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Abstract

In this paper, we present a general algorith-
mic framework for developing easily paralleliz-
able/distributable Markov Chain Monte Carlo
(MCMC) algorithms. Our framework relies
on the introduction of an auxiliary distribution
called a shepherding distribution (SD) that is
used to control several MCMC chains that run in
parallel. The SD is an introduced prior on one or
more key parameters (or hyperparameters) of the
target distribution. The shepherded chains then
collectively explore the space of samples, com-
municating via the shepherding distribution, to
reach high likelihood regions faster. The method
of SDs is simple, and it is often easy to develop
a shepherded sampler for a particular problem.
Other advantages include wide applicability—the
method can easily be used to draw samples from
discrete distributions, or distributions on the sim-
plex. Further, the method is asymptotically cor-
rect, since the method of SDs trivially maintains
detailed balance.

1 INTRODUCTION

It is desirable to develop MCMC algorithms that use
parallelization or distribution to run more efficiently
[Williamson et al., [2013], |(Corander et al., 2006, [Nishihara
et al., 2014} Xu et al., 2014} |Ahn et al., 2014, Wang et al.,
2015, |Desjardins et al., 2010]]. Here, “more efficiently” can
mean reaching a high likelihood portion of the data space
in a shorter wall-clock time (that is, having a shorter burn-
in period). This is often the goal in applications in Al or
Bayesian machine learning, where MCMC is commonly
used as an optimization method for solving MAP estima-
tion problems, rather than out of any great devotion to the
Bayesian approach. As an alternative, “more efficiently”
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can mean exploring a density function efficiently, produc-
ing samples that represent the full diversity of the high like-
lihood portion of the function’s domain.

Unfortunately, since MCMC algorithms rely on simulat-
ing a Markov chain—a sequential construct—they are chal-
lenging to parallelize. Methods for parallelizing MCMC
generally fall into two camps: those that are data parallel
and those that are transition parallel.

Data parallel algorithms are far more common in the
literature.  These algorithms are typically useful for
data-intensive Bayesian machine learning applications,
where a large data set can be partitioned across many
CPUs/machines, and some computationally expensive part
of each simulation step can run over the different data par-
titions independently and in parallel [Yuan et al., 2015|
Newman et al., 2009, Smola and Narayanamurthyl, [2010].
Other popular data parallel algorithms run multiple sim-
ulations locally and then combine the results in a final
step [Neiswanger et al.| 2013 Wang and Dunson, 2013}
Minsker et al.| 2014].

Transition parallel algorithms attempt to use parallelism to
make each state transition more effective, rather than more
efficient. Thus, the goal is to run fewer, more effective
steps. Unfortunately, when the goal is transition parallelism
(or the problem to be solved does not lend itself to data
parallelism), there are only a few general-purpose methods
available. One of the most common (and oldest) meth-
ods for achieving transition parallelism involves running
a number of chains in parallel, some of which have flat-
tened probability density functions [|Geyer},|1992]]. Samples
from the target density function are obtained by checking
the state of a designated, non-flattened chain. Periodically,
in a special Metropolis step, the identities of the chains are
swapped. In theory, this can allow for better mixing, as
the flattened chains facilitate a more thorough exploration
of the sample space. This method is often used in com-
putational biology, where sampling problems are not data
parallelizable [Altekar et al., 2004].

In this paper, we propose a general approach to parallel
MCMC that can obtain speedups through either data or
transition parallelism, which we call the method of shep-
herding distributions (SDs). The method of SDs relies on
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the introduction of an auxiliary distribution (the SD) that
is then used to control several MCMC chains that run in
parallel with a primary chain, which in turn is designed so
as to have a stationary distribution equivalent to the target
distribution, f(z). The shepherded chains independently
explore the solution space, but they are linked by the SD
(which is essentially a prior on one or more of the key
parameters to f(x)) so that when one shepherded chain
reaches a high-likelihood solution, it can “pull” the other
chains towards the same solution.

