
Bootstrapping EM via Power EM and Convergence in the Naive Bayes Model

A Description of the EM Algorithm

We provide a short description of the Expectation-Maximization (EM) algorithm for maximizing likelihood in
statistical models with latent variables. Consider a probability distribution 𝑝𝜆 sampling (𝑋,𝑍), where 𝑋 is
a vector of observable random variables, 𝑍 a vector of non-observable random variables and 𝜆 ∈ Λ a vector
of parameters. Given independent samples 𝑥1, . . . ,𝑥𝑛 of the observed random variables, the goal of maximum
likelihood estimation is to select 𝜆 ∈ Λ maximizing the log-likelihood of the samples, namely

∑︀
𝑖 log 𝑝𝜆(𝑥𝑖).

Unfortunately, computing 𝑝𝜆(𝑥𝑖) involves summing 𝑝𝜆(𝑥𝑖, 𝑧𝑖) over all possible values of 𝑧𝑖, which commonly
results in a log-likelihood function that is non-convex with respect to 𝜆 and therefore hard to optimize.

In this context, the EM algorithm proposes the following heuristic:

∙ Start with an initial guess 𝜆(0) of the parameters.

∙ For all 𝑡 ≥ 0, until convergence:

– (E-Step) For each sample 𝑖, compute the posterior 𝑄
(𝑡)
𝑖 (𝑧) := 𝑝𝜆(𝑡)(𝑍 = 𝑧|𝑋 = 𝑥𝑖).

– (M-Step) Set 𝜆(𝑡+1) := arg max𝜆

∑︀
𝑖

∑︀
𝑧 𝑄

(𝑡)
𝑖 (𝑧) log 𝑝𝜆(𝑥𝑖,𝑧)

𝑄
(𝑡)
𝑖 (𝑧)

.

Intuitively, the E-step of the algorithm uses the current guess of the parameters, 𝜆(𝑡), to form beliefs, 𝑄(𝑡)
𝑖 , about

the state of the (non-observable) 𝑍 variables for each sample 𝑖. Then the M-step uses the new beliefs about
the state of 𝑍 for each sample to maximize with respect to 𝜆 a lower bound on

∑︀
𝑖 log 𝑝𝜆(𝑥𝑖). Indeed, by the

concavity of the log function, the objective function used in the M-step of the algorithm is a lower bound on the
true log-likelihood for all values of 𝜆, and it equals the true log-likelihood for 𝜆 = 𝜆(𝑡). From these observations,
it follows that the above alternating procedure improves the true log-likelihood until convergence.

A.1 Derivation of the EM iteration for Naive Bayes - Proof of Lemma 1

Proof of Lemma 1:

The non-observable random variables for Naive Bayes mixture is the mixture component that the sample is
drawn from, i.e. 𝑍 ∈ {1, 2} while the parameters are the (normalized) probabilities for each feature. Thus the

posterior 𝑄
(𝑡)
𝑖 (𝑍 = 1) =

𝑝
𝜆(𝑡) (𝑍=1)·𝑝

𝜆(𝑡) (𝑋=𝑥𝑖|𝑍=1)

𝑝
𝜆(𝑡) (𝑋=𝑥𝑖)

can be computed as
1
2

∏︀𝑛
𝑖=1(1+𝜆

(𝑡)
𝑖 ·𝑥𝑖)/𝑘

1
2

∏︀𝑛
𝑖=1(1+𝜆

(𝑡)
𝑖 ·𝑥𝑖)/𝑘+

1
2

∏︀𝑛
𝑖=1(1−𝜆

(𝑡)
𝑖 ·𝑥𝑖)/𝑘

=∏︀𝑛
𝑖=1(1+𝜆

(𝑡)
𝑖 ·𝑥𝑖)∏︀𝑛

𝑖=1(1+𝜆
(𝑡)
𝑖 ·𝑥𝑖)+

∏︀𝑛
𝑖=1(1−𝜆

(𝑡)
𝑖 ·𝑥𝑖)

.

Computing the M-Step, we get that the updated probabilities are:

1 + 𝜆(𝑡+1)

𝑘
=

E
𝑥∼𝑝𝜇

[︂ ∏︀𝑛
𝑖=1(1+𝜆

(𝑡)
𝑖 ·𝑥𝑖)∏︀𝑛

𝑖=1(1+𝜆
(𝑡)
𝑖 ·𝑥𝑖)+

∏︀𝑛
𝑖=1(1−𝜆

(𝑡)
𝑖 ·𝑥𝑖)

· 𝑥
]︂

E
𝑥∼𝑝𝜇

[︂ ∏︀𝑛
𝑖=1(1+𝜆

(𝑡)
𝑖 ·𝑥𝑖)∏︀𝑛

𝑖=1(1+𝜆
(𝑡)
𝑖 ·𝑥𝑖)+

∏︀𝑛
𝑖=1(1−𝜆

(𝑡)
𝑖 ·𝑥𝑖)

]︂
= 2 E

𝑥∼𝑝𝜇

[︃ ∏︀𝑛
𝑖=1(1 + 𝜆

(𝑡)
𝑖 · 𝑥𝑖)∏︀𝑛

𝑖=1(1 + 𝜆
(𝑡)
𝑖 · 𝑥𝑖) +

∏︀𝑛
𝑖=1(1 − 𝜆

(𝑡)
𝑖 · 𝑥𝑖)

· 𝑥

]︃
since 𝐸[𝑄

(𝑡)
𝑖 (𝑍 = 1)] = 𝐸[𝑄

(𝑡)
𝑖 (𝑍 = 2)] =

1

2

= E
𝑥∼𝑝𝜇

[︃∏︀𝑛
𝑖=1(1 + 𝜆

(𝑡)
𝑖 · 𝑥𝑖) −

∏︀𝑛
𝑖=1(1 − 𝜆

(𝑡)
𝑖 · 𝑥𝑖)∏︀𝑛

𝑖=1(1 + 𝜆
(𝑡)
𝑖 · 𝑥𝑖) +

∏︀𝑛
𝑖=1(1 − 𝜆

(𝑡)
𝑖 · 𝑥𝑖)

· 𝑥

]︃
since 𝐸[𝑄

(𝑡)
𝑖 (𝑍 = 1) · 𝑥] = −𝐸[𝑄

(𝑡)
𝑖 (𝑍 = 2) · 𝑥]

Therefore, the iteration becomes

𝜆(𝑡+1) = 𝑘 E
𝑥∼𝑝𝜇

[︃∏︀𝑛
𝑖=1(1 + 𝜆

(𝑡)
𝑖 · 𝑥𝑖) −

∏︀𝑛
𝑖=1(1 − 𝜆

(𝑡)
𝑖 · 𝑥𝑖)∏︀𝑛

𝑖=1(1 + 𝜆
(𝑡)
𝑖 · 𝑥𝑖) +

∏︀𝑛
𝑖=1(1 − 𝜆

(𝑡)
𝑖 · 𝑥𝑖)

·
(︂
𝑥− 1

1

𝑘

)︂]︃
. (A.6)
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Equation (A.6), can be further simplified to give the required iteration form by noting that that 𝑥 is a 0/1 vector,
and that

tanh(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
and tanh−1(𝑥) =

1

2
ln

(︂
1 + 𝑥

1 − 𝑥

)︂
.

