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Abstract

We study the robustness of classifiers to vari-
ous kinds of random noise models. In par-
ticular, we consider noise drawn uniformly
from the `p ball for p ∈ [1,∞] and Gaus-
sian noise with an arbitrary covariance ma-
trix. We characterize this robustness to ran-
dom noise in terms of the distance to the de-
cision boundary of the classifier. This analy-
sis applies to linear classifiers as well as clas-
sifiers with locally approximately flat deci-
sion boundaries, a condition which is satis-
fied by state-of-the-art deep neural networks.
The predicted robustness is verified experi-
mentally.

1 INTRODUCTION

Image classification techniques have recently wit-
nessed major advances leading to record per-
formances on challenging datasets [He et al., 2016,
Krizhevsky et al., 2012]. Besides reaching low classi-
fication error, it is equally important that classifiers
deployed in real-world environments correctly classify
perturbed and noisy samples. Specifically, when a suf-
ficiently small perturbation alters a sample, it is de-
sirable that the estimated label of the classifier re-
mains unchanged. Altering perturbations can take
various forms, such as additive perturbations, geo-
metric transformations or occlusions for image data.
The analysis of the robustness of classifiers under
these perturbation regimes is crucial for unraveling
their fundamental vulnerabilities. For example, state-
of-the-art image classifiers have recently been em-
pirically shown to be vulnerable to well-sought im-
perceptible additive perturbations [Biggio et al., 2013,
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Szegedy et al., 2014], and to more physically plausi-
ble nuisances in [Sharif et al., 2016]. The goal of this
paper is to derive precise quantitative results on the
robustness of general classifiers to random noise.

We specifically analyze two random noise models. Un-
der our first perturbation model, we assume that noise
is sampled uniformly at random from the `p ball, for
p ∈ [1,∞]. Different values of p allow us to model
very different noise regimes; e.g., p = 1 corresponds
to sparse noise, whereas p = ∞ models dense noise
typically resulting from signal quantization. Under
our second perturbation regime, the noise is modeled
as Gaussian with arbitrary covariance matrix Σ. Our
contributions are summarized as follows:

• For linear classifiers, we characterize up to con-
stants the robustness to random noise, as a func-
tion of the distance to the decision boundary. We
show in particular that, provided the weight vec-
tor of the linear classifier is randomly chosen, the
robustness to random noise (uniform and Gaus-
sian) scales as

√
d times the distance to the deci-

sion boundary.

• We extend the results to nonlinear classifiers, and
show that when the decision boundary is locally
approximately flat (which is the case for state-of-
the-art classifiers), the above result notably holds.

• Through experimental evidence on state-of-the-
art image classifiers (deep nets), we show that
the proposed bounds predict accurately the ro-
bustness of such classifiers. We finally show that
our analysis predicts the high robustness of such
classifiers to image quantization, which confirms
previous empirical evidence.

Related work. The robustness properties of
linear and kernel SVM classifiers have been
studied in [Xu et al., 2009, Biggio et al., 2013],
and robust optimization approaches for con-
structing robust classifiers have been proposed

∗Now at DeepMind.
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[Caramanis et al., 2012, Lanckriet et al., 2003]. More
recently, the robustness properties of deep neural
networks have been investigated. In particular,
[Szegedy et al., 2014] shows that deep neural net-
works are not robust to worst-case, or adversarial,
perturbations. Several works have followed and at-
tempted to provide explanations to the vulnerability
[Goodfellow et al., 2015, Tabacof and Valle, 2016,
Tanay and Griffin, 2016, Sabour et al., 2016]. In
particular, it was shown theoretically that the ratio of
robustness to random noise and robustness to adver-
sarial perturbations measured in the `2 norm scales as√
d for linear classifiers in [Fawzi et al., 2018] and more

general classification functions in [Fawzi et al., 2016].
Therefore, when the data is sufficiently high dimen-
sional, the robustness to adversarial perturbations
is very small, which gives an explanation to the
imperceptible nature of such perturbations. Our
work generalizes [Fawzi et al., 2016] to broader noise
regimes, such as sparse noise, quantization noise, or
correlated Gaussian noise. Indeed, we follow a similar
methodology to that of [Fawzi et al., 2016], where we
first establish results for the linear case, and then
extend the results to nonlinear classifiers satisfying a
locally approximately flat decision boundary.