The method of SDs is related to the various “embar-
rassingly parallel” MCMC algorithms [Neiswanger et al.,
2013, in that a number of chains are run independently.
But rather than trying to combine the results after the run—
which is difficult or impossible in the general case and may
result in an algorithm with weak correctness guarantees—
the SD ensures the various chains influence one another
throughout the sampling process. Further, the use of an SD
(which is often a simple conjugate prior) bakes this coor-
dination into the sampling process, so correctness is guar-
anteed via detailed balance. Aside from its good perfor-
mance, a key benefit of the method of SDs is its simplicity
relative to other, recent alternatives in the literature. Fur-
ther, SDs are widely applicable—SDs can easily be used
to draw samples from mixed discrete and continuous dis-
tributions, or constrained distributions such as those on the
simplex. The method of SDs is asymptotically exact and
applicable to both data parallel and transition parallel prob-
lems.

We show through a number of different examples how the
method of SDs can be used to design MCMC algorithms
for difficult, real-world problems, that tend to outperform
other general transition parallelization techniques (paral-
lel (MC)? [Geyer, |1992] and parallel tempering [Earl and
Deem, 2005])). In fact, in each of the applications that we
consider, the method of SDs can be used to design algo-
rithms that reach a high-likelihood region of the sample
space that a conventional MCMC algorithm struggles to
find, providing evidence that even a shepherded MCMC
algorithm running on a single CPU may be superior to a
conventional, un-shepherded algorithm.

2 THE SHEPHERDING APPROACH

Assume we wish to develop an MCMC algorithm for an un-
normalized target distribution f(z) over some state space
X. The method of SDs maintains a Markov chain, referred
to as the primary chain, so designed that its stationary den-
sity is precisely the target density f(x).

Now, we choose one of the fixed parameters (or hyperpa-
rameters) 6 used in the formulation of f(x) and view it as
a random variable, introducing a prior g(#) on 6, which we
call the shepherding distribution. We then define a shep-
herded chain to be a Markov chain designed to have a sta-

tionary distribution f’(z | 6).

Often, f’ is chosen so that f = f, but this is not neces-
sary. In our first example of the method of SDs (solving
a weighted MAX-SAT problem) f is constructed to have
the same mode(s) as f, but to have a higher variance, so
that at least initially, each shepherded chain is given more
freedom to explore the space X.

When using the method of SDs, we augment the chain
whose stationary distribution is f () with (n—1) additional
shepherded chains, as well as a sampler for the shepherding
parameter #. In addition, we introduce an auxiliary vari-
able ¢ that holds a permutation of the numbers {1,...,n};
the value stored in c; is the identity of the primary chain.
Given a particular value of ¢, the primary chain (identified
by c¢1) runs independently, whereas the shepherded chains
(identified by cq, ..., c,) are bound by the shepherding pa-
rameter 6, through ¢(6). Then, assuming that the prior on ¢
is uniform over all permutations, the entire Markov process
is designed to have unnormalized stationary density

n

f(ﬁcl)g(e) H f/(‘rci

1=2

9). (1)

Note that the method of SDs does not prescribe the ex-
act nature of the Markov chain simulation used to en-
sure the required stationary distribution. Any strategy that
maintains detailed balance can be used (Gibbs sampling,
Metropolis-Hastings, Hamiltonian MCMC [Neal et al.,
2011, etc.). In fact, it may make sense to use different
strategies for different chains. Often ¢ is updated using a
Metropolis step that attempts to exchange the value of ¢
with a randomly selected c; with probability

min (1, ;)

where

' f(xq)f/(mcl-wy

This allows a high-quality solution computed by the shep-
herded chains to be exchanged into the primary chain. Or,
one can compute 7; for each value of ¢ € {1...n} and then
choose a swap of ¢; with a randomly selected c¢; in a Gibbs
sampling step, with probability proportional to 7;.

In the most general case, the various shepherded chains
may sample from different distributions. One can construct
a chain whose stationary distribution is

fl(xcl)g(e)Hfl(sz 9) 2
1=2

with the goal of drawing samples from f7. This is particu-
larly useful if the task is to realize an algorithm achieving
data parallelism, so that the samplers, for each f; where
1 > 2, are operating over subsets of a large data set in a
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distributed machine learning setting (see our application to
LDA [Blei et al., [2003]] later in the paper). In such a set-
ting, the shepherding distribution g(6) provides a way for
the various chains to communicate with one another, even
though they are operating over different subsets of the data.

