
Inference in Sparse Graphs with Pairwise Measurements and Side Information

Appendix

A Further discussion of related work

Computational Results for Markov Random Fields There is a long line of work on computational aspects
of inference (e.g. MLE, MAP) in Markov Random Field models similar to Model 1 (Veksler, 1999; Boykov and
Veksler, 2006; Komodakis and Tziritas, 2007; Schraudolph and Kamenetsky, 2009; Chandrasekaran et al., 2012).
To our knowledge none of these results shed light on the statistical recovery rates that are attainable for this
setting — computationally e�ciently or not.

Censored Block Model A recent line of research has studied recovery under the so-called censored block model
(CBM). In CBM, vertices are labeled by ±1 and for every edge uv, the number YuYv is observed independently
with probability 1� q (where Yu, Yv are the labels of the vertices). The goal is to find the true label YuYv of each
edge uv correctly with high probability (based on the noisy observations). For partial recovery in the censored
block model we ask for a prediction whose correlation with the ground truth (up to sign) is constant strictly
greater than 1/2 as n ! 1. For the Erdös-Rényi random graph model, G(n,↵/n) both the threshold (how large
↵ needs to be in terms of p) for partial Saade et al. (2015) and exact Abbe et al. (2014) recovery have been
determined Exact recovery is obtained through maximum likelihood estimation which is generally intractable.
The authors provide a polynomial time algorithm based on semidefinite programming that matches this threshold
up to constant factors.

We observe that in our setting, due to the presence of side information, there is a simple and e�cient algorithm
that achieves exact recovery with high probability when the minimal degree is ⌦(log n): Theorem 6. Such exact
recovery algorithms are known for CBM model only under additional spectral expansion conditions Abbe et al.
(2014).

Recovery from Pairwise Measurements Chen and Goldsmith (2014) provide conditions on exact recovery
in a censored block model-like setting which, like our own, considers structured classes of graphs. Motivated by
applications in computational biology and social networks analysis, Chen et al. (2016) have recently considered
exact recovery for edges in this setting. Like the present work, they consider sparse graphs with local structure
such as grids and rings. Because their focus is exact recover and their model does not have side information, their
results mainly apply to graphs of logarithmic degree and our incomparable to our own results. For example, on
the ring lattice Rn,k in Example 7 their exact recovery result requires k = ⌦(log(n)), whereas our partial recover
result concerns constant k.

Correlation Clustering Correlation clustering focuses on a combinatorial optimization problem closely related
to the maximum likelihood estimation problem for our setting when we are only given edge labels. The main
di↵erence from our work is that the number of clusters is not predetermined. Most work on this setting has
focused on obtaining approximation algorithms and has not considered any particular generative model for the
weights (as in our case). An exception is Joachims and Hopcroft (2005), which gives partial recovery results in a
model similar to the one we consider, in which a ground truth partition is fixed and the observed edge labels
correspond to some noisy notion of similarity. However, these authors focus on the case where G is the complete
graph.

Makarychev et al. (2015) consider correlation clustering where the model is a semi-random variant of the one
we consider for the edge inference problem: Fix a graph G = (V,E) and a vertex label Y . For each uv 2 E, we
observe Xuv where Xuv = YuYv with probability 1� p and has its value in selected by an adversary otherwise.
They do not consider side information, nor are they interested in concrete structured classes of graphs like grids.

B Omitted proofs

B.1 Proofs from Section 2

Proof of Theorem 1. By the Bernstein inequality it holds that with probability at least 1� �/2,
X

(u,v)2E

{Yu 6= Xu,vYv}  2pn+ 2 log(2/�).

Dylan J. Foster, Daniel Reichman, Karthik Sridharan

Thus, if we take F =
n

bY :
P

(u,v)2E {bYu 6= Xu,v
bYv}  2pn+ 2 log(2/�)

o

, then Y 2 F with probability at least

1� �/2.

Fix bY 2 {±1}V . We can verify by substitution that for each v 2 V ,

{bYv 6= Yv} =
1

1� 2q

h

PZ(bYv 6= Zv)� PZ(Yv 6= Zv)
i

.

This implies that when Y 2 F we have the following relation for Hamming error:

X

v2V

n

bYv 6= Yv

o

=
1

1� 2q

"

X

v2V

P(bYv 6= Zv)� min
Y 02F

X

v2V

P (Y 0
v 6= Zv)

#

.

Corollary 2 now implies that if we take bY = argminY 02F
P

v2V {Y 0
v 6= Zv}, which is precisely the solution to

(2), then with probability at least 1� �/2,

X

v2V

P
⇣

bYv 6= Zv

⌘

� min
Y 02F

X

v2V

P (Y 0
v 6= Zv) 

✓

4

3
+

1

✏

◆

log

✓

2|F|
�

◆

.

Using that |F| 
P

2pn+2 log(2/�)
k=0

�

n
k

�

 (e/p)2pn+2 log(2/�) and ✏  1/2 we further have that the RHS is bounded
as 2

✏ log(2e/p�)(2pn+ 2 log(2/�) + 1). Putting everything together (and recalling 1� 2q = 2✏), it holds that with
probability at least 1� �

X

v2V

n

bYv 6= Yv

o

 1

✏2
(2pn+ 2 log(2/�) + 1) log(2e/p�).

B.2 Proofs from Section 3

Proof of Theorem 3. The minimax value of the estimation problem is given by

min
bY

max
Y

E
X,Z|Y

X

v2V

n

bYv(X,Z) 6= Yv

o

.

We can move to the following lower bound by considering a game where each vertex predictor bYv is given access
to the true labels Y of all other vertices in G:

min
{bYv}

v2V

max
Y

E
X,Z|Y

X

v2V

n

bYv(X,Z, YV \{v}) 6= Yv

o

.

Under the new model, the minimax optimal predictor for a given node v is given by the MAP predictor:

bYv = argmin
bY 2{±1}

log

✓

1� q

q

◆

n

bY 6= Zv

o

+ log

✓

1� p

p

◆

X

u2Nv

n

bY 6= YuXuv

o

.

When p < q, the minimax optimal estimator for v takes the majority of the predictions suggested by its edges
(that is, Yu ·Xuv for each neighbor u) and uses the vertex observation Zv to break ties.