Outline. This paper is organized as follows. Section 2
introduces the framework of the robustness to random
and adversarial perturbations. Section 3 presents the-
oretical estimates of such robustnesses for linear clas-
sifiers, which are generalized in Section 4 for classifiers
with a locally approximately flat decision boundary.
Section 5 then details experiments showing the valid-
ity of our bounds for state-of-the-art classifiers and
exposing some applications of our results.

2 DEFINITIONS AND NOTATIONS

Let f : Rd → RL be a L-class classifier. The esti-
mated label of a datapoint x ∈ Rd is set to g(x) =
argmaxk fk(x), where fk(x) denotes the kth compo-
nent of f(x). Our goal in this paper is to analyze the
robustness of f to random perturbations of the input.
For that, we consider an arbitrary distribution ν on
Rd that we interpret as giving the direction v of the
noise, and we measure the length of the minimal scal-
ing applied to v required to change the estimated label
of f at x with probability at least ε. More precisely,
let v be a random variable distributed according to ν;
for a given ε > 0, we define rν,ε(x) as:

rν,ε(x) = min
α
{|α| s.t. P {g(x + αv) 6= g(x)} ≥ ε} .

(1)

If the set is empty, we set rν,ε(x) = +∞.1 In this
paper, we will focus on two families of choices for ν.

The first family is parameterized by a real number
p ∈ [1,∞]. The distribution ν is then the uniform
distribution over the unit ball of `dp, i.e., Bp = {x ∈
Rd : ‖x‖p ≤ 1} where ‖x‖p = (

∑d
i=1 x

p
i )

1/p. For this
setting of distribution ν, we write rp,ε(x) = rν,ε(x).
Observe that the Euclidean norm ‖.‖2 is invariant un-
der an orthonormal basis change, but this is not the
case for ‖.‖p when p 6= 2, i.e., it depends on the basis
that is chosen to write the signal x; hence, this de-
pendence also holds for rp,ε(x). Different choices of p
allow us to span a range of realistic noise models. For
example, choosing p = 1 leads to sparse noise vectors
modeling salt and pepper noise, while p = ∞ leads
to uniform noise vectors that allow us to model noise
resulting from signal quantization [Bovik, 2005, Chap-
ter 4.5]. An illustration of the different noise regimes
can be found in Figure 1.

The second family is parameterized by an arbitrary
positive definite matrix Σ ∈ Rd×d, that will generally
be normalized with Tr(Σ) = 1 to fix the scale. The
distribution ν is then the multivariate normal distri-
bution with mean 0 and covariance matrix Σ. We use
the notation rΣ,ε(x) = rν,ε(x) for this setting. A spe-
cial case of this family is therefore the additive white
Gaussian noise (where Σ = I

d ); note however that this
family is much broader and can model a noise that is
correlated with the input x, as no assumption is made
on Σ.

In the remainder of this paper, our goal is to derive
bounds on the robustness of classifiers f to random
noise sampled from either of these two families. To do
so, we first define a key quantity for our analysis, the
robustness to worst-case perturbations:

r∗p(x) = argmin
r
{‖r‖p s.t. g(x + r) 6= g(x)} . (2)

In other words, ‖r∗p(x)‖p quantifies the length of the
minimal perturbation required to change the esti-
mated label of the classifier, or equivalently, the dis-
tance from the data point x to the decision boundary
of the classifier. r∗p(x) is often alternatively referred
to as an adversarial perturbation, as it corresponds to
the least noticeable perturbation an adversary would
apply to fool a classifier. Note that, like rp,ε(x), it
heavily depends on the choice of norm `p, and thus
on the choice of orthonormal basis. Figure 2 illus-
trates the dependence on p of this perturbation. Such
perturbations, which have been the subject of intense

1We should also technically consider the closure of the
set to ensure the minimum is achieved, but we will avoid
such technicalities throughout the paper as they are of no
relevance for our study.
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Figure 1: Illustration of noise with different values of p.
First row: histogram of uniformly sampled noise from
the unit ball of `dp. Second row: Example of noise
image. Third row: Example of noisy image. Note
that different values of p result in perceptually different
noise images.

studies, will be used to derive guarantees on the ro-
bustness to random noise.