Thus, the method of SDs simulates a Markov chain having
three types of dynamics: a periodic update of the permu-
tation ¢ (a “swapping step”), interleaved with parallel sim-
ulation of the chains corresponding to each x;, as well as
periodic updates of the shepherding variable 6. An exam-
ple, shepherded MCMC algorithm that maintains detailed
balance via Gibbs sampling, with a Metropolis update of ¢,
is given as Algorithm [I]

Algorithm 1 Algorithm for the method of SDs
Initialize 6 ~ g(6)
Initialize n Markov chains, x1, ..., x,
Initialize ¢ < randperm(n)
while not converged do

/I Update the state of each chain

Sample z., ~ fi(z.,)

for i € {2---n} do in parallel
Sample z., ~ fi(x., | 0)

end for

/I Update the shepherding distribution
Sample 0 ~ g(0) [I;_, fi(zc, | 0)

/I Update the identity of the primary chain
i < randint(2, n)
fl(a:ci)fi(a/’cl 16)
f1 (ajcl )ft(mcl |0)
if rand(1) < min (1, 7) then
swap (c¢;, ¢1)
end if
end while
Return z., as a sample from f;

Note that while all three types of dynamics are performed
in each iteration of Algorithm 1, it will often be beneficial
to skip one or more of these in each iteration, for exam-
ple, focusing more computational resources on the parallel
update of each z;.

Discussion. At a high level, the method of SDs works by
running a number of shepherded Markov chains in paral-
lel. As the chains begin to converge towards a common,
high-likelihood state, the variance permitted by the hyper-
parameter set 6 reduces, directing all the chains toward
that high-likelihood state. If the state of the chain is com-
plex and consists of many variables—as is often the case
in Bayesian machine learning—the high-likelihood chains
may only agree on a subset of their variables. In this case,
given an appropriate choice of shepherding distribution,
variance will be reduced only for those variables, leaving

the chains free to explore the state space for the rest. In
this way, the method of SDs resembles simulated anneal-
ing [Van Laarhoven and Aarts| |1987]], but the tempering
happens naturally, without the need for an explicit temper-
ature value to control the state of the system. Further, the
method of SDs facilitates solutions that “cool” the system
only with respect to those portions of the state space for
which there is agreement across chains.

The method of SDs can also be seen as related to the clas-
sical method of parallelizing/distributing stochastic learn-
ing algorithms that has long been part of the folklore: run
the algorithm independently at different sites, and then
periodically average the learned model [Zinkevich et al.|
2010] or at the end of the computation [Neiswanger et al.,
2013]. However, while averaging only makes sense for
certain types of problems (averaging discrete models is
problematic, for example), the method of SDs can work
with any type of data for which an appropriate shepherding
prior can be chosen. And while averaging often has very
weak correctness guarantees, replacing an average with a
Bayesian update, where the shepherding parameter 6 is
sampled as a random variable with density proportional to
g(0) [Ti—5 fi(z,|0), maintains detailed balance, and hence
correctness is guaranteed.

We note that the choice of exact shepherding mechanism
is important, but in our experience is often obvious from
the problem context. One typically chooses a shepherding
distribution as a prior on the key variables of interest. This
allows the various shepherded chains to communicate with
one another, via the hyperparameter set 6 learned coopera-
tively.

Roadmap. In the next three sections of the paper, we give
three examples of the application of the method of SDs.
Our first two examples (weighted MAX-SAT and Bayesian
linear regression with a spike-and-slab prior) will focus on
transition parallelism, where the goal is to use parallelism
that requires fewer epochs to converge. Our last example
will focus on using the method of SDs to develop a data
parallel sampler.

3 WEIGHTED MAX-SAT

In this section, we consider a shepherded solution to the
weighted MAX-SAT problem. We show that using the
method of SDs, it is easily possible to produce an MCMC
sampler that outperforms other popular parallel samplers as
well as a Gibbs sampler on the same problem.