�

A.2 Derivation of the EM iteration for Binary Features - Proof of Lemma 2

Proof of Lemma 2: The iteration at the 𝑡-th step of the algorithm from A.6 simplifies to the following form
with the simplifications in notation for the binary case:

𝜆(𝑡+1) = 2 E
𝑥∼𝑝𝜇

[︃ ∏︀𝑛
𝑗=1(1 + 𝜆

(𝑡)
𝑖 𝑥𝑖)∏︀𝑛

𝑗=1(1 + 𝜆
(𝑡)
𝑖 𝑥𝑖) +

∏︀𝑛
𝑗=1(1 − 𝜆

(𝑡)
𝑖 𝑥𝑖)

𝑥

]︃
. (A.7)

We expand (A.7) as follows:

𝜆(𝑡+1) = E𝑥∼𝑑𝜇

[︃ ∏︀𝑛
𝑗=1(1 + 𝜆

(𝑡)
𝑖 𝑥𝑖)∏︀𝑛

𝑗=1(1 + 𝜆
(𝑡)
𝑖 𝑥𝑖) +

∏︀𝑛
𝑗=1(1 − 𝜆

(𝑡)
𝑖 𝑥𝑖)

𝑥

]︃
+

+ E𝑥∼𝑑−𝜇

[︃ ∏︀𝑛
𝑗=1(1 + 𝜆

(𝑡)
𝑖 𝑥𝑖)∏︀𝑛

𝑗=1(1 + 𝜆
(𝑡)
𝑖 𝑥𝑖) +

∏︀𝑛
𝑗=1(1 − 𝜆

(𝑡)
𝑖 𝑥𝑖)

𝑥

]︃

= E𝑥∼𝑑𝜇

[︃ ∏︀𝑛
𝑗=1(1 + 𝜆

(𝑡)
𝑖 𝑥𝑖)∏︀𝑛

𝑗=1(1 + 𝜆
(𝑡)
𝑖 𝑥𝑖) +

∏︀𝑛
𝑗=1(1 − 𝜆

(𝑡)
𝑖 𝑥𝑖)

𝑥

]︃
−

− E𝑥∼𝑑𝜇

[︃ ∏︀𝑛
𝑗=1(1 − 𝜆

(𝑡)
𝑖 𝑥𝑖)∏︀𝑛

𝑗=1(1 + 𝜆
(𝑡)
𝑖 𝑥𝑖) +

∏︀𝑛
𝑗=1(1 − 𝜆

(𝑡)
𝑖 𝑥𝑖)

𝑥

]︃

= E𝑥∼𝑑𝜇

[︃∏︀𝑛
𝑗=1(1 + 𝜆

(𝑡)
𝑖 𝑥𝑖) −

∏︀𝑛
𝑗=1(1 − 𝜆

(𝑡)
𝑖 𝑥𝑖)∏︀𝑛

𝑗=1(1 + 𝜆
(𝑡)
𝑖 𝑥𝑖) +

∏︀𝑛
𝑗=1(1 − 𝜆

(𝑡)
𝑖 𝑥𝑖)

𝑥

]︃
. (A.8)

The proof of the lemma follows using (A.8) with the following facts:

tanh(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
and tanh−1(𝑥) =

1

2
ln

(︂
1 + 𝑥

1 − 𝑥

)︂
.

�

B From Non-Uniform to Uniform Marginals

As we argued earlier, we can assume without loss of generality that the marginal distribution of the mixture is
uniform over 𝐾 for every feature.

Suppose instead that a feature 𝑖 has a different marginal distribution 𝜋 = 𝜋1+𝜋2

2 ̸= 1
𝑘 · 1.

We can—agnostically with respect to the parameters 𝜋1 and 𝜋2—process the samples we receive from the mixture
to make the feature marginal uniform over 𝐾 in a way that we also know a one-to-one correspondence between
the parameters of the resulting Naive Bayes model and the original Naive Bayes model.

To do this for every value 𝑗 ∈ 𝐾, whenever the sampled value for that feature takes value 𝑗 we randomly resample
the value for that feature according to a known distribution.

To explain the resampling process, we partition the set 𝐾 in two sets, a set 𝐴 = {𝑗 : 𝜋𝑗 > 1
𝑘} and 𝐵 = 𝐾 ∖ 𝐴.

We will only resample feature value whenever it takes value in the set 𝐴.

Whenever, value 𝑗 ∈ 𝐴 is chosen, we keep it with probability (𝑘𝜋𝑗)
−1 < 1 and with the remaining 1 − (𝑘𝜋𝑗)

−1

probability, we sample a different value 𝑗′ ∈ 𝐵 instead with probability proportional to 1
𝑘 − 𝜋𝑗′ , i.e. value 𝑗 ∈ 𝐴
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is resampled to value 𝑗′ ∈ 𝐵 with probability (1 − (𝑘𝜋𝑗)
−1)

1
𝑘−𝜋𝑗′∑︀
𝑧

1
𝑘−𝜋𝑧

. This process fixes the probability that the

feature takes value 𝑗 ∈ 𝐴 to be 1
𝑘 . Moreover, since the remaining probability is distributed proportionally to the

missing probability mass 1
𝑘 − 𝜋𝑗′ for each value 𝑗′ ∈ 𝐵, and all probabilities for coordinates 𝑗 ∈ 𝐴 have been

fixed, this process fixes the probabilities for all 𝑗′ ∈ 𝐵 as well.

The corresponding stochastic transformation matrix is upper-diagonal and thus invertible. It’s minimum eigen-
value is simply the inverse of its diagonal which is (𝑘 max𝑗∈𝐴 𝜋𝑗)

−1 ≥ 1
𝑘 . Thus it is invertible and well-conditioned.

Concluding, we can assume that the marginal distribution of the mixture is uniform over 𝐾 by applying this
transformation for every feature separately. We then invert back once we have computed estimates for the
transformed mixture to obtain the true mixture parameters 𝜋1 and 𝜋2.

C Convergence for Two Non-Identical Binary Features - Proof of Theorem 7

We analyze here the convergence of EM iteration (2.2) when we have two binary features, i.e. n = 2, with means
(𝜇1, 𝜇2) for the first class and (−𝜇1,−𝜇2) for the second class. In this case, we show that any point (𝜇′

1, 𝜇
′
2) on

the curve 𝜇′
1𝜇

′
2 = 𝜇1𝜇2 is a fixed point. This is because all points on the curve have the same likelihood and it

is information theoretically impossible to distinguish among them. We prove that the EM algorithm converges
to this curve 𝜇′

1𝜇
′
2 = 𝜇1𝜇2 and we compute its convergence rate. Figure 2 shows experimentally how different

starting points converge to different fixed points on the curve.

We now present the proof of Theorem 7.

