for k-CCs

C =kCut(G, k)
Input :G = (V,E) and the target cut size k
Output: Cut C
Initialize G; = (V4, E1) to G, and i = 1
while |V;| > 1 where G; = (V;, E;) do
P; =kMAS(G;,vj, k), for arbitrary v; € V;
Giy1 =Merge(Gy, Py, k)

i=i+1
end
return C = ()

between L; and u;4; and G, = G. For the propose of
kCut, s and ¢ can be safely merged if the (s, ¢)-min-cut
on G is at least k. This will not destroy any cut of
size less than k since such a cut would place these two
vertices on the same side. The EarlyMerge operation
proposed in [26] monitors w (L;, u;4+1), which is a lower
bound on the (s,t)-min-cut, and merges u; and u;41
as soon as it reaches k.

The key to modifying MAS for the K-CONNECTED COM-
PONENT DECOMPOSITON Problem and later improving
on efficiency is based on two main observations. First,
the existence of a target rank k implies that we do not
care to differentiate between cuts of size larger than
k in Algorithm [2. This provide the extra room for
us to modify the MAS procedure as we do not require
the (s,t)-min-cut lower bound to as accurate. As a
result, a batch-like approach Batch-EarlyMerge can
be utilized in the kMAS procedure to speed up the pro-
cess. Second, we observe that a separation between
the visitation and the merging allows for incorpora-
tion of more aggressive merging techniques, known as
ForceContraction, resulting in a more efficient algo-
rithm. These two observations are captured in three
core operations, EarlyStop, Batch-EarlyMerge, and
ForceContraction, which we describe below.

Early Stopping: The first operation, EarlyStop, uti-
lizes the information of the target cut size k to ter-
minate the visitation procedure of kMAS and directly
return the solution for kCut. If at any point the cut
between the visited set of vertices L; and the unvisited
set V'\ L; is smaller than k, we can terminate kMAS
and return the cut {L;,V \ L;} directly.

Batch Early-Merging: The original MAS routine vis-
its one vertex at a time; however, we observe that
this one-by-one visitation is too strict for the K-
CONNECTED COMPONENT DECOMPOSITON Problem
since we care only whether the cut is smaller than
k. We introduce the Batch-EarlyMerge operation to
work on multiple vertices at a time, and prove that it
retains correctness with respect to the K-CONNECTED

=

2
3
4
5
6
7
8
9

10
11
12

13

P =kMAS(G, uy, k)
Input :G = (V, E), start vertex uy, target cut size k
Output : Sets of vertices P for Batch-EarlyMerge
Initialize i = 1, P = 0, and L; = {u;}
while ¢ < |V| do
if w(L;,V\L;) <k then

‘ Apply EarlyStop
else
if

max,ey\r, {w(Li,v)} > k then
Batch-EarlyMerge:

Ui+1 = {’U"LU(Li,U) > kv e {V \ Ll}}
Livjy,,, = LiUUia

P=PU {Ui+1 U {UZ}}

u|r,| = any vertex from U4
else

Ui+1 = argmax, cy\r, {w(Li;v)}
Lit1 =L U{ujt1}

end

i = |Li

end

end

return P

COMPONENT DECOMPOSITON Problem.

Recall that MAS merges two vertices u; € L; and
Ui41 ¢ Li at step i if w (Li,uiﬂ) > k. The
Batch-EarlyMerge operation works by merging all v
with w (L;,v) > k, as opposed to only the u;4q that
is scheduled to be visited next; more precisely the set
{vlw (L;,v) > k} is merged together with u;. The
main idea of the proof of correctness (available in the
extended version) is that although kMAS does not fol-
low the order specified by MAS, no cut of size at least
k will be omitted and no cut of size less than k will
be affected: The resulting graph after Merge opera-
tion will be the same as that with EarlyMerge. The
computational benefit of Batch-EarlyMerge is that it
reduces the number of IncreaseKey operations for the
Max Heap used in MAS, which is the computational
bottleneck of the MAS algorithm for dense graph.