3.1 PROBLEM FORMULATION

Maximum satisfiability problem (MAX-SAT) is the prob-
lem of determining the maximum number of clauses of a
given Boolean formula in conjunctive normal form, that
can be made true by an assignment of truth values to the
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variables of the formula. The weighted MAX-SAT prob-
lem is a MAX-SAT problem in which each clause is given
a positive weight, and the objective is to maximize the sum
of weights of satisfied clauses by any assignment.

An instance of weighted MAX-SAT can be viewed as in-
ducing a probability distribution as follows. Let L be the
set of all the literals present in a MAX-SAT problem in-
stance, and [; be the ith literal in L. L is a subset of L
containing only the literals assigned to true. 7T (the jth
clause in the SAT formula) is a binary-valued function over
an assignment L. For example, a particular clause may take
the form:

T;(L)=1liflp e Landly ¢ Landl; € Landlg € L
0 otherwise

(We will subsequently use L; to denote the set of literals
named in T}).

Now consider a random variable x that gives a random as-
signment of truth values to each of the literals in L. In
a weighted MAX-SAT problem, let m be the number of
clauses, and w; be the weight associated with clause j. For
some constant p, if we define the probability of z taking the
value L as:

Plz=1L)x H exp(Tj(L) x p x wy) 3)
j=1

then solving the weighted MAX-SAT problem is equivalent
to finding the value of L that maximizes the value of the
PMF in Equation [3] Note that in this formulation, p has no
effect on the identity of the assignment that maximizes the
PMF. If one uses an MCMC-based sampler to “solve” the
resulting maximization problem and finds that the majority
of the probability mass is concentrated away from the value
of L that maximizes the value of the PMF, in theory one
may force a sampler to choose the most likely samples by
using a larger value of p.

Given this formulation, a simple Gibbs sampler for gen-
erating a Markov chain simulation (z(*), 21 ...}, whose
stationary distribution is as given in Equation [3] is given
in Algorithm [2] This algorithm loops through each of the
clauses. For each clause, it enumerates all possible assign-
ments of the literals named by the clause, and chooses one
with probability proportional to the quality of the solution
obtained by incorporating the possible assignment into the
current solution.

3.2 A SHEPHERDED ALGORITHM

In practice this algorithm may quickly climb to a highly
likely solution—which may not be optimal—and become
stuck there. We can easily develop a parallel algorithm that
addresses this problem using the method of SDs by intro-
ducing a prior probability ; that [ € L appears in a sam-

Algorithm 2 Gibbs sampler for MAX-SAT

Initialize 2(°) to be a subset of L
for k € {1---big} do
(k)  p(k—1)
forje {1---m}do
sample L’ from PowerSet(L; ),
s.t. Priselecting L'] o< P(z = (z*) — L;) U L")
z®) (2™ —L)urL
end for
end for

pled assignment. Each shepherded chain samples assign-
ments from a modified PMF taking the prior assignment
probabilities into account:

Plle=rlo) [J6 J] (1—060)x

leL leL-L
H exp(T;(L) x p’ x w;).
j=1

Here, p’ is a special multiplier used with the shepherded
chains. For the corresponding shepherded sampler, f(z) in
Equation [1 is realized via the function P(z = L), while
f'(2]6) in Equation [1]is realized via P'(z = L|§) above.
Further, we use a Beta prior on each element of 6, so

g(0) = ] [ Beta(6:]0.1,0.1)

lEL
will be used to “shepherd” various chains.

In a parallel implementation of our shepherded sampler,
each shepherded chain runs one complete epoch of the
Gibbs sampler (considering each of the clauses in turn) fol-
lowed by a global (and generally inexpensive) update of 6.
To give the shepherded chains the flexibility to explore the
solution space, a relatively small value for the multiplier p’
can be chosen; we use p’ = 0.01. In a simple Gibbs sam-
pler, using such a small value for p would be problematic as
the chain would not explore the modes of the distribution,
but this tends not to be a problem for shepherded chains.
As a consensus is reached, the strength of the prior tends to
pull the various chains into the mode of the distribution.

3.3 EVALUATION

We performed some empirical comparisons of our shep-
herded MCMC with the Gibbs sampler described previ-
ously as well as two methods for parallelizng MCMC al-
gorithms: Parallel Metropolis-Coupled MCMC (p(MC)?)
[Altekar et al., 2004] and Hybrid Parallel Tempering Sim-
ulated Annealing (hPT/SA) [L1 et al., 2009].