When deg(v) is odd, the majority will be wrong if at least ddeg(v)e of the edges in the neighbor of v are flipped,
and will be correct otherwise. When deg(v) is even there are two cases: 1) Strictly more than ddeg(v)e of the
edges in N(v) have been flipped, in which case the majority will be wrong. 2) Exactly half the edges are wrong,
in which the optimal estimator will take the label Zv as its prediction, which will be wrong with probability q.

Inference in Sparse Graphs with Pairwise Measurements and Side Information

We thus have

P(bYv 6= Yv) =

deg(v)
X

k=ddeg(v)/2e

✓

deg(v)

k

◆

pk(1� p)deg(v)�k

�
✓

deg(v)

ddeg(v)/2e

◆

pddeg(v)/2e(1� p)deg(v)�k

�
✓

deg(v)

ddeg(v)/2e

◆ddeg(v)/2e
pddeg(v)/2e(1/2)ddeg(v)/2e

� ⌦(pddeg(v)/2e).

In the last line we have used that we treat deg(v) as constant to suppress a weak dependence on it that arises
when deg(v) is odd. Putting everything together, we see that in expectation we have the bound

E
"

X

v2V

n

bYv 6= Yv

o

#

� ⌦

q
X

v2V

pddeg(v)/2e
!

.

Proof of Theorem 4. Recall that the minimax value of the estimation problem is given by

min
bY

max
Y

E
X,Z|Y

X

v2V

n

bYv(X,Z) 6= Yv

o

.

As in the proof of Theorem 3, we will move to a lower bound where predictors are given access to extra data. In

this case, we consider a set of disjoint predictors
n

bY W
o

, one for each component W 2 W . We assume that bY W

see the ground truth Yv for each vertex v /2 W , and further sees the product Yuv , YuYv for each edge e 2 E(W).
Assuming G(W) is connected (this clearly can only make the problem easier), the learner now only needs to infer
one bit of information per component. The minimax value of the new game can be written as:

� min
{bY W}

W2W

max
Y

E
X,Z|Y

X

W2W

X

v2W

n

bY W
v (X,Z, YV \W , {Yuv | uv 2 E(W)}) 6= Yv

o

.

Because the learner only needs to infer a single bit per component, we have reduced to the setting of Theorem 3,
components in our setting as vertices in that setting (so deg(v) is replaced by �G(W)). The only substantive
di↵erence is the following: In that lower bound, we required that p < q. For the new setting, we have that
“q” is actually (pessimistically) q|W |, and so we require that p < qmaxW2W |W | for the bound to apply across all
components. Using the final bound from Theorem 3, we have

E
"

X

v2V

n

bYv 6= Yv

o

#

� ⌦

qmaxW2W |W |
X

W2W
pd�G(W)/2e

!

.

B.3 Proofs from Section 4

Proof of Example 1. We will show that ⌦(pn) Hamming error is optimal for all trees by establishing that all
trees have constant fraction of vertices whose degree is at most two, then appealing to Theorem 3.

Let T be the tree under consideration. T is bipartite. Let (A,B) be the bipartition of T into two disjoint
independent sets. Suppose without loss of generality that |A| � n/2. If a is the number of vertices in A of degree
at least 3 and a0 = |A|� a, we have that 3a  n� 1, hence a  (n� 1)/3. Therefore a0 � n/2� a � (n� 1)/6.
Letting A0 be the set of vertices in A with at most 2 neighbors, we see that A0 is an independent set of size at
least (n� 1)/6, and so we appeal to Theorem 3 for the result.

Dylan J. Foster, Daniel Reichman, Karthik Sridharan

Proof of Example 2. Fix d � 3. We will construct a graph G of size (d+1)n. By building up from components
as follows:

• For each k 2 [n] let Gk be the complete graph on d+ 1 vertices. Remove an edge from an arbitrary pair of
vertices (uk, vk).

• Form G by taking the collection of all Gk, then adding an edge connecting vk to uk+1

for each k, with the
convention un+1

= u
1

.

This construction for d = 3 is illustrated in Figure 1.

Observe that G is d-regular. We obtain the desired result by applying Theorem 4 with the collection {Gk} as the
set system and observing that the each component Gk has only two edges leaving.

Proof of Example 3. We first examine the case where c = 3. Here we take the tree decomposition illustrated
in Figure 2a, where we cover the graph with overlapping 3⇥ 2 components, and take W ? =

S

v2W Nv. This yields
mincut?(W) = 3 for all components except those at the graph’s endpoints. We now connect the components as a
path graph and appeal to Theorem 2, which implies a rate of eO(p2n).

When c = !(1) we can build a decomposition as follows (informally): Produce E0 as in Figure 2b by performing
the zig-zag cut with every third row of edges, leaving only 3 edges on the left or right side (alternating). We can
now produce T (a path graph) by tiling G0 with overlapping 3⇥ 3 components. Again, take W ? =

S

v2W Nv.

We can verify that if we perform extended inference we have mincut?(W) = 3 for the O(n) components in the
interior of the graph and mincut?(W) = 2 for the O(

p
n) components at the boundary.

The tree decomposition is illustrated in Figure 3. We have wid?(T) = O(1) and degE(T) = O(1). Applying
Theorem 2 thus gives an upper bound of eO(p2n+ p

p
n) with probability at least 1� �.

Since T is a path graph, we pay O(ndp2ne) in computation as per Appendix D.

Figure 3: Tree decomposition for 2D grid.

Proof of Example 4. We will prove this result for the three-dimensional case. We first show the lower bound.

Suppose c � 3 is constant, so that we are in the “hypertube” regime. Note that vertices on the outermost “edges”
of the hypertube, examples of which are circled in Figure 4, have degree at most 4. There are ⌦(n) such vertices,
so appealing to Theorem 3 yields a lower bound on Hamming error of ⌦(p2n). In fact for the n/c2 ⇥ c ⇥ c
hyper-tube one can achieve the O(p2n) rate using our method. Simply take each components of size 2⇥ c⇥ c
connected in a path as in the example for the 2D grid. Since the minimum cut for each component is already at
least 3, we don’t need to consider extended components and simply use brute-force on the components themselves.