In the next sections, we characterize the robustness
of linear and nonlinear classifiers to random pertur-
bations in terms of the robustness to worst-case per-
turbations. In the case of Gaussian random noise, we
focus for r∗p (x) on the norm ‖.‖ = ‖.‖2, even though
all our results can be generalized to p-norms.

3 ROBUSTNESS OF LINEAR
CLASSIFIERS

For simplicity of exposition, we state our results for
binary classifiers, and we extend the results for multi-
class classifiers in the supplementary material. The
proofs may also be found in the supplementary mate-
rial.

We consider in this section the particular case where
f is a linear classifier, i.e., all the fk’s are linear func-
tions. In particular, in the binary case, the setting can
be simplified by considering a single linear function

f : x 7→ wTx + b. (3)

In this case,2 g(x) = 1 if and only if f(x) > 0.

2In the general multi-class setting, this corresponds to
f0 = f and f1 = 0.

red panda

(unperturbed)

teddy bear polecatpolecatbrown bear

Figure 2: Illustration of adversarial perturbations
with different values of p. First row: original im-
age and its classification. Second row, for each
column, from bottom to top: chosen p, adversar-
ial perturbation, perturbed image with its classifi-
cation. When p → ∞, the perturbation tends
to be distributed over all pixels; when p → 1, it
tends to be distributed over few pixels. Adversarial
perturbations were estimated on the VGG-19 classi-
fier [Simonyan and Zisserman, 2014] using the method
presented in [Moosavi-Dezfooli et al., 2016].

3.1 Uniform `p noise

The following result bounds the robustness of a linear
classifier to uniformly random noise with respect to its
robustness to adversarial perturbations, for any norm
`p.

Theorem 1. Let p ∈ [1,∞]. Let p′ ∈ [1,∞] be such
that 1

p + 1
p′ = 1. There exist constants ε0, ζ1(ε), ζ2(ε)

such that, for all ε < ε0:

ζ1(ε)d1/p ‖w‖p′
‖w‖2

≤ rp,ε(x)

‖r∗p(x)‖p
≤ ζ2(ε)d1/p ‖w‖p′

‖w‖2
.

We can take ζ1(ε) = C
√
ε,3 and ζ2(ε) =

√
1

c−
√
c′ε

, for

some constants C, c, c′.

More details on constants C, c, c′ are available in the
supplementary material. In words, our result demon-
strates that rp,ε(x) is well estimated by ‖r∗p(x)‖p
times a multiplicative factor that is independent of

x and is of the order d1/p ‖w‖p′
‖w‖2 . The special case

p = 2, for which this multiplicative factor becomes

3We show in the supplementary material that for p > 1,

we can also choose ζ1(ε) = C′√
ln 1
ε

for some constant C′.
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√
d, was previously shown in [Fawzi et al., 2016] and

[Fawzi et al., 2018]. For p 6= 2, this factor depends on
the choice of the classifier through vector w. Such a
dependence was to be expected as the p-norm for p 6= 2
depends on the choice of basis. This dependence takes
into account the relation between this choice of ba-
sis to write the signal and the direction w chosen by
the classifier. For example, when w = (1 0 . . . 0)T ,
we have a classifier that only uses the first component
of the signal. So for p = ∞, the problem effectively
becomes one-dimensional as only the first coordinate
matters and we have r∞(x) = ‖r∗∞(x)‖∞.

Nevertheless, for a typical choice of the vector w of the
linear classifier, this factor stays of order

√
d if p > 1.

Proposition 1. For any p ∈ (1,∞], if w is a random
direction uniformly distributed over the unit `2-sphere,
then, as d→∞,

d1/p ‖w‖p′
‖w‖2√
d

−−→
a.s.