Parallel (MC)? is a parallelized Metropolis-Coupled
MCMC, where a pool of chains heated to different tem-
peratures are run in parallel (in the case of weighted MAX-
SAT, the temperature corresponds to the value of p; the ith
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Figure 1: LLH of various MCMC samplers for four different Weighted MAX-SAT problems.
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Figure 2: LLH for the five chains used in a Shepherded
MCMC sampler to solve the second weighted MAX-SAT
problem.

chain has its own p; value, where 0 < p; < 1). The var-
ious chains form a ‘temperature ladder’ from cold to hot.
The chains with p; < 1 are called heated chains, allowing
transitions out of local maxima more easily compared to
the cold chain (with p; = 1). Periodically, in a Metropolis
step, the states of various chains are exchanged with each
other. This allows a hotter chain that has moved out of a
local optimal to exchange its state with a cooler chain that
has settled into such an optimal.

Hybrid PT/SA is a hybrid of Parallel Tempering (PT)
[Earl and Deeml [2005] and Simulated Annealing (SA)
[Van Laarhoven and Aarts, [1987]]. Again, multiple chains
at different temperature levels are run in parallel, where
each chain makes a local update and every pair of neigh-
boring chains in the temperature ladder attempt to swap
states. At the same time, a SA is performed, where the
temperature at each temperature level is gradually reduced,
and thus the overall composite system is gradually guided
towards the target temperature, while always remaining in
a state close to thermodynamic equilibrium.

All of the parallel algorithms are implemented using five
threads, and correspondingly five Markov chains. We
evaluated all four algorithms on several popular weighted
MAX-SAT benchmark problemsﬂ generating samples
from the distribution induced using p = 1 [Hyttinen et al.,
2014]. The problems are of moderate to large size. The

"www.cs.helsinki.fi/group/coreo/

benchmarks/

number of literals varies from 12,764 to 40,290 over the
four problems we tackle in this paper, and the number of
clauses ranges from 46,236 to 145,910. In Figure |1} we
show the comparison plots of the average log-likelihood
(LLH) over ten independent runs of all four samplers.
Rather than relying on wall-clock time, the = axis of each
plot is the number of epochs of each sampler run. An epoch
for the Gibbs sampler corresponds to a cycle through each
of the clauses in the MAX-SAT problem. An epoch for
the other three algorithms consists of an update for each of
the clauses for each individual chain, as well as whatever
attempts at swapping were required, or update to the shep-
herding distribution. Our rationale for considering epochs
rather than wall-clock time is a desire to avoid measuring
implementation effects (including the quality of the paral-
lel implementation), and since the computational effort re-
quired to cycle through each clause should dominate, using
the number of cycles for each chain as the x-axis seems to
make the most sense.

Discussion. In each case, the SD-based method reaches a
significantly higher likelihood than the other methods. For
example, in Figure[T}(b), the SD-based method reaches an
LLH as much as 200,000 higher than vanilla Gibbs sam-
pler, and more than 150,000 higher than the other parallel
algorithms (since p = 1, LLH is equivalent to the score of
the resulting solution). To put this in perspective, the aver-
age clause weight is 150, so this additional LLH equates to
a solution that includes around 1,000 more satisfied clauses
than any other method.

It is interesting to note the step-like increase in LLH under
the SD-based sampler. We can illustrate the reason for this
in Figure 2] which shows the LLH for each of the chains
corresponding to the five threads. Since the primary chain
has a p value of one (whereas the shepherded chains use
o' = 0.01) after a swap, the new primary chain sees a rapid
increase in LLH as it adjusts to the higher p value, leav-
ing the shepherded chains behind. However, the primary
chain soon reaches a locally optimal solution from which
it cannot escape. Then, as the shepherded chains collec-
tively begin to agree with one another on certain literals,
the corresponding prior hyperparameters reflect this agree-
ment, and the shepherded chains show a gradual increase in
LLH. Eventually, one of the shepherded chains achieves an
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LLH significantly higher than the primary chain, triggering
a swap, a rapid rise in LLH, and the cycle begins again.