Proof of Theorem 7. The iteration for two features with means (𝜇1, 𝜇2) for the first class and (−𝜇1,−𝜇2) for the
second class can be written according to (A.8) as follows

𝜆(𝑡+1) = E𝑥∼𝑑𝜇

[︃
(1 + 𝜆

(𝑡)
1 𝑥1)(1 + 𝜆

(𝑡)
2 𝑥2) − (1 − 𝜆

(𝑡)
1 𝑥1)(1 − 𝜆

(𝑡)
2 𝑥2)

(1 + 𝜆
(𝑡)
1 𝑥1)(1 + 𝜆

(𝑡)
2 𝑥2) + (1 − 𝜆

(𝑡)
1 𝑥1)(1 − 𝜆

(𝑡)
2 𝑥2)

[︂
𝑥1

𝑥2

]︂]︃

= E𝑥∼𝑑𝜇

[︃
𝜆
(𝑡)
1 𝑥1 + 𝜆

(𝑡)
2 𝑥2

1 + 𝜆
(𝑡)
1 𝜆

(𝑡)
2 𝑥1𝑥2

[︂
𝑥1

𝑥2

]︂]︃

which implies

𝜆
(𝑡+1)
1 = E𝑥∼𝑑𝜇

[︃
𝜆
(𝑡)
1 𝑥2

1 + 𝜆
(𝑡)
2 𝑥1𝑥2

1 − 𝜆
(𝑡)
1 𝜆

(𝑡)
2 𝑥1𝑥2

]︃
= E𝑥∼𝑑𝜇

[︃
𝜆
(𝑡)
1 + 𝜆

(𝑡)
2 𝑥1𝑥2

1 + 𝜆
(𝑡)
1 𝜆

(𝑡)
2 𝑥1𝑥2

]︃
and

𝜆
(𝑡+1)
2 = E𝑥∼𝑑𝜇

[︃
𝜆
(𝑡)
1 𝑥1𝑥2 + 𝜆

(𝑡)
2 𝑥2

2

1 − 𝜆
(𝑡)
1 𝜆

(𝑡)
2 𝑥1𝑥2

]︃
= E𝑥∼𝑑𝜇

[︃
𝜆
(𝑡)
1 𝑥1𝑥2 + 𝜆

(𝑡)
2

1 + 𝜆
(𝑡)
1 𝜆

(𝑡)
2 𝑥1𝑥2

]︃
.

We observe that the above expectations only depend on 𝑥1𝑥2 and hence we can set the random variable 𝑦 = 𝑥1𝑥2.
We see that the probability 𝑦 = 1 is equal to

(︂
1 + 𝜇1

2

)︂(︂
1 + 𝜇2

2

)︂
+

(︂
1 − 𝜇1

2

)︂(︂
1 − 𝜇2

2

)︂
=

1 + 𝜇1𝜇2

2



Constantinos Daskalakis, Christos Tzamos, Manolis Zampetakis

and hence the probability 𝑦 = −1 is equal to (1 − 𝜇1𝜇2)/2 which implies that

𝜆
(𝑡+1)
1 = E𝑦∼𝑑𝜇1𝜇2

[︃
𝜆
(𝑡)
1 + 𝜆

(𝑡)
2 𝑦

1 + 𝜆
(𝑡)
1 𝜆

(𝑡)
2 𝑦

]︃
and 𝜆

(𝑡+1)
2 = E𝑦∼𝑑𝜇1𝜇2

[︃
𝜆
(𝑡)
1 𝑦 + 𝜆

(𝑡)
2

1 + 𝜆
(𝑡)
1 𝜆

(𝑡)
2 𝑦

]︃
=⇒

𝜆
(𝑡+1)
1 + 𝜆

(𝑡+1)
2 = E𝑦∼𝑑𝜇1𝜇2

⎡⎣
(︁
𝜆
(𝑡)
1 + 𝜆

(𝑡)
2

)︁
(𝑦 + 1)

1 + 𝜆
(𝑡)
1 𝜆

(𝑡)
2 𝑦

⎤⎦ =

(︁
𝜆
(𝑡)
1 + 𝜆

(𝑡)
2

)︁
1 + 𝜆

(𝑡)
1 𝜆

(𝑡)
2

(1 + 𝜇1𝜇2)

𝜆
(𝑡+1)
1 − 𝜆

(𝑡+1)
2 = E𝑦∼𝑑𝜇1𝜇2

⎡⎣
(︁
𝜆
(𝑡)
1 − 𝜆

(𝑡)
2

)︁
(𝑦 − 1)

1 + 𝜆
(𝑡)
1 𝜆

(𝑡)
2 𝑦

⎤⎦ =

(︁
𝜆
(𝑡)
1 − 𝜆

(𝑡)
2

)︁
1 − 𝜆

(𝑡)
1 𝜆

(𝑡)
2

(1 − 𝜇1𝜇2).

From these relations we observe the following

1. if 𝜇1𝜇2 < 𝜆
(𝑡)
1 𝜆

(𝑡)
2 then 𝜆

(𝑡)
1 + 𝜆

(𝑡)
2 decreases and 𝜆

(𝑡)
1 − 𝜆

(𝑡)
2 increases.

2. if 𝜇1𝜇2 > 𝜆
(𝑡)
1 𝜆

(𝑡)
2 then 𝜆

(𝑡)
1 + 𝜆

(𝑡)
2 increases and 𝜆

(𝑡)
1 − 𝜆

(𝑡)
2 decreases.

3. if 𝜇1𝜇2 = 𝜆
(𝑡)
1 𝜆

(𝑡)
2 then 𝜆

(𝑡)
1 +𝜆

(𝑡)
2 remains the same and 𝜆

(𝑡)
1 −𝜆

(𝑡)
2 remains the same and hence 𝜆

(𝑡)
1 and 𝜆

(𝑡)
2

remain the same.

From these observations and using the fact that 𝜆
(𝑡)
1 𝜆

(𝑡)
2 = 1

4

(︁
𝜆
(𝑡)
1 + 𝜆

(𝑡)
2

)︁2
−
(︁
𝜆
(𝑡)
1 − 𝜆

(𝑡)
2

)︁2
we conclude that

1. if 𝜇1𝜇2 < 𝜆
(𝑡)
1 𝜆

(𝑡)
2 then 𝜆

(𝑡)
1 𝜆

(𝑡)
2 decreases.

2. if 𝜇1𝜇2 > 𝜆
(𝑡)
1 𝜆

(𝑡)
2 then 𝜆

(𝑡)
1 𝜆

(𝑡)
2 increases.

3. if 𝜇1𝜇2 = 𝜆
(𝑡)
1 𝜆

(𝑡)
2 then 𝜆

(𝑡)
1 𝜆

(𝑡)
2 remains the same.

Hence the iterations 𝜆
(𝑡)
1 and 𝜆

(𝑡)
2 converge to a point with 𝜇1𝜇2 = 𝜆

(𝑡)
1 𝜆

(𝑡)
2 and then the do not evolve, i.e. they

reach a fixed point.

Finally based on the above we can easily compute the convergence rate of 𝜆
(𝑡)
1 𝜆

(𝑡)
2 to 𝜇1𝜇2 to be equal to√

1 − 𝜇1𝜇2.

D Convergence for many i.i.d Features - Proof of Theorem 8

To derive the convergence rate bound we follow the sensitivity method developed in [DTZ17] which we present
here for completeness.