Force Contraction: The ForceContraction opera-
tion was first introduced in [I]. The operation merges
any vertices u and v whose edge weight w (u, v) exceeds
k. The operation has been omitted from previous ex-
act algorithms because applying it to nodes outside of
the visited set L; may lead to a violation of the MAS
property. However, by separating the visitation and
merging into kMAS and Merge, the kCut algorithm we
propose allows ForceContraction to be utilized. The
combination of ForceContraction with the other two
operations further reduces the size of the graph, lead-

© 0 N o ;o W N

Matrix completability analysis via graph k-connectivity

Algorithm 5: Vertex with
ForceContraction

G’ =Merge(G, P, k)
Input :G = (V, E), set of pairs P, target cut size k
Output : Modified graph G’
Initialize G' = G
forall U € P do

‘ Batch-EarlyMerge: Merge all vertices in U on G’
end
while 3 edge with w(vy,v3) > k in G’ do

‘ ForceContraction: Merge v; and v9 on G’
end

return G’

merging

ing to a faster convergence of the recursion. Moreover,
since the edges within a super-vertex can be ignored
during vertex merging and ForceContraction creates
larger super-verter, the cost of the merging operation
is also often reduced considerably. For example, the
cost was reduced by 30% on the Amazon review data.

The correctness of Algorithm [3|largely follows that of
the MAS procedure. Additional optimization of kCut are
discussed in the extended version, e.g., remove vertices
with degree less than k.

Computational Complexity: Since the kCut algo-
rithm can be applied to solve the global min-cut prob-
lem with binary search, the worst-case computational
complexity of kCut algorithm would be similar to that
of the global min-cut algorithm, differed by a log |V/|
factor at most. In fact, the worst-case computational
complexity of kCut and its analysis is the same as the
Stoer-Wagner algorithm: O (|V||E| + [V[*log|V]).

However, unlike the Stoer-Wagner algorithm, the em-
pirical runtime of the kCut algorithm is much less
than its worst-case. If the input graph is sparse and
loosely connected, like those in the matrix comple-
tion setting, EarlyStop will likely terminate the al-
gorithm in the first few calls. If the input graph
is tightly connected, Batch-EarlyMerge ensures that
each kMAS can be conducted efficiently, and together
with ForceContraction, the graph size shrinks quickly.
In our experiments, less than 10 calls to kMAS are ob-
served even in graph with million of vertices and bil-
lions of edges, where the empirical runtime scales with
|E|log|V| due to usage of binary heaps.

B Proof of correctness for
Batch-EarlyMerging

Unlike previous algorithms for Problem [3 which re-
quired the exact MAS procedure, we propose a brand-
new accelerated MAS routine, where multiple vertices

can be visited in a single step. This batch approach
reduces the time-consuming operation of updating the
max-heap for the traditional MAS, leading to potentially
significant speed-up. The key observation is that we
are not restricted to the order of visitation specified
by MAS since we do not need to distinguish cuts of size
greater or equal to k.

Let u; — ug — -+ — u, be the order of visitation by
MAS as stated in Algorithm E, and L; = {uq,...,u;}.
Then, at the i-th step, we can list the remaining vertices
v € V\ L; by w(L;,v) in decreasing order: v;41 —
Vijyg — - -+ — Up; note that this order is not necessarily
the same as u;11 — -+ — uy, except that v;11 = u;41.
The batch approach can be applied for the maximum
possible s > i, if it exists, such that

w(L;,v.) >k, Vr, i<r<s.

That is, the set U;y1 = {v,]i <r < s}, can be visited
all at once as follows: first merge the vertices inside
Uit+1 to uj4+1 = v;41, then add u;41 to L; by merging
Ui+1 with u;. Take Ly = L; U U;41 and continue the
visit.

Though the final order of visitation may differ from that
of MAS, we will prove that no cut of size less than k will
be destroyed, hence end result is the same. The compu-
tational benefit over the original MAS procedure comes
from the reduced number of IncreaseKey operations in
heap maintenance for all the edges inside U1, which
is the dominant (first) factor in the O (|E| + V log|V])
cost of MAS. The improvement is especially significant
when MAS is implemented with binary heap, where the
cost would be O (|E|log |V | + |V]log|V]).

Proof of Correctness: To prove the correctness of
the batch approach, we prove that P =MAS(G, s, k) and
Pt =kMAS(G, s, k) lead to the same graph after merg-
ing, i.e., Merge(G, P, k) = Merge(G, P*, k). Here MAS
denotes the simple MAS with EarlyMerge with vertices
visited one at a time. Since the ForceContraction is
applied in the last stage of Merge and uniquely depends
on the results of EarlyMerge, we need only consider
the results of EarlyMerge.