√
2

Γ
(

2p−1
2(p−1)

)
√
π

1− 1
p

.

Moreover, for p = 1,

d
‖w‖∞
‖w‖2√
2d ln d

−−→
a.s.

1.

While this result is only asymptotic and valid for ran-
dom decision hyperplanes, we experimentally show in
Section 5 that its dependence in p allows us to propose
an estimate providing a very good approximation of
the robustness to random noise.

3.2 Gaussian noise

In the case where the uniformly random noise is re-
placed by a Gaussian noise with a given covariance ma-

trix Σ, we can similarly characterize the ratio
rΣ,ε(x)
‖r∗2(x)‖2

as a function of Σ and w as follows.

Theorem 2. Let Σ be a d × d positive semidefi-
nite matrix with Tr(Σ) = 1.4 There exist constants
ε′0, ζ

′
1(ε), ζ ′2(ε) such that, for all ε < ε′0:

ζ ′1(ε)
‖w‖2
‖
√

Σw‖2
≤ rΣ,ε(x)

‖r∗2(x)‖2
≤ ζ ′2(ε)

‖w‖2
‖
√

Σw‖2
.

We can take ε′0 = 1
3 , ζ ′1(ε) =

√
1

2 ln( 1
ε )

and ζ ′2(ε) =√
1

1−
√

3ε
.

In this case, the multiplicative factor between robust-
nesses to random and adversarial perturbations is of

4Note that the condition Tr(Σ) = 1 is not needed for the
statement but its motivation is to fix the scale of rΣ,ε(x).

the order ‖w‖2
‖
√

Σw‖2
. Note that this factor lies in between

λmax(
√

Σ)−1 and λmin(
√

Σ)−1. However, these values
correspond to extremal cases, and for most choices of
w, this factor will be determined by a convex combina-
tion of eigenvalues of Σ. More precisely, if u1, . . . ,ud
are the eigenvectors of Σ with eigenvalues λ2

1, . . . , λ
2
d

and assuming ‖w‖2 = 1 (without loss of generality),
the factor is given by a weighted average of the eigen-
values λ2

1, . . . , λ
2
d:

1√∑d
i=1 λ

2
i |uTi w|2

.

In particular, if Σ = 1
dId, then the factor is

√
d. Even

more generally, for typical choices of w we expect
|uTi w|2 be of order 1

d , in which case the factor will

also be of order
√
d.

4 ROBUSTNESS OF NONLINEAR
CLASSIFIERS

We now consider the general case where f is a non-
linear classifier. The goal of this section is to derive
relations between rp,ε(x) and ‖r∗p(x)‖p in this general
case, under a reasonable hypothesis on the geometry
of the decision boundary.

4.1 Locally Approximately Flat (LAF)
Decision Boundary Model

Before giving the formal definition, let us describe
the main idea behind the Locally Approximately Flat
(LAF) decision boundary model. This model requires
that the decision boundary can be locally sandwiched
between two hyperplanes that are parallel to the tan-
gent hyperplane. We do not ask for this to hold for
every point on the decision boundary, but only to hold
for the closest points on the decision boundary of our
data points.

Definition 1 (LAF model). Let f be a binary clas-
sifier with smooth5 decision boundary S = {x ∈ Rd :
f(x) = 0}. For x∗ ∈ S, define T (x∗) to be the hy-
perplane tangent to S at point x∗. For x ∈ Rd and
x∗ ∈ S, we define H−γ (x,x∗) to be the halfspace of
points that are on the side of x of the hyperplane paral-
lel to T (x∗) that passes though the point γx+(1−γ)x∗.
Similarly, H+

γ (x,x∗) is the halfspace of points that are
not on the side of x of the hyperplane parallel to T (x∗)

5This is a strong assumption that is only used here for
the sake of exposition. Actually, the tangent T (x∗) in the
definition can be replaced by any hyperplane intersecting
the decision boundary at x∗. Then, in the results condi-
tioned by the LAF model, the gradient of f at x∗ can be
replaced by a normal vector to this plane.
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Figure 3: Illustration of a (γ, η)-LAF classifier with
p = 3