We now sketch the upper bound for the n1/3 ⇥ n1/3 ⇥ n1/3 hypergrid. We use a technique similar to that used
for the 2D grid in Example 3: We take T to be a path graph obtained by covering the hypergrid in overlapping

Inference in Sparse Graphs with Pairwise Measurements and Side Information

Figure 4: Lower bound argument for n/c2 ⇥ c⇥ c hypergrid.

3⇥ 3⇥ 3 components in a zig-zagging pattern. Note that each 3⇥ 3⇥ 3 component will contain nodes similar
to those highlighted in Figure 4 with degree at most 4. This means mincut?(W) = 4, so to obtain the O(p3n)
Hamming error we must consider extended components. Take W ? =

S

v2W Nv. Then mincut?(W) = 6 for all
components except those at the boundary of the hypergrid, which have mincut?(W) 2 {4, 5}. There are only o(n)
such components, so we achieve the O(p3n) upper bound by appealing to Theorem 2.

For higher-dimensional hypergrids, the strategy of taking components to be constant-sized hypergrids and T to
be a zig-zagging path graph readily extends. The lower bound stated follows from a simple counting argument.

In general, we can associated vertices of a c
1

⇥ c
2

⇥ . . .⇥ cd hypergrid with the elements of Zc1 ⇥Zc2 ⇥ . . .⇥Zcd .
For a vertex v = (v

1

, . . . , vd), the degree is given by deg(v) = |{k 2 [d] | vk 2 {0, ck}}|.

Consider the case where c
1

, . . . cd�1

= c, cd = n/cd�1. In this case, the degree argument above implies

|{v | deg(v) = d+ 1}| �
X

vk2{0,c}:k 6=d

(n� 2) = ⌦(n).

Thus, a constant fraction of vertices have degree d+ 1, and so Theorem 3 implies a lower bound of ⌦(pd
d+1
2 en).

Proof of Example 7.
Upper bound: Tree decomposition We first formally define the tree decomposition T = (W, F) that we will
use with Algorithm 1. Assume for simplicity what n = n0 · (2k + 1). We will define a vertex set {v

1

, . . . , vn0} as
follows: v

1

= 1, vi+1

= vi + k + 1. We will now define a component for each of these vertices:

W (vi) = NG(vi).

Let W will be the union of these components. Since we assumed n to be divisible by (2k + 1), the components a
partition of V . We now define the Extend function for this decomposition:

Extend(W) =
[

v2W

NG(v).

That is, the extended component W ?(vi) is the set of all vertices removed from vi by paths of length 2.

Finally, we construct the edge set F by adding edges of the form (W (vi),W (vi+1

)) for i 2 {1, . . . , n0 � 1}. This
means that the decomposition is a path graph. The decomposition is clearly admissible in the sense of Definition 3.

We can observe that mincut?(W) = 2k just as the minimum cut of Rn,k is itself 2k. Theorem 2 thus implies a

recovery rate of eO(pkn). Since T is a path graph, the algorithm runs in time O(dpknen).

Lower bound That O(pkn) is optimal can be seen by appealing to Theorem 3 with the fact that Rn,k is
2k-regular.

Dylan J. Foster, Daniel Reichman, Karthik Sridharan

Proof of Example 8. The average number of vertices added is ↵n. By the Cherno↵ bound, with high probability
the number of vertices added is bounded as ↵n+ c

p
↵n log n for some constant c. This means that for any ✏ > 0,

there is some minimum n for which an (1� ↵+ ✏) fraction of vertices have no edges added. This means that
there are at least (1� ↵+ ✏)n edges with degree 2k, so Theorem 3 yields the result.

B.4 Analysis of TreeDecompositionDecoder

Properties of Tree Decompositions We begin by recalling a few properties of tree decompositions that are
critical for proving the performance bounds for Algorithm 1.

Proposition 2. For any tree decomposition T = (W, F), the following properties hold:

1. For each v 2 V there exists W with v 2 W .
This guarantees that we produce a prediction for each vertex.

2. If (W
1

,W
2

) 2 F , there is some v 2 V with v 2 W
1

,W
2

.
This guarantees that the class F (see (19)) is well-defined.

3. T is connected
This implies that |F| . 2K .

4. |W|  n.
This implies that a mistake bound for components of the tree decomposition translates to a mistake bound for
vertices of G.

Proof of Proposition 2. 1. Definition 1.

2. Suppose there is some edge (W
1

,W
2

) 2 F with no common vertices. Consider the subtrees T
1

and T
2

created
by removing (W

1

,W
2

) 2 F . By the coherence property (Definition 1), the subgraphs of G0 associated with
these decompositions (call them G0

T1
and G0

T2
) must have no common nodes. Yet, G0 is connected, so there

must be (u, v) 2 E0 with u 2 G0
T1
, v 2 G0

T2
. Our hypothesis now implies that there is no W 2 W containing

u and v, so T violates the edge inclusion property of the tree decomposition.

3. Definition 1

4. This follows directly from the non-redundancy assumption of Definition 1. See, e.g., (Kleinberg and Tardos,
2006, 10.16).

Estimation in Tree Decomposition Components We now formally define and analyze the component-wise
estimators computed in line 5 of Algorithm 1.

Definition 6 (Extended Component Estimator). Consider the (edge) maximum likelihood estimator over W ?:

eY W? , argmin
eY 2{±1}W?

X

uv2E0
(W?

)

{eYu
eYv 6= Xuv}. (10)

We define the extended component estimator

bY W? 2 {±1}W as restriction of eY W?

to W .

For bY W?

estimation performance is governed by mincut?(W) rather than mincut(W), as the next lemma shows:

Lemma 2 (Error Probability for Extended Component Estimator).

P
✓

min
s{±1}

{sbY W?

6= Y W } > 0

◆

 2|W
?|pdmincut?(W)/2e.

Proof of Lemma 2. Suppose bY W? 6= Y W and consider D = {v 2 W ? : eY W?

v 6= Yv}. Then there is some
maximal connected component S of D containing at least one vertex of W . It must then be the case that at least

Inference in Sparse Graphs with Pairwise Measurements and Side Information

half the edge samples in �(S) are flipped with respect to the ground truth. Consequently it holds that

P
✓

min
s{±1}

{sbY W?

6= Y W } > 0

◆


X

S✓W?
:S\W 6=;, ¯S\W 6=;

pd|�(S)|/2e


X

S✓W?

pdmincut?(W)/2e

 2|W
?|pdmincut?(W)/2e.