Note that the elements in P =MAS(G, s, k) are pairs
of vertices that will be merged together. Moreover,
elements of P may overlap if they contain the same
vertex, which suggests a chain of vertices that will
all be merged together. For example, P may contain
both {w;,u;+1} and {w;41,u;4+2} which means all three
vertices will be merged together. Hence, P can be
simplified by merging the overlapped elements until
all elements in P are non-overlapping; we call these
resulting non-overlapping elements early merging blocks.
More formally:

Definition 4 (Early Merging Block). In Algorithm E,

IS

© W N o o

10

11
12

Dehua Cheng?, Natali Ruchansky?, Yan Liu

Algorithm 6: Maximum Adjacency Search for kCut
P =MAS (G, uq, k);
Input :G = (V, E), start vertex uq, target cut size k
Output : Sets of vertices P for Batch-EarlyMerge
Initialize i =1, P =0, and Ly = {u;}
while ¢ < |V| do
Uit 4 argmax, ey g, {w(Li, u)};
Wig1 < ’LU(L7 ui—l—l)
if w;41 > k then
| P=PU{{uit1,ui}}
end
Liy1 < Li U{uit1}
14— 1+1
end
return P

an early merging block is a subset of vertices Rﬁj that
satisfies

Rf:j = {u,)i <r <jw <kwjt <k,
and wg > k,Vs,i < s < j},

where 1 < i < 5 <n, and w; = wy4+1 = 0. Note that
|Rfj\ > 2 by definition.

If two vertices belong to the same early merging
block, they will be merged together. Further, with-
out ForceContraction, if two vertices do not belong
to the same block, they will remain distinct vertices
after Merge. We will prove that PT, obtained by
Batch-EarlyMerge, contains the same information as
P.

Theorem 5. Given P
Pt =kMAS(G, s, k), then
Merge(G, PT k).

=MAS(G,s, k) and
Merge(G, P, k) =

Proof. As discussed before, the merging result of P
can be described by early merging blocks. We will now
prove that P yields the same merging result as sug-
gested by the early merging blocks. Let uq,uo, ..., uy
be the visitation order taken by MAS, then at step 4
we have L™ = {uy,...,u;}, and similarly for kMAS we
have LXM™S,

Note that if P is empty, this implies that the condition
on step 7 in kMAS is never true. If this is the case then
there is no early merging block, implying that P is
empty as well. Similarly if P is not empty, but all
|Ui+1| = 1, then by definition that P = P+.

When there exists |U;+1]| > 1, we prove Theorem E
by induction, starting both MAS and kMAS, at the first
step, and matching P and P step by step. Before the
first step, P and P for MAS and kMAS are all empty,
and LE™S = [MS = ()| so the conclusion holds. In

fact, P and P* (also L¥™S and L) are equivalent
before encountering the first nontrivial (|U;41| > 1)
early merging block. Here, we assume that P and PT
are equivalent up to the p-th iteration. We break the
proof into three parts:

1. Let U;41 with ¢ > p be the first U;4; with
|Uit+1| > 1, then we know that L¥™S is the same
as LY. Here we also merge u; into U;4; corre-
sponding to the step 11 in kMAS algorithm. Pick
any vertex us in U;11, which is the t-th (¢ >)
visited vertex in MAS. By definition in kMAS, we
have that w(L™S u;) > k. Then for any r such
that ¢« < r <t, we have that:

Wy = w(LI:‘[A—SI’uT) = w(LI;IA—SI’ ut) > w(L?Asaut) >k,
which implies that there exists Rj; such that:
{ui,...,ut} C Rf;] = Ut € Rfj

Since u; is picked arbitrarily, same conclusion holds
for all elements in U, 1, and there is a unique early
merging block that starts from i. Therefore, we
have that U;11 C Rf:j meaning that the batch
found by Batch-EarlyMerge is always a subset of
an early merging block.

2. When Rf:j = U;11, we know that P and P* are
equivalent up to the j-th iteration, and that L¥"®
is the same as LS. Therefore, we can replace the
results of kXMAS by that of MAS and continue both
algorithms by repeating the argument in (1) from
the j-th iteration.