2 . S is the decision boundary of f , separating
instances of the same predicted class as x (on the
side of x) from instances whose classification differs
from x (on the other side). By definition, all inputs
in H+

γ (x,x∗) ∩ Bp(x, η) (red area, other side of S)
are classified differently from x, while the inputs in
H−γ (x,x∗)∩Bp(x, η) (green area, same side of S as x)
are classified as x.

that passes though the point x∗ + γ(x∗ − x) (see Fig-
ure 3).

We say that f is (γ, η)-Locally Approximately Flat at
point x if for x∗ ∈ S minimizing ‖x − x∗‖p, the set
H−γ (x,x∗)∩Bp(x, η) is classified as x and H+

γ (x,x∗)∩
Bp(x, η) is classified differently from x. Here Bp(x, η)
is the `p-ball centered at x with radius η.

The LAF model assumes that the decision boundary
can be locally approximated by a hyperplane, in the
vicinity of images x sampled from the data distribu-
tion. It should be noted that, in order to be able to
define locality, we need a distance measure and thus
the LAF property depends implicitly on the choice of
norm. For γ = 0, the LAF model corresponds to lo-
cally exactly flat decision boundaries (no curvature).
If in addition η = ∞, this corresponds to a linear de-
cision boundary.

Prior empirical evidence has shown that state-
of-the-art deep neural network classifiers have
decision boundaries that are approximately flat
along random directions [Warde-Farley et al., 2016,
Fawzi et al., 2016]. Normal two-dimensional cross-
sections (along random directions) of the decision
boundary are illustrated in Figure 4. Note that such
cross-sections have very low curvature, thereby pro-
viding evidence that the LAF assumption holds ap-
proximately (at least, with high probability) for com-

Figure 4: Two dimensional normal cross-sections of
the decision boundary of a deep network classifier
along random directions, in the vicinity of different
natural images (denoted by x for each cross-section).
The CaffeNet architecture [Jia et al., 2014] trained on
ImageNet [Russakovsky et al., 2015] was used.

plex classifiers, such as modern deep neural networks.
It should further be noted that the LAF model is
tightly related to the curvature condition of the de-
cision boundary in [Fawzi et al., 2016]. The LAF
model, however, does not assume any regularity con-
dition on the decision surface, which is nonsmooth in
many settings (e.g., deep neural networks due to piece-
wise linear activation functions). Finally, it should
be noted that, for the sake of clarity, we assumed
that the entire set H+

γ (x,x∗) ∩ Bp(x, η) (respectively,
H−γ (x,x∗) ∩ Bp(x, η)) is classified differently from x
(respectively, similarly to x); however, the results in
this section hold even if these conditions are only sat-
isfied with high probability.

4.2 Robustness Results Under LAF Model

Our next result shows that, provided f is Locally Ap-
proximately Flat, a very similar result to Theorem 1
holds, with the normal vector w replaced by the gradi-
ent of f at the point x∗ of the boundary that is closest
to x. It should be noted that for nonlinear classifiers,
the gradient ∇f(x∗) plays the same role as w for lin-
ear classifiers, as it is normal to the tangent to the
decision boundary at x∗.

Theorem 3. Let p ∈ [1,∞]. Let p′ ∈ [1,∞] be such
that 1

p+ 1
p′ = 1. Let ε0, ζ1(ε), ζ2(ε) be as in Theorem 1.

Then, for all ε < ε0, the following holds.