Lemma 2 shows that considering mincut? o↵ers improved failure probability over mincut because it allows us
to take advantage of all of the information in W ?, yet only pay (in terms of errors) for cuts that involve nodes
in the core component W . In Figure 2a, all components of the tree decomposition except the endpoints have
mincut?(W) = 3, and so their extended component estimators achieve O(p2) failure probability.

Concentration We begin by stating a concentration result for functions of independent random variables,
which we will use to establish a bound on the total number of components that fail in the first stage of our
algorithm. Let X

1

, . . . , Xn be independent random variables each taking values in a probability space X , and
let F : Xn ! R. We will be interested in the concentration of the random variable S = F (X

1

, . . . , Xn). Letting
X 0

1

, . . . , X 0
n be independent copies of X

1

, . . . , Xn, we define S(i) = F (X
1

, . . . , Xi�1

, X 0
i, Xi+1

, . . . , Xn). Finally,
we define a new random variable

V
+

=
n
X

i=1

E
h

(S � S(i))2
+

| X
1

, . . . , Xn

i

.

Theorem 5 (Entropy Method with Efron-Stein Variance (Boucheron et al., 2003)). If there exists a constant
a > 0 such that V

+

 aS then

P{S � E[S] + t}  exp

✓

�t2

4aE[S] + 2at

◆

.

Subsequently, with probability at least 1� �,

S  E[S] + max
n

4a log(1/�), 2
p

2aE[S] log(1/�)
o

 2E[S] + 6a log(1/�).

With Theorem 5 in mind, we may proceed to a bound on the number of components with mistakes when the
basic component estimator (8) is used.

Lemma 3 (Formal Version of Lemma 1). For all � > 0, with probability at least 1� � over the draw of X,

min

s2{±1}W

X

W2W

{sW bY W 6= Y W }  2

X

W2W

2

|W |pdmincut(W)/2e
+ 6max

e2E
|W(e)| max

W2W
|E0

(W)| log(1/�). (11)

(12)

Proof of Lemma 3. Define a random variable

S(X) =
X

W2W
min

s2{±1}

n

sbY W (X) 6= Y W
o

,

where bY W are the component-wise estimators produced by Algorithm 1 and X are the edge observations. To
prove the lemma we will apply Theorem 5 by showing that there is a constant a such that the necessary variance
bound V

+

 aS holds.

To this end, consider

S(X)� S(X(e)) =
X

W2W

✓

min
s2{±1}

n

sbY W (X) 6= Y W
o

� min
s2{±1}

n

sbY W (X(e)) 6= Y W
o

◆

,

Dylan J. Foster, Daniel Reichman, Karthik Sridharan

where X(e) is defined as in Theorem 5. To be more precise, we draw (X 0
e)e2E from the same distribution as X,

then let X(e) be the result of replacing Xe with X 0
e.

We have

S(X)� S(X(e)) =
X

W2W(e)

✓

min
s2{±1}

n

sbY W (X) 6= Y W
o

� min
s2{±1}

n

sbY W (X(e)) 6= Y W
o

◆

,

since changing Xe can only change bY W if e 2 W . Now, since S(X(e)) is nonnegative we have

(S(X)� S(X(e))2
+

=

0

@

X

W2W(e)

✓

min
s2{±1}

n

sbY W (X) 6= Y W
o

� min
s2{±1}

n

sbY W (X(e)) 6= Y W
o

◆

1

A

2

+



0

@

X

W2W(e)

min
s2{±1}

n

sbY W (X) 6= Y W
o

1

A

2

 |W(e)|
X

W2W(e)

min
s2{±1}

n

sbY W (X) 6= Y W
o

.

We now sum over all edges to arrive at an upper bound on V
+

:

V
+

=
X

e2E

E
h

(S(X)� S(X(e))2
+

| X
i

 max
e2E

|W(e)|
X

e2E

X

W2W(e)

min
s2{±1}

n

sbY W (X) 6= Y W
o

= max
e2E

|W(e)|
X

W2W

X

e2E(W)

min
s2{±1}

n

sbY W (X) 6= Y W
o

 max
e2E

|W(e)| max
W2W

|E(W)|
X

W2W
min

s2{±1}

n

sbY W (X) 6= Y W
o

 max
e2E

|W(e)| max
W2W

|E(W)|
X

W2W
min

s2{±1}

n

sbY W (X) 6= Y W
o

= max
e2E

|W(e)| max
W2W

|E(W)|S(X).

We now appeal to Theorem 5 with a = maxe2E |W(e)|maxW2W |E(W)|, which yields that with probability at
least 1� �,

S  2E[S] + 6max
e2E

|W(e)| max
W2W

|E(W)| log(1/�).

Finally, the bound on E[S] follows from Proposition 1:

E[S] =
X

W2W
P
✓

min
s2{±1}

n

sbY W (X) 6= Y W
o

◆


X

W2W
2|W |pdmincut(W)/2e.

An analogous concentration result to Lemma 3 holds to bounds the number of components that fail over the
whole graph when the extended component estimator is used:

Lemma 4. For all � > 0, with probability at least 1� � over the draw of X,

min

s2{±1}W

X

W2W

{sW bY W?

6= Y W?

}  2

X

W2W

2

|W?|pdmincut?(W)/2e
+ 6max

e2E
|W?

(e)| max

W2W
|E0

(W ?
)| log(1/�). (13)

Inference in Sparse Graphs with Pairwise Measurements and Side Information

Proof of Lemma 4. This proof proceeds exactly as in the proof of Lemma 3 using

S(X) =
X

W2W
min

s2{±1}

n

sbY W?

(X) 6= Y W
o

.

The only di↵erence is that edges are more influential than in that lemma because each extended component
estimator bY W?

may depend on more edges than the simpler component estimator bY W . To this end, define
W?(e) = {W | e 2 E0(W ?)}. One can verify that if we replace every instance of W(e) in the proof of Lemma 3
with W?(e) it holds that V

+

 aS with a = maxe2E |W?(e)|maxW2W |E(W ?)|. Theorem 5 then implies that
with probability at least 1� �,

S  2E[S] + 6max
e2E

|W?(e)| max
W2W

|E(W ?)| log(1/�)

= 2E[S] + 6deg?E(T) max
W2W

|E(W ?)| log(1/�).