The main idea is to use the Mean Value Theorem with respect to the second coordinate of the function 𝑀 = 𝑀𝑖

on the interval [𝜆, 𝜇].
𝑀(𝜆, 𝜇) −𝑀(𝜆, 𝜆)

𝜇− 𝜆
=

𝜕𝑀(𝜆, 𝑦)

𝜕𝑦

⃒⃒⃒⃒
𝑦=𝜉

with 𝜉 ∈ (𝜆, 𝜇)

But we know that 𝑀(𝜆, 𝜆) = 𝜆 and 𝑀(𝜆, 𝜇) = 𝜆′ and therefore we get

𝜆′ − 𝜆 ≥

(︃
min

𝜉∈[𝜆,𝜇]

𝜕𝑀(𝜆, 𝑦)

𝜕𝑦

⃒⃒⃒⃒
𝑦=𝜉

)︃
(𝜇− 𝜆)

which is equivalent to

|𝜆′ − 𝜇| ≤

(︃
1 − min

𝜉∈[𝜆,𝜇]

𝜕𝑀(𝜆, 𝑦)

𝜕𝑦

⃒⃒⃒⃒
𝑦=𝜉

)︃
|𝜆− 𝜇| (D.9)
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where we have used the fact that 𝜆′ < 𝜇 which is comes from the fact that 𝑀(𝜆, 𝜇) is increasing with respect to
𝜆 and that 𝑀(𝜇, 𝜇) = 𝜇.

Therefore it suffices to lower bound 𝑑𝑀𝑖

𝑑𝜇 (𝜆, 𝜉). Towards this direction observe that

𝑑𝑀𝑖

𝑑𝜇
(𝜆, 𝜉) =

𝑛∑︁
𝑝=1

𝜕𝜆′
𝑖

𝜕𝜇𝑝
(𝜆, 𝜉)

Then the following lemma hold.

Lemma 4. Let 𝜇, 𝜆 have the same sign and let 𝜏 = min(|𝜇| , |𝜆|), then

1. for every 𝑖 ∈ [𝑛] we have that
𝜕𝑀𝑖

𝜕𝜇𝑖
(𝜆, 𝜉) ≥ 1 −

(︀
1 − 𝜏2

)︀𝑛−2
2 .

2. for every 𝑖, 𝑝 ∈ [𝑛] with 𝑖 ̸= 𝑝 we have that

𝜕𝑀𝑖

𝜕𝜇𝑝
(𝜆, 𝜉) ≥ 0.

Using the above lemma we get that

𝑑𝑀𝑖

𝑑𝜇
(𝜆, 𝜉) =

𝑛∑︁
𝑝=1

𝜕𝑀𝑖

𝜕𝜇𝑝
(𝜆, 𝜉)

=
𝜕𝑀𝑖

𝜕𝜇𝑝
(𝜆, 𝜉) +

𝑛∑︁
𝑝=1,𝑝̸=𝑖

𝜕𝑀𝑖

𝜕𝜇𝑝
(𝜆, 𝜉)

≥ 1 −
(︀
1 − 𝜏2

)︀𝑛−2
2 .

and hence we get the following result

Remark. Our theorem does not give any information about the case 𝑛 = 1 and 𝑛 = 2. For 𝑛 = 1 it is easy to
see that any value of 𝜆 is a fixed point of the EM iteration. The case 𝑛 = 2 is captured by the analysis in Section
3. We also observe that as the number of features increases the convergence rate decreases and hence the EM
iteration speeds up. This is natural since the more features we have the easier it is to cluster the samples that
we get to the appropriate classes.

To finish the proof of Theorem 8 we present the proof of Lemma 4.

Proof of Lemma 4. We first prove statement 2. We start observing by (2.2) that

𝑀𝑖(𝜆,𝜇) = E𝑥−𝑝∼𝑑𝜇−𝑝

⎡⎣tanh

⎛⎝tanh−1(𝜆)

⎛⎝ 𝑛∑︁
𝑗=1,𝑝̸=𝑗

𝑥𝑗 + 1

⎞⎠⎞⎠(︂1 + 𝜇𝑝

2

)︂
𝑥𝑖+

+ tanh

⎛⎝tanh−1(𝜆)

⎛⎝ 𝑛∑︁
𝑗=1,𝑝̸=𝑗

𝑥𝑗 − 1

⎞⎠⎞⎠(︂1 − 𝜇𝑝

2

)︂
𝑥𝑖

⎤⎦ =⇒

𝜕𝑀𝑖

𝜕𝜇𝑝
(𝜆, 𝜉) =

1

2
E𝑥−𝑝∼𝑑𝜉−𝑝

⎡⎣tanh

⎛⎝tanh−1(𝜆)

⎛⎝ 𝑛∑︁
𝑗=1,𝑝̸=𝑗

𝑥𝑗 + 1

⎞⎠⎞⎠𝑥𝑖−

− tanh

⎛⎝tanh−1(𝜆)

⎛⎝ 𝑛∑︁
𝑗=1,𝑝̸=𝑗

𝑥𝑗 − 1

⎞⎠⎞⎠𝑥𝑖

⎤⎦
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It is easy to see that this last quantity is positive. This comes from the fact that tanh is an increasing function
and hence the sign of the expression depends on 𝑥𝑖 only. Now since 𝜇 > 0 the probability mass on the positive
values is greater than the probability mass on negative values and also the absolute values on the positive 𝑥𝑖 are
greater than the absolute values on negative 𝑥𝑖. Hence we get that

𝜕𝑀𝑖

𝜕𝜇𝑝
(𝜆, 𝜉) ≥ 0.

We continue with the proof of statement 1. We start observing by (2.2) that

𝑀𝑖(𝜆,𝜇) = E𝑥−𝑖∼𝑑𝜇−𝑖

⎡⎣tanh

⎛⎝tanh−1(𝜆)

⎛⎝ 𝑛∑︁
𝑗=1,𝑖̸=𝑗

𝑥𝑗 + 1

⎞⎠⎞⎠(︂1 + 𝜇𝑖

2

)︂
−

− tanh

⎛⎝tanh−1(𝜆)

⎛⎝ 𝑛∑︁
𝑗=1,𝑖̸=𝑗

𝑥𝑗 − 1

⎞⎠⎞⎠(︂1 − 𝜇𝑖

2

)︂⎤⎦ =⇒

𝜕𝑀𝑖

𝜕𝜇𝑖
(𝜆, 𝜉) = E𝑥−𝑖∼𝑑𝜉−𝑖

⎡⎣tanh

⎛⎝tanh−1(𝜆)

⎛⎝ 𝑛∑︁
𝑗=1,𝑖̸=𝑗

𝑥𝑗 + 1

⎞⎠⎞⎠+

+ tanh

⎛⎝tanh−1(𝜆)

⎛⎝ 𝑛∑︁
𝑗=1,𝑖̸=𝑗

𝑥𝑗 − 1

⎞⎠⎞⎠⎤⎦
= E𝑥−𝑖∼𝑑𝜉−𝑖

,𝑥𝑖∼𝑑0

⎡⎣tanh

⎛⎝tanh−1(𝜆)

⎛⎝ 𝑛∑︁
𝑗=1

𝑥𝑗

⎞⎠⎞⎠⎤⎦
From this expression and using the same argument that we used to prove part 2. of the lemma we get that
𝜕𝑀𝑖

𝜕𝜇𝑖
(𝜆, 𝜉) is an increasing function of 𝜆. Hence we can assume without loss of generality that 𝜆 ≤ 𝜉𝑖 because

otherwise the value of 𝜕𝑀𝑖

𝜕𝜇𝑖
(𝜆, 𝜉) is even greater.