3. When RE ; # Uit1, we will prove that the next
element Uy, in Pt satisfies Uy, C Rf:j and
U,’/+10U1+1 75 B. Let s = min{5’|us/ S Rf:j\Ui-‘rl}?
then we have that

w(LF™ us) > w(Le ug) > k,

because that LS, ¢ L¥™S = [MS U, ;. There-
fore, we know that us € Uy 41 and Uy 41 was cre-
ated immediately after U;41, which implies that
Uiry1 NUip1 # 0.

Similarly, for any vertex us where s > j, we have
that

w(LE™S ug) < w(LS—IAS,uS) < w(L;JAS,ujH) <k.

Therefore, we have that Uy C Rf:j. U/ U
Uiy1 = Rf;j, we can repeat the argument in (1)
from the j-th iteration as in (2). If Uy UU;1q #
Rf:j, we assign U; 11 = Uy 41 UU,; 41 and repeat the
argument in (3), and reach (2) in a finite number
of steps since U1 U Uiy1| > |Uig1].

O

Matrix completability analysis via graph k-connectivity

Imafit optspace reimann vbmec grouse
kno CPLT overall CPLT overall CPLT overall CPLT overall CPLT overall
Bibsonomy 12 0.403 1.257 n/a n/a 0.590 1.377 0.760 1.061 n/a n/a
Movielens 40 0.009 0.291 0.074 0.36 0.005 0.287 0.005 0.335 3.45 37.9

Table 4: Comparison of relative frobenius error over completable entries using different matrix completion

algorithms.

B.1 Notes on implementation

We have discussed the backbone of the MaxKCD algo-
rithm; however, There are a few optimization tricks
that can be exploited for the implementation of the
MaxKCD algorithm which we provide in C++-.

k-Core Optimization: Since a k-CC requires each
vertex to have degree k, a scan of vertex degrees can
remove unnecessary computation. Before searching for
the cut with size less than k, the kCut algorithm can
first check for any vertex whose weighted vertex degrees
is less than k, remove it, and add it directly to the final
partition P. Such a scan is called a k-coreOpt routine,
as it decompose the graph into k-Core components.

In-place storage of I': In Algorithm [T, each I'; can
be stored on the original graph, since it corresponds to
a list of connected components of G at iteration 7. A
key and simple observation is that all of the algorithms
presented here rely only on the local information of
which vertices have been visited and their respective
neighbors. Hence, the only information that needs to
be stored about each subgraph is its size and a seed
vertex.

C Additional experimental results

C.1 Empirical runtime performance for
MaxKCD

The overall running time of the MaxKCD algorithm is
a small fraction of the running time of the common
matrix completion algorithms. Therefore, the utility of
our framework is not limited by the computational effi-
ciency of MaxKCD. However, the empirical runtime is of
interest since MaxKCD can be of independent interest for
graph maximal k-connected components decomposition
and global minimum cut algorithms.

With our aggressive graph contraction schemes, includ-
ing both Batch-EarlyMerge and ForceContraction,
the overall running time is all less than 6 minutes
on both Amazon and Netflix datasets with k& > 10.
We have also recorded the running time of both
kMAS and Merge. Comparing with the version with-
out ForceContraction and EarlyMerge instead of
Batch-EarlyMerge, we reduce the computational cost
for Merge on both Amazon and Netflix data sets by

30% (from 103s to 70s) and 7% (from 59s to 55s),
respectively. The source of the gain is mainly from
ForceContraction, where merging many vertices at
once avoids unnecessary edge upkeep.

On sparse data the improvement in the running time
for kMAS is less dramatic, but on synthetic Erdés-Rényi
graph with 60,000 vertices and 44,995,961 edges, we
observed 3 times acceleration (from 3.7s to 1.2s).

We note that further optimizations can continue to
improve the computational performance, but this was
not the focus of this work.

C.2 Comparison between matrix completion
algorithm

For deeper insight into the implications of our results,
we considered how much of our findings are dependent
on the particular matrix completion algorithm. In par-
ticular, we selected five algorithms with the most com-
petitive efficiency and accuracy: LMaFit, OptSpace,
LRGeom, Riemann, and VBMC. (The interested reader
can refer to [34] for a comparison.) We found that us-
ing all algorithms, the error over the entries selected by
CompleteID as completable is significantly smaller than
over the non-completable ones. The results in Table
demonstrate the robustness of CompleteID and that
it provides meaningful insight for the task of low-rank
matrix completion in general.