Proof of Theorem 2.
Full theorem statement We will prove the following error bound: If T = (W, F) is admissible, with probability
at least 1� � over the draw of X and Z, bY satisfies:

X

v2V

n

bYv 6= Yv

o

(14)

 O

1

✏2

2

wid?(T)
X

W2W

pdmincut?(W)/2e
+ deg?E(T) max

W2W
|E(W ?

)| log(1/�)
!

· (wid(T) + deg(T) log n)

!

(15)

This statement specializes to (6) when all of the tree decomposition quantities are constant and � = 1/n.

Error bound for individual components Lemma 2 implies that for a fixed component W 2 W, the
probability that the estimator produced by the brute-force enumeration routine fails to exactly recover the labels
in W (up to sign) is bounded as

P
✓

min
s{±1}

{sbY W?

6= Y W } > 0

◆

 2|W
?|pdmincut?(W)/2e.

Error bound across all components Consider the following random variable, which is the total number
components

S(X) =
X

W2W
min

s2{±1}

n

sbY W?

(X) 6= Y W
o

.

The bound on component failure probability immediately implies in in-expectation bound on S:

E[S] 
X

W2W
2|W

?|pdmincut?(W)/2e.

Lemma 4 shows that S concentrates tightly around its expectation. More precisely, let A ,
6deg?E(T)maxW2W |E(W ?)| and

Kn , 2wid
?
(T)+2

X

W2W
pdmincut?(W)/2e +A log(2/�). (16)

Then Lemma 4 implies that with probability at least 1� �/2,

min
s2{±1}W

X

W2W
{sW bY W?

6= Y W }  2
X

W2W
2|W

?|pdmincut?(W)/2e +A log(2/�)

 Kn (17)

Dylan J. Foster, Daniel Reichman, Karthik Sridharan

Inference with side information: Hypothesis class Consider the following binary signing of the compo-
nents in T :

s? = argmin
s2{±1}W

X

W2W
{sW bY W?

6= Y W }.

s? is signing of the component-wise predictions (bY W?

) that best matches the ground truth. If we knew the
value of s? we could use it to produce a vertex prediction with at most Kn mistakes. Computing the s? is
information-theoretically impossible because we do not have access to Y , but we will show that the signing we
produce using the side information Z is close.

Define

Ln = deg(T) ·Kn. (18)

We will argue that (17) implies that s? lies in the class

F(X) ,

8

<

:

s 2 {±1}W |
X

(W1,W2)2F

{sW1 6= sW2 · S(W1

,W
2

)}  Ln

9

=

;

. (19)

First, consider the for loop on Algorithm 1, line 11. Proposition 2 implies that S(W
1

,W
2

) as defined in this loop
is well-defined, because there always exists some v 2 W

1

\W
2

.

Second, consider the value of

X

(W1,W2)2F

{s?W1
6= s?W2

· S(W
1

,W
2

)} =
X

(W1,W2)2F

{s?W1
6= s?W2

· bY W?
1

v · bY W?
2

v }.

We can bound this quantity in terms of the number of components W for which

min
s2{±1}

n

sbY W?

6= Y W
o

= 1.

Observe that if mins2{±1}

n

sbY W? 6= Y W
o

= 0 then there is some s̄W 2 {±1} such that bY W?

= s̄WY W . If we

take s?W = s̄W in all the components with no errors, and choose the sign arbitrarily for others, we will have

{s?W1
6= s?W2

· bY W?
1

v · bY W?
2

v } = 0 whenever both W
1

and W
2

have no errors. Pessimistically, there are at most
Ln = deg(T) ·Kn edges (W

1

,W
2

) where at least one of W
1

or W
2

has an error, and therefore (17) implies that
with probability at least 1� �/2, s? 2 F .

We conclude this discussion by showing that |F(X)| small. Since by Proposition 2 T is connected, labelings of
the edges of T are in one to one correspondence with labelings of the components. Consequently,

|F(X)| 
Ln
X

k=0

✓

|W|
k

◆


✓

e|W|
Ln

◆Ln


✓

en

Ln

◆Ln

. (20)

The last inequality uses that, from Proposition 2, |W|  n.

Final error bound for inference with side information We now use the properties of F(X) to derive an
error bound for the prediction bY . Recall from Algorithm 1 that bY is defined in terms of

ŝ = min
s2F(X)

X

W2W

X

v2W

{sW bY W?

v 6= Zv}. (21)

We reduce the analysis of the error rate of ŝ to analysis of excess risk in a manner that parallels the proof of
Theorem 1, but is slightly more involved because the best predictor in F does not perfectly match the ground

Inference in Sparse Graphs with Pairwise Measurements and Side Information

truth. Fix ŝ 2 {±1}W . For each component W 2 W we have
X

v2W

{ŝW bY W?

v 6= Yv} 
X

v2W

{ŝW bY W?

v 6= s⇤W bY W?

v }+
X

v2W

{s⇤W bY W?

v 6= Yv}


X

v2W

{ŝW bY W?

v 6= s⇤W bY W?

v }+ |W | {s⇤W bY W?

6= Y W }

=
1

1� 2q

X

v2W :s⇤W
bY W?
v =Yv

⇣

PZ

⇣

ŝW bY W?

v · Zv < 0
⌘

� PZ

⇣

s⇤W bY W?

v · Zv < 0
⌘⌘

� 1

1� 2q

X

v2W :s⇤W
bY W?
v 6=Yv

⇣

PZ

⇣

ŝW bY W?

v · Zv < 0
⌘

� PZ

⇣

s⇤W bY W?

v · Zv < 0
⌘⌘

+ |W | {s⇤W bYW 6= YW }.

Now note that given that Zv is drawn as a noisy version of Yv,
�

�

�

PZ

⇣

ŝW bY W?

v · Zv < 0
⌘

� PZ

⇣

s⇤W bY W?

v · Zv < 0
⌘

�

�

�

= 1� 2q and so

� 1

1� 2q

X

v2W :s⇤W
bY W?
v 6=Yv

⇣

PZ

⇣

ŝW bY
W?

v · Zv < 0

⌘

� PZ

⇣

s⇤W bY
W?

v · Zv < 0

⌘⌘

 2

X

v2W

{s⇤W bY W?

v 6= Yv}+
1

1� 2q

X

v2W :s⇤W
bY W?
v 6=Yv

⇣

PZ

⇣

ŝW bY
W?

v · Zv < 0

⌘

� PZ

⇣

s⇤W bY
W?

v · Zv < 0

⌘⌘

 2|W | {s⇤W bY W?