4 BAYESIAN LINEAR REGRESSION

We now consider a shepherded sampler for a high-
dimensional Bayesian linear regression learning problem,
with a spike-and-slab prior [Ishwaran and Rao, |2005] on
the regression coefficients.

4.1 PROBLEM FORMULATION

We have a data set of m D-dimensional regressors X =
X1, X, ..., X;n. FOr a vector of regression coefficients w,

Yi = X] W+ €, )

where ¢; ~ Normal(0, 0?). We use a spike-and-slab prior
for w, which is standard in Bayesian learning for sparsify-
ing such a model. The particular spike-and-slab variant we
use has generative process:

w' ~Normal(0, I)
zq ~Bernoulli(p) for each feature dimension d

Wq 24w

z is the censoring variable, and controls which regression
coefficients are zero. Thus, each regression coefficient is
zero with probability p, and otherwise has a Normal prior
on it with variance 1.

Obtaining the posterior distribution over these variables
typically requires computing and performing matrix op-
erations over the D x D Gram matrix of X. For high-
dimensional data, this is impractical. To handle high-
dimensional data, we can develop a blocked Gibbs sampler
for this problem. First, partition the columns (features) of X
into B subsets (or “blocks”), where the number of columns,
D’, is small enough that we can comfortably perform ma-
trix operations over a D’ x D’ matrix. Then:

1. Let X, denote X projected so that only the features
in the bth block remain. Likewise, let X; denote X
projected so as to remove features in the bth block.

2. Let w;, denote w projected so that only the weights
for the features in the bth block remain (wj, is defined
similarly, for the uncensored version of w). Likewise,
let w;, denote w projected so as to remove the features
in the bth block (wj, defined similarly).

3. And z; projects the list of masked regression coef-
ficients onto the bth block, while Z; projects the list
of masked regression coefficients so as to remove the
masks for the bth block.

Given this, Algorithm [3] gives a simple Gibbs sampler for
BLR. In an epoch, for each block, the set of regression co-
efficients are updated, and then the various variables con-
trolling the censored regression coefficients (the various

zc(lk) values) are updated.

Algorithm 3 Gibbs sampler for BLR

Initialize each w;(o), ZZSO)

for k € {1...big} do

Set each w;(k) w1
Set each zz()k) « zF Y

b
forb € {1...B} do
_ (K)1o(k
v, <y — (W Ty
Eb_l — I+ 0_—12 gram(X,) diag(zl()k))
2 5 (Xy diag(z))Ty,
1(k)
Wy
end for
for each feature dimension d do
(k) 1— ()
Compute p*¢ (1 —p)'~%a x
[T, Normal(y;[xjw,o?)

for zc(lk)

end for
end for

~ Normal(pyp, Xp)

€ {0,1} and sample zfik)

4.2 SHEPHERDED BLR

To apply the method of SDs to this Gibbs sampler, we
simply augment the spike-and-slab prior, by introducing a
few shepherded hyperparameters. Specifically, we shep-
herd the uncensored list of coefficients w’ via the intro-
duction of new hyperparameters A and v (so that w' ~
Normal(A, diag(+)) and we shepherd each z4 value (con-
trolling whether or not the dth coefficient is censored) by
adding a probability 74 such that z; ~ Bernoulli(ry).
Hence, the shepherding parameter set 6 = (A,~, ) and
an appropriately chosen shepherding distribution

g(6) = Normal(A|0, I) H InvGamma(yg4|1, 1) x
d
Beta(mq|a, 3).

In our parallel, shepherded sampler, each chain maintains
its own W', z pair. During an epoch, each chain uses Al-
gorithm [3| to move from state £ — 1 to state k. The only
modification is that the shepherded chains must take into
account the parameter set 6, so we use

. _ 1 .
E;l <« diag(p) Ty o gram(X, dlag(zék)))

. _ 1 .
iy < Sp(diag(y,) A + ﬁ(xb dlag(zz(,k)))TYb

and we replace p with 74 when sampling z[(lk). At the end
of each epoch, we then update 6. This is computationally
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Figure 3: LLH of various samplers for BLR.

easy, due to conjugate priors, and much less expensive than
updating each chain during the epoch.