Assume f is a classifier that is (γ, η)-LAF at point x
and x∗ be such that r∗p(x) = x∗ − x. Then:

(1− γ)ζ1(ε)d1/p ‖∇f(x∗)‖p′
‖∇f(x∗)‖2

≤ rp,ε(x)

‖r∗p(x)‖p
and

rp,ε(x)

‖r∗p(x)‖p
≤ (1 + γ)ζ2(ε)d1/p ‖∇f(x∗)‖p′

‖∇f(x∗)‖2
,

provided

η ≥ (1 + γ)ζ2(ε)d1/p ‖∇f(x∗)‖p′
‖∇f(x∗)‖2

∥∥r∗p (x)
∥∥
p
.
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In the case where ∇f(x∗) is uncorrelated with the ba-
sis used to write the signal (which we model by taking
for ∇f(x∗) a random direction in the `2 sphere), we
obtain the same result as in Proposition 1 (i.e., by
replacing w with ∇f(x∗)). This provides bounds on
the robustness to random noise that only depend on
‖r∗2‖2 and d. We show that these asymptotic bounds
provide accurate estimates of the empirical robustness
in Section 5.

The result on Gaussian noise also holds for LAF clas-
sifiers.

Theorem 4. Let Σ be a d × d positive semidefinite
matrix with Tr(Σ) = 1. Let ε′0, ζ

′
1(ε), ζ ′2(ε) as in The-

orem 2. Then, for all ε < 1
2ε
′
0, the following holds.

Assume f is a classifier that is (γ, η)-LAF at point x
and x∗ be such that r∗2(x) = x∗ − x. Then:

(1− γ)ζ ′1

(ε
2

) ‖∇f(x∗)‖2
‖
√

Σ∇f(x∗)‖2
≤ rΣ,ε(x)

‖r∗2(x)‖2

and

rΣ,ε(x)

‖r∗2(x)‖2
≤ (1 + γ)ζ ′2

(
3ε

2

) ‖∇f(x∗)‖2
‖
√

Σ∇f(x∗)‖2
,

provided, using ψ(ε) = 8 Tr
(
Σ2
)

ln 4
ε ,

η ≥ (1+γ)(1+ψ(ε))ζ ′2

(
3ε

2

) ‖∇f(x∗)‖2
‖
√

Σ∇f(x∗)‖2
‖r∗2 (x)‖2 .

5 EXPERIMENTS

Robustness of a binary linear classifier to uni-
form random noise. We now assess empirically our
bounds for the robustness to random noise. We first
consider the 10-class MNIST digit classification task
[LeCun et al., 1998], and train a binary linear classi-
fier separating digits 0 to 4 from digits 5 to 9, which
achieves a performance of 84% in the test set. To as-
sess our analytical results, we compare these to an em-
pirical estimate of the robustness to uniform random
noise for different values of p. It is based on the com-
bination of the expressions found in Theorem 1 and
Proposition 1; for a fixed ε, our estimate is:

Erp (x) = ζ0
√
d

Γ
(

2p−1
2(p−1)

)
√
π

1− 1
p ∥∥r∗p(x)

∥∥
p
, (4)

where ζ0 is a constant. The empirical robustness of
Eq. (1) is specifically computed through an exhaus-
tive search of smallest radius of the `p ball leading to
an ε fraction of misclassified samples. Note moreover
that for this linear classifier, the worst-case robust-
ness ‖r∗p‖p is given by the distance to the hyperplane,

and can therefore be computed in closed form (see the
supplementary material). Figure 5 illustrates the em-
pirical robustness, our theoretical bounds and our es-
timate (i.e., upper and lower bounds of Theorem 1,
and estimate of Eq. (4)) with respect to p. In addition
to providing accurate upper and lower bounds for all
the range of tested p-norms, observe that our estimate
provides a remarkably accurate approximation of the
robustness to random noise, for all p. Our analytical
results hence correctly predict the robustness behavior
of this classifier through a wide variety of noise models,
and can therefore be used to predict the robustness in
these regimes.

Robustness of a multi-class deep neural net-
work to uniform random noise. We now con-
sider a more complex classification setting, where we
evaluate the robustness of the VGG-19 deep neural
network on the multi-class ImageNet dataset of nat-
ural images [Russakovsky et al., 2015]. Similarly to
our experiment for the linear classifier, we compare
the empirical value of the robustness for different val-
ues of p to our theoretical bounds from Theorem 3
and our estimate from Eq. (4). Note that unlike the
previous case, the worst-case robustness ‖r∗p‖p can-
not be obtained in closed-form for deep networks; we
therefore estimate it using the algorithm described in
[Moosavi-Dezfooli et al., 2016]. The results are shown
in Figure 6. Observe that, once again, our estimate
predicts accurately the robustness of the deep neural
network for different values of p. Hence, despite the
high nonlinearity of the deep network as a function
of the inputs, our bounds established under the LAF
assumption hold accurately for all tested values of p.