Therefore we can assume that min(𝜆,min𝑖∈[𝑛](𝜉𝑖) = 𝜆. Writing the EM iteration according to (A.8) and get that

𝜕𝑀𝑖

𝜕𝜇𝑖
(𝜆,𝜇) = E𝑥−𝑖∼𝑑𝜉−𝑖

,𝑥𝑖∼𝑑0

[︃∏︀𝑛
𝑗=1(1 + 𝜆𝑥𝑖) −

∏︀𝑛
𝑗=1(1 − 𝜆𝑥𝑖)∏︀𝑛

𝑗=1(1 + 𝜆𝑥𝑖) +
∏︀𝑛

𝑗=1(1 − 𝜆𝑥𝑖)

]︃
.

Using this form of iteration we get the following sequence of bounds using 𝜏 = min(𝜆, 𝜇).

1 − 𝜕𝑀𝑖

𝜕𝜇𝑖
(𝜆, 𝜉) = 1 − E𝑥−𝑖∼𝑑𝜇−𝑖

,𝑥𝑖∼𝑑0

[︃∏︀𝑛
𝑗=1(1 + 𝜆𝑥𝑖) −

∏︀𝑛
𝑗=1(1 − 𝜆𝑥𝑖)∏︀𝑛

𝑗=1(1 + 𝜆𝑥𝑖) +
∏︀𝑛

𝑗=1(1 − 𝜆𝑥𝑖)

]︃

= E𝑥−𝑖∼𝑑𝜉−𝑖
,𝑥𝑖∼𝑑0

[︃
2
∏︀𝑛

𝑗=1(1 − 𝜆𝑥𝑖)∏︀𝑛
𝑗=1(1 + 𝜆𝑥𝑖) +

∏︀𝑛
𝑗=1(1 − 𝜆𝑥𝑖)

]︃

= E𝑥−𝑖∼𝑑𝜉−𝑖
,𝑥𝑖∼𝑑0

⎡⎣ 2∏︀𝑛
𝑗=1(1+𝜆𝑥𝑖)∏︀𝑛
𝑗=1(1−𝜆𝑥𝑖)

+ 1

⎤⎦
≤ E𝑥−𝑖∼𝑑𝜉−𝑖

,𝑥𝑖∼𝑑0

[︃√︃∏︀𝑛
𝑗=1(1 − 𝜆𝑥𝑖)∏︀𝑛
𝑗=1(1 + 𝜆𝑥𝑖)

]︃

=
1

2
E𝑥−𝑖,𝑘∼𝑑𝜉−𝑖,𝑘

,𝑥𝑖∼𝑑0

[︃√︃∏︀𝑛
𝑗=1,𝑗 ̸=𝑘(1 − 𝜆𝑥𝑖)∏︀𝑛
𝑗=1,𝑗 ̸=𝑘(1 + 𝜆𝑥𝑖)

(︃√︂
1 − 𝜆

1 + 𝜆
(1 + 𝜉𝑘) +

√︂
1 + 𝜆

1 − 𝜆
(1 − 𝜉𝑘)

)︃]︃

≤
√︀

1 − 𝜆2

(︃
E𝑥−𝑖,𝑘∼𝑑𝜉−𝑖,𝑘

,𝑥𝑖∼𝑑0

[︃√︃∏︀𝑛
𝑗=1,𝑗 ̸=𝑘(1 − 𝜆𝑥𝑖)∏︀𝑛
𝑗=1,𝑗 ̸=𝑘(1 + 𝜆𝑥𝑖)

]︃)︃
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where for the last inequality we used some very simple algebraic computations and the fact that as we said we
can use 𝜆 = min(𝜆,min𝑖∈[𝑛](𝜉𝑖)) and hence 𝜆 ≤ 𝜉𝑘. So is general for greater 𝜆 we have

1 − 𝜕𝑀𝑖

𝜕𝜇𝑖
(𝜆, 𝜉) ≤

√︀
1 − 𝜏2

(︃
E𝑥−𝑖,𝑘∼𝑑𝜉−𝑖,𝑘

,𝑥𝑖∼𝑑0

[︃√︃∏︀𝑛
𝑗=1,𝑗 ̸=𝑘(1 − 𝜆𝑥𝑖)∏︀𝑛
𝑗=1,𝑗 ̸=𝑘(1 + 𝜆𝑥𝑖)

]︃)︃
now inductively we can get that

1 − 𝜕𝑀𝑖

𝜕𝜇𝑖
(𝜆, 𝜉) ≤

(︁√︀
1 − 𝜏2

)︁𝑛−1
(︃
E𝑥𝑖∼𝑑0

[︃√︂
1 − 𝜆𝑥𝑖

1 + 𝜆𝑥𝑖

]︃)︃

≤
(︀√

1 − 𝜏2
)︀𝑛−1

√
1 − 𝜆2

.

Finally using the fact that 𝜕𝑀𝑖

𝜕𝜇𝑖
(𝜆, 𝜉) is increasing with respect to 𝜆 we get that

1 − 𝜕𝑀𝑖

𝜕𝜇𝑖
(𝜆, 𝜉) ≤

(︀
1 − 𝜏2

)︀𝑛−2
2

and the lemma follows.

E Proof of Theorem 10

Proof of theorem 10: It is easy to see that:

| tanh(𝑧) − 𝑧| ≤ |𝑧|3 (E.10)

and | tanh−1(𝑧) − 𝑧| ≤ |𝑧|3, for|𝑧| ≤ 0.9. (E.11)

From (E.11), for sufficiently small ‖𝜆‖1, we have that tanh−1(𝜆𝑖𝑗) = 𝜆𝑖𝑗 ± |𝜆𝑖𝑗 |3, for all 𝑖, 𝑗. Since 𝑥 is a binary
vector it follows then that

tanh−1 (𝜆) · 𝑥 = 𝜆 · 𝑥±
∑︁
𝑖𝑗

|𝜆𝑖𝑗 |3 = 𝜆 · 𝑥± ‖𝜆‖33 .

Using this, Eq. (E.10), that 𝑥 is a binary vector, and assuming ‖𝜆‖1 is sufficiently small, we get that:

tanh
(︀
tanh−1 (𝜆) · 𝑥

)︀
= 𝜆 · 𝑥± ‖𝜆‖33 ±

(︁
|𝜆 · 𝑥| + ‖𝜆‖33

)︁3
= 𝜆 · 𝑥±𝑂(‖𝜆‖31).

Plugging into the population EM update rule of Eq. (2.1) we get that:

𝜆′ = 𝑘 · E𝑥∼𝑝𝜇

[︂
(𝜆 · 𝑥) ·

(︂
𝑥− 1

𝑘
· 1
)︂]︂

±𝑂(𝑘 · ‖𝜆‖31)

= 𝑘 · E𝑥∼𝑝𝜇

[︂(︂
𝑥− 1

𝑘
· 1
)︂
· 𝑥T

]︂
· 𝜆±𝑂(𝑘 · ‖𝜆‖31).