4.3 EVALUATION

To test the utility of the shepherded algorithm, we use the
BLR implementation to learn a model to determine whether
or not a document from the 20 Newsgroups data set [Lang],
1995] is from one of the newsgroups related to religion,
using the most frequent 2,000 words as our features. We
again run three parallel MCMC implementations based
upon the Gibbs sampler described in this section: p(MC)3,
hPT/SA, and the shepherded sampler, as well as a sequen-
tial Gibbs sampler. Each parallel MCMC implementation
uses ten threads, and correspondingly ten Markov chains.

Figure [3] plots the average LLH over ten independent runs
versus the number of epochs runE] Clearly, the shepherded
sampler reaches a high likelihood much more quickly than
the other three samplers. Further, after around 4,000
epochs, all four samplers seem to have stabilized in terms
of the LLH achieved, with the shepherded sampler reaching
a significantly higher likelihood than the other three sam-
plers.

S LATENT DIRICHLET ALLOCATION

We now consider a data parallel implementation of a sam-
pler for Latent Dirichlet Allocation (LDA) [Ble1 et al.,
2003[]. Our focus is on examining samplers that are ap-
propriate for a distributed environment where a subset of a
large data set is stored on each compute node.

Basic Approach. Details of our shepherded LDA are given
in the supplementary material. At a high level, assume that
a compute cluster consists of n — 1 machines; our shep-
herded algorithm will maintain n — 1 shepherded chains

2Note that we plot LLH as a function of time, rather than
a direct measure of model prediction accuracy. We argue that
since MCMC is optimizing for LLH, this is the correct compari-
son metric. Measuring the model itself may introduce effects due
to model selection and hyperparamter choice.

and one primary chain. We partition the input data set D
into Dy, U D3 U ... U D,, and locate each D; on a differ-
ent machine. The machine holding D; will be responsible
for maintaining the shepherded chain tasked with sampling
Z¢,, using only the data in D;. Since x., corresponds to the
primary chain, there is no D; to be operated on by the chain
sampling z.,. In the case of data-parallel LDA, a sampled
T, consists of a complete set of model parameters, main-
tained locally, learned only over D;.

In addition, the primary chain corresponding to x., will
be maintained in parallel by all machines, using a standard
distributed LDA algorithm.

In LDA, the jth topic v; is a set of word probabilities sam-
pled from a Dirichlet(/) prior. The chains operating over
the various D;’s are shepherded via the 5 hyper-parameter.
That is, topic j is assigned its own hyper-parameter (3;. Pe-
riodically, the various chains communicate the set of statis-
tics necessary to update 3. When the chains begin to agree
that word w is important (or unimportant) to topic j, then
B;,w will be raised (or lowered) accordingly.

Evaluation. To evaluate the shepherded LDA algorithm,
we consider the case where we have distributed an LDA
computation over a cluster of ten machines. We consider
two options for running a distributed LDA computation. In
the first, we run the distributed Gibbs sampler described in
this section. In the second, we run the shepherded sampler
using eleven Markov chains (ten shepherded and one pri-
mary). As before, we measure the average LLH achieved
over ten independent runs by both the samplers as a func-
tion of the amount of computation performed.

We ran the two samplers on two different data sets: the 20
Newsgroups dateﬂ and a corpus of Wikipedia articleﬂ For
both data sets, we used 100 topics and a dictionary size of
10,000 words.

The results are plotted in Figure E]E] What is particularly
interesting is that in both cases, the shepherded sampler
reaches a significantly higher LLH than the vanilla Gibbs
sampler, though both samplers seem to have converged
(burned in) after about 200 distributed aggregations on each
of the two data sets. This is in-keeping with the rest of the
experimental findings in the paper, where the shepherded
samplers are typically able to reach significantly higher
likelihoods than the non-shepherded samplers. It is also no-
table that the LLH plot is significantly less smooth for the
shepherded sampler. This is the result of continuous swaps