6= Y W }+ 1

1� 2q

X

v2W :s⇤W
bY W?
v 6=Yv

⇣

PZ

⇣

ŝW bY
W?

v · Zv < 0

⌘

� PZ

⇣

s⇤W bY
W?

v · Zv < 0

⌘⌘

.

We conclude that
X

v2W

{ŝW bY W?

v 6= Yv}

 3|W | {s⇤W bY W?

6= Y W }+ 1

1� 2q

X

v2W

⇣

PZ

⇣

ŝW bY W?

v · Zv < 0
⌘

� PZ

⇣

s⇤W bY W?

v · Zv < 0
⌘⌘

.

Summing over all the components W 2 W we arrive at the bound
X

W2W

X

v2W

{ŝW bY W?

v 6= Yv}

 3

✓

max

W2W
|W |

◆

X

w2W

{s⇤W bY W?

6= Y W }+ 1

1� 2q

X

W2W

X

v2W

⇣

PZ

⇣

ŝW bY
W?

v · Zv < 0

⌘

� PZ

⇣

s⇤W bY
W?

v · Zv < 0

⌘⌘

 3

✓

max

W2W
|W |

◆

Kn +

1

1� 2q

X

W2W

X

v2W

⇣

PZ

⇣

ŝW bY
W?

v · Zv < 0

⌘

� PZ

⇣

s⇤W bY
W?

v · Zv < 0

⌘⌘

We can now appeal to the statistical learning bounds from Appendix C to handle the right-hand side of this

expression. Lemma 5 implies that if we take ŝ = argmins2F
P

W2W
P

v2W

n

ŝW bY W?

v · Zv < 0
o

, which is

precisely the solution to (21), we obtain the excess risk bound,

X

W2W

X

v2W

⇣

PZ

⇣

ŝW bY W?

v · Zv < 0
⌘

� PZ

⇣

s⇤W bY W?

v · Zv < 0
⌘⌘


✓

2

3
+

c

2

◆

log(2|F|/�) + 1

c

X

w2W

X

v2W

{ŝW bY W?

v 6= Yv},

with probability at least 1� �/2 over Z for all c > 0. If we choose c = 1/✏, rearrange, and apply the union bound,
this implies that with probability at least 1� � over the draw of X and Z we have

X

W2W

X

v2W

{ŝW bY W?

v 6= Yv}  6

✓

max
W2W

|W |
◆

Kn +
2

✏2
log(2|F|/�).

Dylan J. Foster, Daniel Reichman, Karthik Sridharan

Recall that |F|  (e|W|/Ln)Ln , which implies a bound of

X

W2W

X

v2W

{ŝW bY W?

v 6= Yv}

 O

✓

1

✏2
[wid(T) ·Kn + Ln · log(en/Ln) + log(1/�)]

◆

 O

✓

1

✏2
[Kn · (wid(T) + deg(T) · log(en/Kn)) + log(1/�)]

◆

 O

1

✏2

2wid
?
(T)

X

W2W
pdmincut?(W)/2e + deg?E(T) max

W2W
|E(W ?)| log(1/�)

!

· (wid(T) + deg(T) log n)

!

Our choice of bY in Algorithm 1 ensures that the Hamming error
P

v2V

n

bYv 6= Yv

o

inherits this bound. Proposi-

tion 2 implies that every v 2 V is in some component, so this choice is indeed well-defined.

C Statistical learning

Here we consider a fixed design variant of the statistical learning setting. Fix an input space X and output space
Z. We are given a fixed set X

1

, . . . , Xn 2 X and samples Z
1

, . . . , Zn 2 Z with Zi drawn from P (Zi | Xi) for
some distribution P . We fix a hypothesis class F which is some subset of mappings from X to Z, and we would
like to use Z to find bY 2 F that will predict future observations of Z on X. To evaluate prediction we define
a loss function ` : Z ⇥ Z ! R

+

, and define Li(Y) = EZ|Xi
[`(Y, Z)]. Our goal is to use Z to select bY 2 F to

guarantee low excess risk :
X

i2[n]

Li(bY (Xi))� min
Y 2F

X

i2[n]

Li(Y (Xi)). (22)

Typically this is accomplished using the empirical risk minimizer (ERM):

bY = argmin
Y 2F

X

i2[n]

`(Y (Xi), Zi)5.

In this paper we consider a specific instantiation of the above framework in which

• X = V , the vertex set for some graph (possibly a tree decomposition), and X
1

, . . . , Xn are an arbitrary
ordering of V (so n = |V |). In light of this we index all variables using V going forward.

• Z = {±1}. We fix Y 2 {±1}V and let Zv = Yv with probability 1 � q and Zv = �Yv otherwise (as in
Model 1).

• `(Y, Z) = {Y 6= V }, so Li(Y) = PZ(Y 6= Zv).

• F ✓ {±1}V is arbitrary.

For this setting the excess risk for a predictor bY 2 {±1}V can be written as

X

v2V

P(bYv 6= Zv)� min
Y 02F

X

v2V

P (Y 0
v 6= Zv) , (23)

and the empirical risk minimizer is given by bY = argminY 02F
P

v2V {Y 0
v 6= Zv}.

We assume this setting exclusively for the remainder of the section.

5
There are a many standard bounds quantifying the performance of ERM in settings beyond the one we consider. See

Bousquet et al. (2004) for a survey.

Inference in Sparse Graphs with Pairwise Measurements and Side Information

Lemma 5 (Excess risk bound for ERM). Let bY be the ERM and let Y ? = argminY 02F
P

v2V P(Y 0 6= Z). Then
with probability at least 1� � over the draw of Z,

X

v2V

P
⇣

bYv 6= Zv

⌘

� min
Y 02F

X

v2V

P (Y 0
v 6= Zv) 

✓

2

3
+

c

2

◆

log

✓

|F|
�

◆

+
1

c

X

v2V

n

bYv 6= Y ?
v

o

(24)

for all c > 0.