�

F Proof of Lemma 3

Proof of Lemma 3: Let us denote by Ψ = E𝑥∼𝑝𝜇

[︀(︀
𝑥− 1

𝑘 · 1
)︀
· 𝑥T

]︀
. Each row of Ψ in indexed by a pair (𝑖, 𝑗),

where 𝑖 ∈ {1, . . . , 𝑛} corresponds to a feature and 𝑗 ∈ {1, . . . , 𝑘} to a possible value for that feature. Ψ is of
course symmetric and positive semi-definite as it is a covariance matrix. It is easy to see that

Ψ(𝑖,𝑗),(𝑖′,𝑗′) =

⎧⎪⎨⎪⎩
1
𝑘 ·
(︀
1 − 1

𝑘

)︀
, if 𝑖 = 𝑖′, 𝑗 = 𝑗′;

− 1
𝑘2 , if 𝑖 = 𝑖′, 𝑗 ̸= 𝑗′;

𝜇𝑖𝑗 ·𝜇𝑖′𝑗′

𝑘2 , if 𝑖 ̸= 𝑖′.
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Hence we can write Ψ as follows: Ψ = 1
𝑘 𝐼 − 1

𝑘2 𝐽 + 1
𝑘2 (𝜇 · 𝜇T − diag(𝜇𝑖 · 𝜇T

𝑖 )), where 𝐼 is the identity matrix,
𝐽 is the block diagonal matrix that is all-1’s in the diagonal blocks (corresponding to 𝑖 = 𝑖′) and all-0’s in the
off-diagonal blocks (corresponding to 𝑖 ̸= 𝑖′), and diag(𝜇𝑖 ·𝜇T

𝑖 ) is the block diagonal matrix, whose 𝑖-th diagonal
block equals 𝜇𝑖 · 𝜇T

𝑖 .

Given this structure of Ψ and our assumption on the norms of the 𝜇𝑖 vectors being equal, we see that:

Ψ · 𝜇 =

(︂
1

𝑘
+

1

𝑘2
(𝑛− 1) ‖𝜇1‖22

)︂
· 𝜇,

where the 1
𝑘 · 𝜇 came from multiplying with 1

𝑘 𝐼, the multiplication by 1
𝑘2 𝐽 contributed 0 as 1 · 𝜇𝑖 = 0, for all 𝑖,

and 1
𝑘2 (𝑛− 1) ‖𝜇1‖22 ·𝜇 came from multiplying by 1

𝑘2 (𝜇 ·𝜇T − diag(𝜇𝑖 ·𝜇T
𝑖 )), using that the norms of all 𝜇𝑖 are

equal. So 𝜇 is an eigenvector with eigenvalue
(︁

1
𝑘 + 1

𝑘2 (𝑛− 1) ‖𝜇1‖22
)︁
> 1

𝑘 .

Next consider any unit vector 𝑦 that is orthogonal to 𝜇, and let us compute 𝑦TΨ𝑦. If 𝑦 were an eigenvector, this
quadratic form would equal its eigenvalue. Because 𝑦 is orthogonal to 𝜇 we have that:

𝑦TΨ𝑦 =
1

𝑘
− 1

𝑘2
𝑦T(𝐽 + diag(𝜇𝑖 · 𝜇T

𝑖 ))𝑦

Note that each diagonal block of matrix 𝐽 + diag(𝜇𝑖 · 𝜇T
𝑖 ) is a positive semidefinite matrix, and because this

matrix is diagonal, it follows that 𝑦T(𝐽 + diag(𝜇𝑖 · 𝜇T
𝑖 ))𝑦 ≥ 0. Hence, 𝑦TΨ𝑦 ≤ 1/𝑘.

It follows that all other eigenvalues of Ψ are ≤ 1/𝑘. Hence 𝜇 is the principle eigenvector. �

G Applications of Theorem 8 to mixtures of Gaussians

Proof of Theorem 9 using Theorem 8. We have that

𝜆′ = E𝑥∼𝑑𝜇

⎡⎣tanh

⎛⎝tanh−1(𝜆)

⎛⎝ 𝑛∑︁
𝑗=1

𝑥𝑗

⎞⎠⎞⎠𝑥

⎤⎦ =⇒

𝜆′ = E𝑥∼𝑑𝜇

⎡⎣tanh

⎛⎝tanh−1(𝜆)

⎛⎝ 𝑛∑︁
𝑗=1

𝑥𝑗

⎞⎠⎞⎠∑︀𝑛
𝑖=1 𝑥𝑖

𝑛

⎤⎦ =⇒

𝜆′ = E𝑋∼𝐵(𝑛, 1+𝜇
2 )

[︂
tanh

(︀
tanh−1(𝜆) (2𝑋 − 𝑛)

)︀ 2𝑋 − 𝑛

𝑛

]︂
Now we use the well known result that as 𝑛 → ∞ the distribution of the variable 𝑋 converges shifted and
multiplied by the appropriate factors, to a Gaussian with mean 𝜇̄ = 𝜇√

𝑛
. Therefore substituting 𝜇 with 𝜇̄ = 𝜇√

𝑛

and 𝜆̄ = 𝜆√
𝑛

and doing the calculations we get that

𝜆′ = E𝑋∼𝐵(𝑛, 1+𝜇
2 )

[︃
tanh

(︃
tanh−1( 𝜆√

𝑛
)

𝜆√
𝑛

𝜆

√︂
1 − 𝜇2

𝑛

(︃
𝑋 −

√
𝑛(
√
𝑛 + 𝜇)/2√︀

𝑛(1 − 𝜇)/2

)︃)︃√︂
1 − 𝜇2

𝑛

(︃
𝑋 −

√
𝑛(
√
𝑛 + 𝜇)/2√︀

𝑛(1 − 𝜇)/2

)︃]︃
.

Now the we observe that the above sum as 𝑛 → ∞ converges to an integral. Also using the Central Limit
theorem we have that the probability density according to which we compute the expectation converges to the
normal distribution as 𝑛 → ∞. Putting these two together we take that the limit 𝑛 → ∞ becomes

𝜆′ = E𝑥∼𝒩 (0,1) [tanh (𝜆 (𝑥 + 𝜇)) (𝑥 + 𝜇)] .

Which is the EM iteration for the balanced mixture of two isotropic Gaussians. We now apply Theorem 8 and
we get that the convergence rate of the above iteration is equal to(︂

1 +
min(𝜆, 𝜇)

𝑛

)︂𝑛−2
2
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which if we take the limit 𝑛 → ∞ becomes exactly

exp

(︂
−min(𝜆(𝑡), 𝜇)2

2𝜎2

)︂
and the theorem follows.

H Convergence of Power Pretrained EM for i.i.d. Features

Proof of Theorem 11. We recall the general EM update with arbitrary initialization

𝜆(𝑡+1) = E
𝑥∼𝑑𝜇

[︁
tanh

(︁
tanh−1(𝜆(𝑡)) · 𝑥

)︁
𝑥
]︁
.