%kdd.ics.uci.edu/databases/2 Onewsgroups/
20newsgroups.html

Ydumps .wikimedia.org/enwiki/

SNote that we plot LLH as a function of time, rather than the
more traditional perplexity. Similar to in BLR, we argue that
since MCMC is optimizing for LLH, this is the correct compari-
son metric. In contrast, perplexity measures model quality, which
is known to be sensitive to hyperparaeters, model size, and so on
[[Asuncion et al.} 2009].
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Figure 4: LLH for distributed Gibbs sampling and shep-
herded MCMC on the 20 Newsgroups data (top) and
Wikipedia data (bottom).

for both data sets, which can result in either a precipitous
drop or increase in LLH. We found that many more swaps
happened when learning from the 20 Newsgroups data as
opposed to the Wikipedia data.

6 RELATED WORK

There is relatively little work on developing general-
purpose transition parallel MCMC algorithms. Most of the
efforts are related to the idea of running multiple chains at
different temperatures, which can be swapped periodically
((MC)? method [Altekar et all [2004] Geyer, [1992]). An-
other way to manage transition parallelism is to use mul-
tiple cores to increase the speed of an individual step of
an MCMC algorithm [Kontoghiorghes, 2005, Brockwell,
2006]. Generally these methods speed-up complex likeli-
hood calculations by leveraging the conditional indepen-
dence.

There has been a lot more research interest in developing
frameworks that can be used to develop distributed MCMC
algorithms, where the goal is to learn over a large data set
partitioned over a compute cluster.

One very recent effort is distributed stochastic gradient
MCMC [Ahn et al., 2014]]. This algorithm is a variant of
stochastic gradient MCMC [Ma et al., [2015]], where the
idea is to partition a large data set across machines, and
then perform Bayesian inference using a stochastic gradi-
ent MCMC that jumps from machine to machine. The au-
thors also propose running multiple such “jumping” sam-
plers in parallel, and combining their results.

The most commonly appearing class of distributed MCMC

algorithms in the literature is the set of so-called “embar-
rassingly paralle]” MCMC algorithms. These distributed
algorithms solve Bayesian learning problems by distribut-
ing data across a cluster, and then running independent
chains on each subset of the data. At a later stage, the lo-
cal samples are recombined into an approximation of sam-
ples from the desired global posterior of the entire data
set [Neiswanger et al., 2013, Wang and Dunson, 2013,
Minsker et all 2014]. The key difficulty of such meth-
ods is approximating the global posterior from the individ-
ual posterior. There have been various distributed poste-
rior approximation techniques used in literature, for exam-
ple, Gaussian or Gaussian kernel density estimation (KDE)
[Neiswanger et al., [2013]], a Weierstrass transform repre-
sentation of KDE [[Wang and Dunson, 2013]], and a median
posterior in a reproducing kernel Hilbert space (RKHS)
[Minsker et al.,|2014], and recombining using random par-
tition trees [Wang et al.,2015]]. The main drawback of these
samplings is that the local posteriors can significantly differ
from each other due to noisy data, non-random partitioning
of data, or due to simply not following the Gaussian as-
sumptions in the final approximation, which can result in
highly inaccurate global posterior samples. To overcome
the significant difference among local posteriors, one idea
is to use Expectation Propagation (EP) to facilitate sharing
of moment statistics of local posteriors across nodes [Xu
et al.,[2014].

7 CONCLUSIONS AND DISCUSSION

The development of frameworks and algorithms for dis-
tributed MCMC is an important problem, and the method
of SDs has several important advantages compared to other
methods. SDs provide a simple and widely applicable
method for parallelizing or distributing MCMC algorithms.
SDs can handle arbitrary data types; any data for which a
suitable prior can be found, may be shepherded. Further,
the method of SDs is asymptotically exact (since SDs main-
tain detailed balance), and they are applicable to both data
parallel and transition parallel problems. There are many
opportunities for future research. One of the biggest prob-
lems with the method as described in this paper is the need
for a primary chain in addition to the shepherded chains,
in order to maintain asymptotic correctness. Checking for
swaps between these chains is expensive, typically requir-
ing a pass through the data in applications to machine learn-
ing. It is desirable to develop shepherded algorithms where
the shepherded chains themselves are already guaranteed
to sample from the target distribution, without the need for
a primary chain.
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