Corollary 2 (ERM excess risk: Well-specified case). When Y 2 F we have that with probability at least 1� �,

X

v2V

P
⇣

bYv 6= Zv

⌘

� min
Y 2F

X

v2V

P (Yv 6= Zv) 
✓

4

3
+

1

✏

◆

log

✓

|F|
�

◆

, (25)

recalling q = 1/2� ✏.

Proof of Corollary 2. When Y 2 F , Y ? = Y , and we have

X

v2V

n

bYv 6= Yv

o

=
1

1� 2q

X

v2V

⇣

P
⇣

bYv 6= Zv

⌘

� P(Yv 6= Zv)
⌘

.

Applying this inequality to the right hand side of (24) and rearranging yields

✓

1� 1

c(1� 2q)

◆

X

v2V

⇣

P
⇣

bYv 6= Zv

⌘

� P(Yv 6= Zv)
⌘


✓

2

3
+

c

2

◆

log(|F|/�).

To complete the proof we take c = 2

1�2q , which gives

1

2

X

v2V

⇣

P
⇣

bYv 6= Zv

⌘

� P(Yv 6= Zv)
⌘


✓

2

3
+

1

1� 2q

◆

log(|F|/�).

Proof of Lemma 5. We will use Lemma 6 with F as the index set so that every i 2 [N] corresponds to one
Y 0 2 F . We define our collection of random variables as

TY 0

v = {Y 0
v 6= Zv}� {Y ?

v 6= Zv}

where Y is the ground truth and Y 0 is any element of F . Now using Lemma 6 and recalling �2

Y 0 =
P

v2V Var(TY 0

v),
we have that with probability at least 1� �, simultaneously for all Y 0,

X

v2V

(E[TY 0

v]� TY 0

v)  2

3
log(|F|/�) +

q

2�2

Y 0 log(|F|/�)

 inf
c>0

✓

2

3
+

c

2

◆

log(|F|/�) + �2

Y 0/c

�

 inf
c>0

"

✓

2

3
+

c

2

◆

log(|F|/�) + 1

c

X

v2V

E[(TY 0

v)2]

#

.

In particular this implies that for bY = argminY 02F
P

v2V {Y 0
v 6= Zv} we have that for all c > 0,

X

v2V

⇣

P
⇣

bYv 6= Zv

⌘

� P (Y ?
v 6= Zv)

⌘


X

v2V

⇣ n

bYv 6= Zv

o

� {Y ?
v 6= Zv}

⌘

+

✓

2

3
+

c

2

◆

log(|F|/�)

+
1

c

X

v2V

E


⇣

{bYv 6= Zv}� {Y ?
v 6= Zv}

⌘

2

�

.

Dylan J. Foster, Daniel Reichman, Karthik Sridharan

Now since Y ? 2 F and bY is the ERM, we get that
P

v2V

⇣ n

bYv 6= Zv

o

� {Y ?
v 6= Zv}

⌘

 0 and so,

X

v2V

⇣

P
⇣

bYv 6= Zv

⌘

� P (Y ?
v 6= Zv)

⌘


✓

2

3
+

c

2

◆

log(|F|/�) + 1

c

X

v2V

E


⇣

{bYv 6= Zv}� {Y ?
v 6= Zv}

⌘

2

�

=

✓

2

3
+

c

2

◆

log(|F|/�) + 1

c

X

v2V

n

bYv 6= Y ?
v

o

.

Lemma 6 (Maximal Inequality). For each i 2 [N], let {T i
v}v2V be a random process with each variable T i

v

bounded in absolute value by 1. Define �2

i =
P

v2V Var(T i
v). With probability at least 1� �,

X

v2V

(E[T i
v]� T i

v) 
2

3
log(N/�) +

q

2�2

i log(N/�) 8i 2 [N]. (26)

Proof of Lemma 6. Let us start by writing out the Bernstein bound for the random variable
Pn

t=1

Zi
t :

P

X

v2V

(E[T i
v]� T i

v) > ✓

!

 exp

✓

� ✓2i
2�2

i +
2

3

✓i

◆

.

We now consider the family of processes {T i
v}v2V and see that by union bound we have

P

max
i2[N]

X

v2V

(E[T i
v]� T i

v)� ✓i > 0

!


X

i2[N]

exp

✓

� ✓2i
2�2

i +
2

3

✓i

◆

.

Solving the quadratic formula, it holds that if we take

✓i �
1

3
log(N/�) +

q

log2(N/�)/9 + 2�2

i log(N/�),

then we have
X

i2[N]

exp

✓

� ✓2i
2�2

i +
4

3

◆

 �.

We can conclude that

P

8i 2 [N],
X

v2V

(E[T i
v]� T i

v) >
1

3
log(N/�) +

q

log2(N/�)/9 + 2�2

i log(N/�)

!

 �.

D Algorithms

The tree inference algorithm from Section 2 and the full tree decomposition inference algorithm, Algorithm 1, rely
on the solution of a constrained minimization problem over the edges and vertices of a tree T . This minimization
problem is stated in its most general form as Algorithm 2. This problem can be solved e�ciently using the
following tree-structured graphical model:

• Fix an arbitrary order on T , and let p(v) denote the parent of a vertex v under this order.

• Define variables s 2 {±1}V and C 2 {1, . . . ,Kn}V .

• For each variable v 2 V define factor:

 v(sv, sp(v),Cv,C�+(v)
) = e� {Costv [sv]} ·

8

<

:

X

u2�+(v)

Cu  Cv �
�

sv 6= sp(v) · S(v, p(v))

9

=

;

.

Inference in Sparse Graphs with Pairwise Measurements and Side Information

With this formulation it is clear that given (s, C) maximizing the potential

 (s, C) =
Y

v2V

 v(sv, sp(v),Cv,C�+(v)
)

the node labels s are a valid solution for Algorithm 2. Since is a tree-structured MRF the maximizer can be
calculated exactly using max-sum message passing (see e.g. Cowell et al. (2006)). The only catch is that naively
this procedure’s running time will scale as ndeg(T), because each of the variables Cv has a range that scales with n.
For example, the range of Cv is eO(pn) for the setup in Section 2. We now show that the structure of the factors
can be exploited to perform message passing in polynomial time in deg(T) and n. In particular, message passing
can be performed in time time Õ(Knn2) for general trees and time Õ(Knn) when T is a path graph.