We first bound the difference in the update between starting with an estimation 𝜆
(𝑡)
1 on the line spanned by 𝜇

and starting with an estimation 𝜆
(𝑡)
2 that is 𝜂 close to 𝜆

(𝑡)
1 in ℓ∞ norm. For simplicity we use 𝜆1 for 𝜆(𝑡)

1 and 𝜆′
1

for 𝜆
(𝑡+1)
1 and the same for 𝜆

(𝑡)
2 , 𝜆(𝑡+1)

2 . Let 𝑗 ∈ [𝑛] we have that

⃒⃒⃒⃒
𝜕𝜆′

𝑖

𝜕𝜆𝑗

⃒⃒⃒⃒
=

⃒⃒⃒⃒
E

𝑥∼𝑑𝜇

[︁
tanh′

(︁
tanh−1(𝜆(𝑡)) · 𝑥

)︁
tanh−1′(𝜆𝑗)𝑥𝑖𝑥𝑗

]︁⃒⃒⃒⃒
≤ 1

1 − 𝜆2
𝑗

. (H.12)

Where the last inequality follows by the computation of the derivative of tanh−1 and the fact that tanh′(·) ≤ 1.
Now since we have assumed that |𝜇𝑗 | is bounded away from 1 we can easily get that the same is true for
|𝜆𝑗 | and hence we have that

⃒⃒⃒
𝜕𝜆′

𝑖

𝜕𝜆𝑗

⃒⃒⃒
≤ 𝑐 for some constant 𝑐. Finally using Taylor’s theorem and the fact that

‖𝜆‖∞ ≤ ‖𝜆‖2 ≤
√
𝑛 ‖𝜆‖∞ we have

‖𝜆′
1 − 𝜆′

2‖2 ≤ 𝑐𝑛3/2 ‖𝜆1 − 𝜆2‖2 . (H.13)

This implies that as far as the estimations 𝜆1,𝜆2 are suffieciently close we will have that the updated estimations
𝜆′
1,𝜆

′
2 will be close too. Now assume that we start two executions of the original EM algorithm from the

estimations 𝜆
(0)
1 parallel to 𝜇 and 𝜆

(0)
2 with

⃦⃦⃦
𝜆
(0)
1 − 𝜆

(0)
2

⃦⃦⃦
2
≤ 𝜂. Using (H.13) we have that

⃦⃦⃦
𝜆
(𝑡)
1 − 𝜆

(𝑡)
2

⃦⃦⃦
2
≤
(︁
𝑐𝑛3/2

)︁𝑡
𝜂.

Then from Theorem 8 we have that there exist a 𝜅 ∈ (0, 1) such that⃦⃦⃦
𝜆
(𝑡+1)
1 − 𝜇

⃦⃦⃦
2
≤ 𝜅

⃦⃦⃦
𝜆
(𝑡)
1 − 𝜇

⃦⃦⃦
2

which implies

⃦⃦⃦
𝜆
(𝑡+1)
2 − 𝜇

⃦⃦⃦
2
≤
⃦⃦⃦
𝜆
(𝑡+1)
2 − 𝜆

(𝑡+1)
1

⃦⃦⃦
2

+
⃦⃦⃦
𝜆
(𝑡+1)
1 − 𝜇

⃦⃦⃦
2

≤ 𝑐𝑛3/2
⃦⃦⃦
𝜆
(𝑡)
2 − 𝜆

(𝑡)
1

⃦⃦⃦
2

+ 𝜅
⃦⃦⃦
𝜆
(𝑡)
1 − 𝜇

⃦⃦⃦
2

≤ 𝜅
⃦⃦⃦
𝜆
(𝑡)
2 − 𝜇

⃦⃦⃦
2

+
(︁
𝑐𝑛3/2 + 𝜅

)︁ ⃦⃦⃦
𝜆
(𝑡)
2 − 𝜆

(𝑡)
1

⃦⃦⃦
2

≤ 𝜅
⃦⃦⃦
𝜆
(𝑡)
2 − 𝜇

⃦⃦⃦
2

+
(︁
𝑐𝑛3/2 + 𝜅

)︁(︁
𝑐𝑛3/2

)︁𝑡
𝜂.

Now if we achieve
⃦⃦⃦
𝜆
(𝑇 )
2 − 𝜇

⃦⃦⃦
≤ 𝜀 for some 𝑇 then it is easy to see that

⃦⃦⃦
𝜆
(𝑡)
2 − 𝜇

⃦⃦⃦
≤ 𝜀 for every 𝑡 > 𝑇 . Let

𝛿 = min{𝜇, 1 − 𝜇}. Using Theorem 8 and the fact that after Step 2. of Power Pretrained EM we will have that
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the projection of 𝜆(0) to the line will be at least 𝛿, with high probability over the randomness of 𝜆̃(0), we have
that 𝜅 ≤ (1 − 𝛿)

𝑛−2
2 and hence if 𝜂 ≤ 𝜀

6 log 𝑛
𝑛 and 𝑇 ≥ 2 log(1/𝜀)

𝑛𝛿 we have that
⃦⃦⃦
𝜆
(𝑇 )
2 − 𝜇

⃦⃦⃦
≤ 𝜀.

Therefore the only thing that is left, is to prove that after the first steps of Power Pretrained EM we will have⃦⃦⃦
𝜆
(0)
1 − 𝜆

(0)
2

⃦⃦⃦
2
≤ 𝜂 for some 𝜂 ≤ 𝜀. To do so we oberve that using Theorem 10 and Lemma 3 the first steps of

Power Pretrained EM are equivalent with power iteration with eigenvalue gap 𝜌 = 1 + (𝑛− 1)𝛿. Also since the
Power Pretrained EM starts with a random direction we will have that initially the projection of 𝜆̃(0) to any
eigenvector 𝑣 of the covariance matrix of 𝑑𝜇, is 𝑐′√

𝑛
with probability at least 1/poly(𝑛). At every step the ratio

⟨ 𝜆̃(𝐿)

‖𝜆̃(𝐿)‖
2

, 𝜇
‖𝜇‖2

⟩

max𝑣∦𝜇

{︂
⟨ 𝜆̃(𝐿)

‖𝜆̃(𝐿)‖
2

, 𝑣
‖𝑣‖2

⟩
}︂

increases by 𝜌 and when it reaches 1/𝜀 we have the desired estimated. Therefore it suffices to set 𝐿 ≥ log(𝑛/𝜀)
log(1+(𝑛−1)𝛿)

to get to an estimation 𝜆(0) such that the closest point 𝜆
(0)
1 parallel to 𝜇 satisfies

⃦⃦⃦
𝜆(0) − 𝜆

(0)
1

⃦⃦⃦
≤ 𝜀 and the

theorem follows.

I Convergence with Finite Samples

Proof of Theorem 12:

Consider a point 𝜆 ∈ Λ. The population EM iteration starting from that point is 𝑀(𝜆) =
E

𝑥∼𝑑𝜇

[︀
tanh

(︀
tanh−1(𝜆) · 𝑥

)︀
𝑥
]︀
.

The corresponding finite sample iteration is 𝑀̄(𝜆) = 1
𝑁

∑︀𝑁
𝑖=1 tanh

(︀
tanh−1(𝜆) · 𝑥𝑖

)︀
𝑥𝑖.

