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Abstract

Combined antiretroviral therapies (CART)
can successfully suppress HIV in the serum
and bring its viral load below detection rate.
However, drug resistance remains a major
challenge. As resistance patterns vary be-
tween patients, personalized therapy is re-
quired. Automatic systems for therapy per-
sonalization exist and were shown to better
predict therapy outcome than HIV experts in
some settings. However, these systems focus
only on selecting the therapy most likely to
suppress the virus for several weeks, a choice
that may be suboptimal over the longer term
due to evolution of drug resistance.

We present a novel generative model for HIV
drug resistance evolution. This model is based
on factorial HMMs, applying a novel collapsed
Gibbs Sampling algorithm for approximate
learning. Using the suggested model, we ob-
tain better therapy outcome predictions than
existing methods and recommend therapies
that may be more effective over the long term.
We demonstrate our results using simulated
data and using real data from the EuResist
dataset.

1 Introduction

Much progress has been made in recent years in treating
HIV and modern Combined Antiretroviral Therapies
(CART) can successfully suppress the virus and prolong
patients’ life. These therapies consist of multiple drugs,
typically 2-3, that target different stages of the HIV
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reproduction mechanism. When taken properly, these
drugs can suppress the virus and reduce its level in
the blood below detection level. However, the virus
is suppressed but not eradicated from the patient’s
body, and it still resides in viral reservoirs Pierson
et al. [2000], also called latent reservoirs. These are
cells infected by the virus but not actively producing
it, and they are not affected by drugs targeting the
virus replication process. These cells contain integrated
HIV-1 DNA. When they become active, they replicate
the virus, contributing to its persistence in the body
despite it being suppressed in the blood. If the therapy
is stopped, or if the virus develops resistance to the
drug, its level in the blood will rise again.

When HIV replicates, new mutations are randomly
created. Some of these mutations may show drug
resistance, and prevail under therapy. HIV may acquire
drug resistance through such mutations over time, and
moreover, an initial infection by a drug resistant strain
can also be transmitted from another person Ocfemia
et al. [2015], Van de Vijver et al. [2006]. Due to the
prevalence of drug resistant mutations, care must be
taken when selecting a therapy. As resistance patterns
vary between different patients, therapy selection need
to be personalized. Such personalization is done by
following guidelines AIDSInfo [2016], and recently also
using genotypic resistance tests.

Due to the difficulty and importance of selecting an
effective therapy, machine learning decision support sys-
tems for therapy selection have been proposed. Rosen-
Zvi et al. [2008] and Prosperi et al. [2010] use the
EuResist dataset1 to train a system combining 3 pre-
diction engines. Each of these engines applies logistic
regression on a set of clinical and demographic fea-
tures to predict the probability of success for a given
treatment. A study by Zazzi et al. [2011] shows that
this system is better at predicting therapy outcome
than human HIV experts. After random forests were

†Author is currently with Facebook Inc.
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shown to outperform SVM and artificial neural net-
works in Wang et al. [2009], Revell et al. [2014] used
the HIV-RDI dataset2 to train random forest using
clinical features to predict therapy outcome. They
showed that prediction accuracy is not harmed when
genotype information is not available. A similar result
was published by Prosperi et al. [2010].

While these systems are successful in optimizing ther-
apy outcome in a range of several weeks (8-24 weeks),
their performance significantly deteriorates when pre-
dicting therapy outcome in a longer range (48 weeks).
Further, these systems do not consider the effect of
the selected therapy on the evolution of future drug
resistance and may recommend therapies that are sub-
optimal in a longer term. In a recent study, Prosperi
et al. [2016] study therapy time to failure. Aiming to
optimize treatments outcome in the long term, in this
paper we suggest a novel generative model for drug
resistance evolution.

