
Supplementary Material (AISTATS 2018):
Parallel and Distributed MCMC via Shepherding Distributions

Arkabandhu Chowdhury Chris Jermaine
Rice University Rice Univeristy

A LATENT DIRICHLET ALLOCATION

We consider a data parallel implementation of a sampler for
Latent Dirichlet Allocation (LDA) [Blei et al., 2003]. Our
focus is on examining samplers that are appropriate for a
distributed environment where a subset of a large data set
is stored on each compute node.

Briefly, LDA is a popular topic model. In LDA, the jth
topic ψj is a set of word probabilities sampled from a
Dirichlet(β) prior, and the topic distribution ρd for docu-
ment d is sampled from a Dirichlet(α) prior. Then, doc-
ument d is generated by, for each term t in the docu-
ment, first choosing a topic zd,t ∼ Multinomial(ρd) and
then choosing the word that appears as term t as wd,t ∼
Multinomial(ψzd,t). The goal is learning an LDA model to
infer the unseen model components (in particular, the vari-
ous ψj vectors) from an observed data set.

A.1 DISTRIBUTED LDA

The standard Gibbs sampler for LDA integrates out each
ψj and ρd and instead attempts to obtain a posterior distri-
bution on the number of each dictionary word assigned to
each topic. However, the resulting sampler is nearly im-
possible to parallelize efficiently in a way that guarantees
ergodicity. The problem is that after integrating out ψj
and ρd, all of the threads in a distributed compute cluster
will need to constantly access and update those word-topic
counts. Facilitating this in both a consistent and efficient
way is not possible, and so the standard solution is to sim-
ply to accept inconsistency and ignore the fact that the re-
sulting chain is non-ergodic.

However, in our experience, such a non-ergodic chain can
converge to an inferior model. To ensure ergodicity, in our
own distributed LDA Gibbs sampler, we choose not to in-
tegrate out each ψj and ρd, and to instead maintain explicit
values for each of these terms. The resulting Gibbs sampler
is then quite simple, and nearly all updates are conjugate. It
is also easily distributed so as to ensure ergodicity, because
ρd is local to each document. Assume that the set of doc-
uments has been partitioned across the cluster so each ma-
chine has a subset of the data. Then, for a document d, ρd

can be updated locally on the machine on which document
d is located, as outlined in Algorithm 1.1 After this update
is performed in parallel around the cluster in an epoch, the
number of times each topic was responsible for producing
each word in the dictionary is computed using a distributed
aggregation, and the results are used to update each ψj be-
fore the next epoch of the computation begins.

Algorithm 1 Sampler for ρ(k)d given ρ(k−1)d , {ψ(k)
j }

ρ
(k)
d ← ρ

(k−1)
d

for a ∈ {1...10} do
for each term t in document d do

Sample zd,t where Pr[zd,t = γ] ∝ ρ(k)d,γψ
(k)
γ,t

end for
Compute q where qj = |{zd,t|zd,t = 1}|
ρ
(k)
d ∼ Dirichlet(α+ q)

end for

A.2 SHEPHERDED LDA

Since our goal is data parallelism, we will develop an
MCMC simulation utilizing the most general formulation
of the method of SDs, corresponding to Equation 2 of Sec-
tion 2 in our paper:

f1(xc1)g(θ)

n∏
i=2

fi(xci | θ).

Distribution. Assume a compute cluster consists of n −
1 machines; our shepherded algorithm will maintain n −
1 shepherded chains and one primary chain. We partition
the input data set D into D2 ∪ D3 ∪ ... ∪ Dn and locate
each Di on a different machine. The machine holding Di

will be responsible for maintaining the shepherded chain
tasked with sampling xci , using only the data in Di. Since
xc1 corresponds to the primary chain, there is no D1 to be
operated on by the chain sampling xc1 .

In the case of data-parallel LDA, a sampled xci consists
of a complete set of word-in-topic probabilities {ψj}ci ,

1The ten iterations of the inner loop are chosen somewhat ar-
bitrarily; the idea is to sample until ρ(k)d is consistent with {ψ(k)

j }.

Supplementary Material (AISTATS 2018): Parallel and Distributed MCMC via Shepherding Distributions

maintained locally, learned over Di. In addition, ρd for
each d ∈ Di is maintained as a local set of auxiliary
variables. Hence the machine holding Di runs a Markov
chain that generates samples from fLDA({ψj}ci |Di, α, β),
where fLDA corresponds to the PDF for the LDA model.

In addition, the primary chain corresponding to xc1 will
be maintained in parallel by all machines, using a standard
distributed LDA algorithm (such as the one described in the
previous subsection).