Consider the function 𝑓(𝑥,𝜆) = tanh
(︀
tanh−1(𝜆) · 𝑥

)︀
𝑥

Since for any fixed 𝜆, the function 𝑓(·,𝜆) is in [−1, 1]𝑛, the empirical expectation concentrates and it holds that⃦⃦
𝑀̄(𝜆) −𝑀(𝜆)

⃦⃦
≤ 𝑐 with probability 1 − 𝛿 after 𝑁 = Ω(𝑛 log 1/𝛿

𝑐2 ) samples.

Moreover, working similarly to (H.12), we can show that for any set of samples 𝑥𝑖, the function 1
𝑁

∑︀𝑁
𝑖=1 𝑓(𝑥𝑖, ·)

has a Lipschitz constant 𝑛/(1 − 𝜆2
𝑚𝑎𝑥). This implies that for any starting point 𝜆(0) such that

⃦⃦
𝜆− 𝜆(0)

⃦⃦
≤

𝑐(1 − 𝜆2
𝑚𝑎𝑥)/𝑛, it holds that

⃦⃦
𝑀̄(𝜆) − 𝑀̄(𝜆(0))

⃦⃦
≤ 𝑐.

Now consider the discrete set of points

Λ̄ ∈ {−1,−1 + 𝑐(1 − 𝜆2
𝑚𝑎𝑥)/𝑛2, ..., 1}𝑛 ∩ Λ.

Setting 𝛿 = 𝛿′/|Λ̄|, we get by a union bound that with probability 1 − 𝛿′ it holds that
⃦⃦
𝑀̄(𝜆) −𝑀(𝜆)

⃦⃦
≤ 𝑐 for

all points 𝜆 ∈ Λ̄.

Moreover, for any other point 𝜆 ∈ Λ, there exists a point 𝜆′ ∈ Λ̄, such that ‖𝜆− 𝜆′‖ ≤ 𝑐(1 − 𝜆2
𝑚𝑎𝑥)/𝑛. This

implies that
⃦⃦
𝑀̄(𝜆) − 𝑀̄(𝜆′)

⃦⃦
≤ 𝑐 and ‖𝑀(𝜆) −𝑀(𝜆′)‖ ≤ 𝑐. This shows that

⃦⃦
𝑀(𝜆) − 𝑀̄(𝜆)

⃦⃦
≤ 3𝑐.

Therefore, we get that
⃦⃦
𝜇− 𝑀̄(𝜆)

⃦⃦
≤ 𝜅 ‖𝜇− 𝜆‖+ 𝜀+ 3𝑐. This shows that the finite sample iteration converges

with additional error at most 3𝑐/(1−𝜅). By the choice of 𝛿, the number of samples required to achieve this error
is Ω(

𝑛2 log (𝑛2/𝑐(1−𝜆2
𝑚𝑎𝑥))

𝑐2 ) = Ω̃(𝑛2

𝑐2 ). Therefore, with 𝑁 samples in total we get error 𝑂̃( 𝑛√
𝑁

). �
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Figure 5: The EM iteration 𝑀(𝜆, 𝜇) for 𝑛 = 5 and 𝜇 = 1/2.
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Figure 6: The evolution of
⃒⃒
𝜆(𝑡) − 𝜇

⃒⃒
for 𝑛 = 5, 𝜇 = 1/2 and 𝜆(0) = 1/10.

Figure 7: In this figure we see the EM execution for 𝑛 = 5, 𝜇 = (𝜇, 𝜇, 𝜇, 𝜇, 𝜇) with 𝜇 = 1/10 and initial guesses
of the form (𝜆1, 𝜆2, 𝜆2, 𝜆2, 𝜆2). The plane that we present here is the (𝜆1, 𝜆2) plane. The red dots that are
endpoints of path represent different initial guesses 𝜆(0) and the rest of the path represents the execution of the
algorithm. The length of the paths is 100. The curved continuous black line separates the region of attraction
to the fixed points (𝜇, 𝜇) and (−𝜇,−𝜇). As we can see there is a region near the (0, 1) corner of the plane where
the convergence of EM is very slow and after 100 steps the progress of EM is very small.



Constantinos Daskalakis, Christos Tzamos, Manolis Zampetakis

0 20 40 60 80 100
t

0.2

0.4

0.6

0.8
λ(t) - μ

(a)

0 20 40 60 80 100
t

0.1

0.2

0.3

0.4

0.5

0.6

0.7
λ(t) - μ

(b)

Figure 8: This figure shows the two most typical scenarios that can be observed when running EM with random
initialization for 𝑛 = 5 and 𝜇 = (0.1, 0.1, 0.1, 0.1, 0.1). When we say random initialization we mean that 𝜆(0) is
picked uniformly at random from [0, 1]𝑛. Both behaviors appear frequently enougn under a random initialization
but in general (a) is more frequent that (b).
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Figure 9: This figure shows the distribution of distances ‖𝜆𝑡 − 𝜇‖ for several steps 𝑡. In figure (a) we see steps
𝑡 = 4, 𝑡 = 10 and in figure (b) we see steps 𝑡 = 10, 𝑡 = 20. The set up is the same as before with 𝑛 = 5 and
𝜇 = (0.1, 0.1, 0.1, 0.1, 0.1).
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Figure 10: The figures (a)-(c) correspond to the initial vector that was used for Figure 8 (a) shown for different
values of the parameter 𝐿 and the figures (d)-(f) correspond to the initial vector that was used for Figure
8 (b) again shown for different values of the parameter 𝐿. The set up is again the same with 𝑛 = 5 and
𝜇 = (0.1, 0.1, 0.1, 0.1, 0.1).
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(a) 𝑡 = 10
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(b) 𝑡 = 20
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(c) 𝑡 = 40
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(d) 𝑡 = 50

Figure 11: This figures show the distribution of distances ‖𝜆𝑡 − 𝜇‖ for several steps 𝑡 and for both the original
and the Power Pretrained EM algorithm. The Power Pretrained EM algorithm goes from step 2. to step 3. for
𝑡 = 30. The set up is again the same with 𝑛 = 5 and 𝜇 = (0.1, 0.1, 0.1, 0.1, 0.1).
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Figure 12: This figure shows the most typical scenario that can be observed when running EM with random
initialization for 𝑛 = 5 and 𝜇 = (0.053, 0.16, 0.09, 0.13, 0.06). When we say random initialization we mean again
that 𝜆(0) is picked uniformly at random from [0, 1]𝑛.
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(a) L = 10
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(b) L = 30
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Figure 13: The figures (a)-(c) correspond to the initial vector that was used for Figure 12 shown for different
values of the parameter 𝐿. The set up is again the same with 𝑛 = 5 and 𝜇 = (0.053, 0.16, 0.09, 0.13, 0.06).
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Figure 14: This figures show the distribution of distances ‖𝜆𝑡 − 𝜇‖ for several steps 𝑡 and for both the original
and the Power Pretrained EM algorithm. The Power Pretrained EM algorithm goes from step 2. to step 3. for
𝑡 = 30. The set up is again the same with 𝑛 = 5 and 𝜇 = (0.053, 0.16, 0.09, 0.13, 0.06).