Algorithm 2 TreeDecoder

Input: Tree T = (V,E), {Costv}v2V , {S(u, v)}(u,v)2E , Kn 2 N.

ŝ = argmin
s2{±1}V

X

v2V

Costv[sv]

s.t.
X

(u,v)2E

{su 6= sv · S(u, v)}  Kn

Return: ŝ 2 {±1}V .

To solve TreeDecoder e�ciently, we first turn T into a DAG by running a BFS from a given vertex r and

directing edges according to the time of discovery. We denote this DAG by
�!
T . We root this directed tree at r,

and denote the parent of a vertex u 6= r by p(u). For u 2 V , let
�!
T u denote the (directed) subtree rooted at u.

Given a labeling Y to the vertices of T , an edge uv for which su 6= sv · S(u, v) is called a violated edge.

We now define a table OPT that will be used to store values for sub-problems of Algorithm 2. For u 6= r, and
budget K, we define OPT (u,K|1) to be the optimal value of the optimization problem in Algorithm 2 over the

subtree
�!
T u for budget K, where the label of p(u) is constrained to have value 1. Importantly, the edge (u, p(u))

is also considered in the count of violated edges (in addition to the edges in
�!
T u). OPT (u,K| � 1) is defined

likewise, but for p(u) constrained to label value �1.

OPT (u,K|1) = min
s2{�1,1}

minP
v2Nu

Kv=K� {s 6=Sp(u)·S(u,p(u))}

0

@

X

v2N(u)

OPT (v,Kv|s) + Costv[s]

1

A .

Here s is simply the value assigned to u. We constrain the budgets Kv to satisfy 0  Kv  |�!T v| (clearly no

subtree
�!
T v can violate more than |�!T v| edges). For the sake of readability, we do not include this constraint in

the recursive formula above. A similar recursion can be obtained for OPT (u,K|� 1).

One can verify that if we can compute OPT (u,K|s) for all nonroot nodes and all values of K  Kn, s 2 {�1, 1}
then we can find the optimum of the problem of our whole tree. To achieve this, simply attach a degree one node
r0 to the root of the tree, add a directed edge (r0, r) and set the label of the root to equal 1. Then we simply
solve for OPT (r,K|1), where S(r, r0) = 1 as well as OPT (r,K, 1), where S(r0, r) is �1 and return the minimum
of the the values.

For a leaf node w, the value of OPT (w,K 0|s) can be calculated as follows: it is min(cost[sw = �1], cost[sw = 1]),
for K 0 � 1. If K = 0, it is cost[s0] where s0 is the unique label not violating the constraint s 6= s0 · S(w, p(w))

We now show how to calculate OPT (u,Ku|s) for any vertex in the tree, assuming OPT has already been
calculated for its children. To do this, we try both values of su, and then condition on its value to optimize

minP
j2[1,k] Kj=K� {s 6=sp(u)·S(u,p(u))}

X

u2[1,k]

OPT (j,Kj |s).

The function
P

v2Nu
OPT (v,Kv|s) can be minimized using another layer of dynamic programming as follows:

For r  s, let [r, s] be the set of integers between r and s. Assuming we enumerate the vertices in N(u) by

Dylan J. Foster, Daniel Reichman, Karthik Sridharan

1, ..., k := |N(u)| and setting Kj to be the budget for the jth node, we have the equality

minP
j2[1,k] Kj=K� {s 6=sp(u)·S(u,p(u))}

X

u2[1,k]

OPT (j,Kj |s)

= min
K12[0,K� {s 6=sp(u)·S(u,p(u))}]

OPT (1,K
1

|s) + minP
j2[2,k] Kj=K�K1� {s 6=sp(u)·S(u,p(u))}

X

j2[2,k]

OPT (j,Kj |s).

The minimization problem can be solved in time O(|N(u)|K2

n) time. We first calculate the minimum cost for
the first two vertices where the number of constraints violated can range between 1 to K. This can be done
in time O(K2). We then examine the minimum cost for the first three vertices (assuming of course u has at
least three descendants) where the number of violated constraints ranges between 0 and K. Since we have
the information for the first two vertices, these values can be calculated again in time O(K2). We repeat this
iteration until all descendants of u are considered. It follows that the overall running time of this algorithm is
P

u2V |N(u)|K2

n = O(nK2

n), since T is a tree.

When T is a path graph each node has a single child, the recursion collapses to time O(nKn).

E Further techniques for general graphs

Here we give a simple proof that if the minimal degree of G is ⌦(log n), then there is an algorithm that achieves
arbitrarily small error for each vertex as n ! 1 as soon as q = 1/2� ✏ is constant.

Theorem 6. There is an e�cient algorithm that guarantees

E
"

X

v2v

n

bYv 6= Yv

o

#


X

v2V

exp(�Cdeg(v)✏2(1� 2p)2).

for some C > 0.

Observe that this rate quickly approaches 0 with n as soon as deg(G) = ⌦(log n) (i.e., it has o(n) Hamming
error) . On the other hand, if degree is constant (say d), then even when p = 0 the rate of this algorithm is only

e�dO(✏2)n, so the algorithm does not have the desired property of having error approach 0 as p ! 0.

Proof of Theorem 6. Fix a vertex v and, for each vertex u in its neighborhood, define an estimate Su = Zu ·Xuv.
We can observe that P(Su = Yv) = (1� p)(1� q) + pq = 1

2

+ ✏(1� 2p). Our algorithm will be to use the estimator
bYv = Majority({Su}u2N(v)). Since each Su is independent, the Hoe↵ding bound gives that

P(bYv 6= Yv)  exp(�Cdeg(v)✏2(1� 2p)2).

Taking this prediction for each vertex gives an expected Hamming error bound of

E
"

X

v2v

n

bYv 6= Yv

o

#


X

v2V

exp(�Cdeg(v)✏2(1� 2p)2).

	Introduction
	Inference for Trees
	Inference for General Graphs
	Concrete Results for Specific Graphs
	Discussion
	Further discussion of related work
	Omitted proofs
	Statistical learning
	Algorithms
	Further techniques for general graphs

