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S1 Proof of Lemma 3.1

Letting q
(1)
i denote the ith row of Q(1) and q

(2)
i denote

the ith row of Q(2), we can express the ith entry Kv,
[Kv]i as:

[Kv]i = q
(1)
i T (1)Q(1)> Dv Q

(2)T (2)q
(2)>
i

To evaluate this for all i, we first once compute the
k × k matrix:

M (1,2) = T (1)Q(1)> Dv Q
(2)T (2).

This can be done in O(nk2) time. T (1)Q(1)> and
Q(2)T (2) can each be computed in O(nk2) time, as
the Q matrices are n×k and the T matrices are n×k.
Multiplying one of the results by Dv takes O(nk) time
as it is diagonal. Finally, multiplying the two resulting
n× k matrices together takes O(nk2) time.

After computing M (1,2), we can compute each element
of the matrix-vector multiply as:

[Kv]i = q
(1)
i M (1,2)q

(2)>
i .

Because M (1,2) is k× k, each of these takes O(k) time
to compute. Since there are n entries to evaluate in
the MVM Kv in total, the total time requirement after
computing M (1,2) is O(kn) time. Thus, given low rank
structure, we can compute Kv in O(k2n) time total.

S2 Proof of Theorem 3.3

Given the Lanczos decompositions of K̃(1) = K
(1)
XX ◦

· · · ◦ K(a)
XX and K̃(2) = K

(a+1)
XX ◦ · · · ◦ K(d)

XX , we can

compute matrix-vector multiplies with K̃(1) ◦ K̃(2) in
O(k2n) time each. This lets us compute the Lanczos
decomposition of K̃(1) ◦ K̃(2) in O(k3n) time.

For clarity, suppose first that d = 3, i.e., K = K
(1)
XX ◦

K
(2)
XX ◦K

(3)
XX . We first Lanczos decompose K

(1)
XX , K

(2)
XX

and K
(3)
XX . Assuming for simplicty that MVMs with

each matrix take the same amount of time, This takes

O(kµ(K
(i)
XX)) time total. We then use these Lanc-

zos decompositions to compute matrix-vector multi-

ples with K̃
(1)
XX in O(k2n)time each. This allows us

to Lanczos decompose it in O(k3n) time total. We
can then compute matrix-vector multiplications Kv
in O(k2n) time.

In the most general setting where K = K
(1)
XX ◦ · · · ◦

K
(d)
XX , we first Lanczos decompose the d component

matrices in O(dkµ(K(i))) and then perform O(log d)
merges as described above, each of which takes O(k3n)
time. After computing all necessary Lanczos decom-
positions, matrix-vector multiplications with K can be
performed in O(k2n) time.

As a result, a single matrix-vector multiply with K
takes O(dkµ(K(i)) + k3n log d + k2n) time. With
the Lanczos decompositions precomputed, multiple
MVMs in a row can be performed significantly faster.
For example, running p iterations of conjugate gra-
dients with K takes O(dkµ(K(i)) + k3n log d + pk2n)
time.