Robustness of a deep neural network to quan-
tization. We now leverage our analytical results to
assess the robustness of a deep neural network classi-
fier to image quantization. When a signal x is quan-
tized into a discrete valued-signal Q(x), the quantiza-
tion noise Q(x)− x is often modeled as a signal inde-
pendent uniform random variable [Bovik, 2005, Chap-
ter 4.5]. That is, under this assumption, Q(x) − x
is uniformly distributed over B∞(0,∆/2), with ∆ de-
noting the quantization step size. According to our
analytical results in Section 4, the approximate step
size ∆ that the classifier can tolerate (without chang-
ing the estimated label of the quantized image) with
probability 1− ε is thus given by:

∆ =
2ζ0√
π

√
d‖r∗∞(x)‖∞,

using the estimate of Eq. (4). Moreover, the number
of quantization levels required to guarantee robustness
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Figure 5: Empirical robustness to random uniform
noise, derived upper and lower bounds (Theorem 1)
and estimate from Eq. (4), as a function of p for a lin-
ear classifier trained on MNIST. For a given p, empir-
ical robustness was computed through an exhaustive
search of the smallest radius of the ball where an ε
fraction of points sampled uniformly from the ball are
misclassified. We choose ε = 1.5%, empirically find
ζ0 ≈ 0.72, and run the experiments for each chosen p
over 1,000 random images from the MNIST test set.

of the classifier is therefore estimated by

Lq =
255

2ζ0√
π

√
d‖r∗∞(x)‖∞

. (5)

In other words, Eq. (5) predicts that images encoded

with more than log2

(
255

2ζ0√
π

√
d‖r∗∞(x)‖∞

)
bits will have

the same estimated label as the original image with
high probability, despite quantization. Figure 7 shows
that this prediction is a good approximation of the real
quantization level computed for 8, 000 images from the
ImageNet validation set for the VGG-19 classifier. In
this experiment, we use a minimum variance quan-
tization. Moreover, as commonly done, dithering is
also applied to improve the perceptual quality of the
quantized image. Interestingly, as predicted by our
analysis, most images can be heavily quantized (with
e.g., 3 bits) without changing the label of the classi-
fier, despite the significant distortions to the images
caused by heavy quantization (see Figure 8 for ex-
ample images). Finally, note that our analytical re-
sults confirm and quantify earlier empirical observa-
tions that highlighted the high robustness of classifiers
to compression mechanisms [Dodge and Karam, 2016,
Paola and Schowengerdt, 1995].

Robustness to signal-dependent Gaussian
noise. We now consider the case where some Gaus-
sian noise that correlates with the input image is
added to this image. That is, we consider a Gaussian

100 101

p

100

101

102

103

104

105

106

107

108

Empirical rp,ε(x)

Estimator

Lower bound

Upper bound

Figure 6: Empirical robustness to random uniform
noise, derived upper and lower bounds (Theorem 3)
and estimate from Eq. (4), as a function of p for the
VGG-19 classifier trained on ImageNet. See the cap-
tion of Figure 5 for more details about the computation
of rp,ε(x). We choose ε = 1.5%, use ζ0 ≈ 0.72 as in
Figure 5, and run the experiments for each chosen p
over 200 images from the ImageNet validation set.

noise N (0,Σ(x)), where Σ(x) is a diagonal matrix
such that Σ(x)ii = 1xi≥t · xi, where xi denotes
the value of pixel i, and t denotes a user-specified
threshold.6 Σ(x) is further normalized to satisfy
Tr(Σ(x)) = 1. Under this noise model, noise is
solely added to pixels that are “almost white” (i.e.,
pixels satisfying xi ≥ t), while all other pixels are
left untouched. It should be noted that such signal-
dependent noise models are commonly used to model
physical deficiencies in acquisition, such as shot noise.