Shepherding Methodology. The question then becomes,
how to shepherd the n − 1 chains that are machine-local?
This is a crucial question, because all of the chains are exe-
cuted independently over different subsets of the data. Un-
less they are shepherded effectively, each chain is going to
learn a different set of topics from a different subset of data,
none of which is likely to be of high quality with respect to
the entire data set.

We choose to shepherd the hyperparameter β controlling
the generation of the per-topic word probability, so the
shepherding parameter θ = 〈β′1, β′2, ...〉, with one shep-
herded vector per topic. In this way, if a shepherded
chain discovers that word w is important to topic j in its
own subset of the data, it can cause the value of β′j,w to
increase, which will tend to increase the importance of
word w in topic j for all of the shepherded chains. We
choose a Gamma(a, b) prior on each β′t,w. It is easy to
develop a rejection sampler that is able to sample from
P (β′j,w|{ψj}ci forall i ≥ 2) efficiently.

Given this, the shepherded algorithm works as follows. In
an epoch, each machine performs one or more rounds of
sampling of its local {ψj}ci , {ρd|d ∈ Di} values. Also in
an epoch, all machines perform one iteration of the sampler
for the primary chain. At the end of the epoch, a distributed
aggregation is then used to update θ, as well as the state of
the primary chain. An epoch completes with an attempt to
swap the primary chain with one of the shepherded chains,
as we discuss now.

Swapping. An epoch ends by attempting to swap the iden-
tity of the primary chain with the shepherded chain named
by ci, for a randomly selected i 6= 1. The swap is accepted
with probability

f1(xci)fi(xc1 |θ)
f1(xc1)fi(xci |θ)

where:

f1(xci) ∝ fLDA(D|{ψj}ciα, β)
fi(xc1 |θ) ∝ fLDA(Di|{ψj}c1 , α, {β′j})
f1(xc1) ∝ fLDA(D|{ψj}c1 , α, β)
fi(xci |θ) ∝ fLDA(Di|{ψj}ci , α, {β′j})

Note that computing each of these four terms is a perplexity
computation. If the swap is accepted, ci and c1 exchange

values and the old ci becomes the primary chain.

A.3 EVALUATION

To evaluate the shepherded LDA algorithm, we consider
the case where we have distributed an LDA computation
over a cluster of ten machines. We consider two options
for running a distributed LDA computation. In the first, we
run the distributed Gibbs sampler described in this section.
In the second, we run the shepherded sampler. As before,
we measure the LLH achieved by the sampler as a function
of the amount of computation performed.

Again, this forces us to consider exactly how we measure
the amount of computation performed in a fair way. After
some thought, we decided to measure this as a function of
the number of distributed aggregations performed. That is,
in the case of the “vanilla” distributed LDA, Algorithm 1
is run over each document in the corpus, and then a dis-
tributed aggregation is performed to collect the statistics
necessary to re-sample all of the ψj values. Thus, we have
one aggregation each time that Algorithm 1 is run over the
entire corpus.

Shepherded LDA, in contrast, performs a variety of differ-
ent computations in each epoch. Algorithm 1 is run over
each document in the corpus twice: once for the primary
chain, and once for one of the shepherded chains. Then,
the primary chain must perform a distributed aggregation
to update each ψj associated with the primary chain. Next,
each shepherded chain must update its own ψ values, and
those are used to update the shepherding parameters; this
is a second distributed aggregation. Finally, the perplexity
computation required to check for a swap requires a third
distributed aggregation.2 Given this, in our experiments,
when comparing the distributed Gibbs sampler with shep-
herded LDA, we allow the Gibbs sampler to run for three
epochs corresponding to every epoch of the shepherded
sampler.

We ran the two samplers on two different data sets: the 20
Newsgroups data3, and a corpus of Wikipedia articles4. For
both data sets, we used 100 topics and a dictionary size of
10,000 words.

References

D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet
allocation. JMLR, 3(Jan):993–1022, 2003.

2Note that in practice, there is a lot freedom to vary this se-
quence. For example, one may decide to attempt a swap or to
update the primary chain only periodically, favoring updates to
the shepherded chains. Exploring these options is left to future
work.

3kdd.ics.uci.edu/databases/20newsgroups/
20newsgroups.html

4dumps.wikimedia.org/enwiki/

https://kdd.ics.uci.edu/databases/20newsgroups/20newsgroups.html
kdd.ics.uci.edu/databases/20newsgroups/20newsgroups.html
https://kdd.ics.uci.edu/databases/20newsgroups/20newsgroups.html
kdd.ics.uci.edu/databases/20newsgroups/20newsgroups.html
https://dumps.wikimedia.org/enwiki/
dumps.wikimedia.org/enwiki/

	LATENT DIRICHLET ALLOCATION
	DISTRIBUTED LDA
	SHEPHERDED LDA
	EVALUATION