Our analytical results for the Gaussian case predict
that the robustness to such noise (provided the gradi-
ent directions are “typical”) should be independent of
the distribution of eigenvalues Σ(x), and should more-
over satisfy7

1

2

√
d ≤ rΣ(x),ε(x)

‖r∗2(x)‖2
≤ 2
√
d, (6)

where ε = 0.15. To verify this hypothesis, we show in

Figure 9 the ratio
rΣ(x),ε(x)

‖r∗2(x)‖2 over 30,000 images from

the ImageNet validation set for the VGG-19 classi-
fier, as a function of the “whiteness” of the image;
i.e., W (x) =

∑
i 1xi≥txi. Similarly to previous exper-

iments, rΣ,ε(x) is estimated using an exhaustive line

6We consider in practice color images; the quantity xi
refers in this case to xi,r + xi,g + xi,b, where xi,r, xi,g, xi,b
respectively denote the red, green and blue channels.

7We stress here that, due to the normalization
Tr(Σ(x)) = 1, the same amount of noise is added to all
images. It is only the distribution of noise that differs:
noise is concentrated on few pixels for images with few
white pixels, and spread for white images.
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Figure 7: Minimum number of bits required to en-
code an image to guarantee similar estimated label as
original image vs. log2(‖r∗∞(x)‖∞). Real points are
computed through an exhaustive search of the required
quantization level (with different images), and Predic-
tion is computed using Eq. (5). We choose ε = 1.5%
and ζ0 = 0.72 as in Figure 6.
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Figure 8: Example image, where a quantization (with
dithering) using 3 bits leads to correct classification.

search. It can be seen that the ratio
rΣ(x),ε(x)

‖r∗2(x)‖2 approx-

imately satisfies the bounds in Eq. (6), although the
empirical ratio can surpass the upper bound, for im-
ages with significant white pixels. This is potentially
due to our assumption on the randomness of the direc-
tion of the decision boundary, which can be violated in
this case: in fact, white pixels (i.e., non-zero eigenvec-
tors of Σ) appear often in the background of images,
and are thus correlated with the decision boundaries of
the classifier. Despite this assumption not being sat-
isfied, our bounds allow us to predict fairly accurately
the behavior of a complex deep network in presence of
image-dependent Gaussian noise.

6 CONCLUSION

We have derived precise bounds on the robustness of
linear and nonlinear classifiers to random noise, un-
der two noise distributions: uniform noise in the `p
unit ball, and Gaussian noise. Our quantitative results
show that state-of-the-art classifiers are orders of mag-
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3,000
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Figure 9: Fraction
rΣ(x),ε(x)

‖r∗2(x)‖2 , where ε = 15%, as a

function of W (x). W (x) encodes how “white” the
pixels of the image are. Under our noise model, im-
ages with small W (x) will have the noise concentrated
along a few pixels, while images with large W (x) will
have their noise spread across most pixels in the image.
Each circle represents the average robustness ratio of
images with the same W (x).

nitude more robust to typical random noise than to
worst-case perturbations, typically of order the square
root of the input dimension. Such bounds are shown
to hold in challenging settings, where a state-of-the-
art deep network is used on a large scale multi-class
dataset such as ImageNet. Our analysis can be lever-
aged to quantify the effect of many disturbances (e.g.,
image quantization) on classifiers, and provide robust-
ness guarantees when such systems are deployed in
real world environments. Moreover, our analysis al-
lows us to draw links between different noise regimes,
and show the effect of the robustness to adversarial
perturbations (or equivalently, the distance to the de-
cision boundary) on other noise regimes.

In this work, we have studied the robustness with re-
spect to generic `p norms. For future work, we be-
lieve it would be very interesting to characterize the
robustness of classifiers to random perturbations by
using perceptual similarity metrics adapted to differ-
ent modalities, such as images [Wang et al., 2004] and
speech.
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