With the increasing availability of electronic health
records (EHR), graphical models have been suggested
to model disease progression: Krishnan et el. [2016]
model disease progression under therapy using an HMM
(Figure 1a). The hidden states in this HMM correspond
to the patient’s health status and the observations are
clinical measurements included in the EHR. Patient’s
health is affected by the known therapy the patient
receives, whose effect is noticeable after some period of
time. El-Hay et al. [2014] propose structured propor-
tional jump process for non-homogenous data, in which
the model factorizes into an element that depends on
time and an element that depends on system configu-
ration. They apply their model to diabetes and HIV
data. Arora and Dixit [2009] use a HMM to model a
certain aspect of HIV disease progression. Specifically,
they model the evolution of drug resistance against a
single specific drug.

We follow a similar approach and model drug resis-
tance evolution in HIV patients using an HMM. Unlike
Arora and Dixit [2009], we consider CART therapies
consisting of multiple drugs. Using a standard HMM to
model resistance against multiple drugs would require
an exponentially large state space to represent all the
combinations of possible virus resistance against each
one of these drugs. Further, as therapy may be altered
over time, such an HMM would need to represent the
possible virus resistance against each one of the drugs in
the arsenal. Instead of using a standard HMM, we use
a factorial HMM Ghahramani et al. [1997] consisting of
multiple chains interconnected through the observation
(Figure 1b). In our case, each chain corresponds to a
possible resistance with respect to a specific drug and

2https://www.hivrdi.org

its evolution over time, and the observation connecting
the chains is the therapy outcome. Using this factorized
representation, we avoid the exponential state space
representation. The main contributions of this paper
are: (1) A novel graphical model for modeling disease
progression under combined drug therapy. Specifically,
we apply this model to the evolution of drug resistance
in HIV patients taking CART (therapy) and model
patient’s adherence to the therapy. (2) We use this
graphical model to recommend a series of treatments
that are effective over the long-term. (3) A novel col-
lapsed Gibbs Sampling algorithm for Factorial HMM in
general and for the suggested model specifically, differ-
ent from the previously suggested approximate learning
approaches including Gibbs sampling (non-collapsed).

2 FResist: A Generative Model for
Drug Resistance Evolution

HIV is typically treated with combined antiretroviral
therapy (CART): a combination of multiple (usually
2-3) compounds given in a single pill that needs to be
taken daily by the patient. If taken properly, and if the
virus is sensitive to at least one of the compounds in the
CART, the therapy may succeed and prevent the virus
from multiplying (but not eradicate it from reservoirs).
If the virus is resistant to all the compounds in the
CART, the therapy is expected to fail.

We suggest a novel generative model for the evolution of
HIV drug resistance under CART. This model, which
we call FResist, is a special case of factorial HMM
where each of its K chains represents the sensitivity or
resistance of the virus to a specific compound k and its
possible evolution. We first describe the components
of a single chain and the relation between them. Then
we describe the interchain relation to the treatment
outcome and provide a full generative process. In
Section 2.1 we extend the model to account for patient
adherence.

HIV acquires drug resistance through mutations. When
the virus replicates, mutations are randomly created.
When no treatment is taken by the patient, the wild
type, which is advantageous to other mutations, out-
grows and dominates other mutants. But in the pres-
ence of drugs, the wild type is suppressed and drug
resistant mutations prevail Clavel and Hance [2004].
Once drug resistant mutants are present in a significant
amount in the blood stream, they may form latent reser-
voirs - collections of immune cells infected by the virus.
These latent reservoirs are not affected by anti-HIV
drugs as these only target the virus replication process
Pierson et al. [2000]. Once drug resistant mutants are
present in the reservoirs, this may be viewed as acquisi-
tion of permanent resistance. We begin with a detailed
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Figure 1: a. Markov model of a patient under therapy. The therapy affects the patient’s health after a period of
time; this effect may be observed through clinical measurements. b. Factorial HMM Ghahramani et al. [1997]. c.
Factorial HMM in plates notation.

description of this process for a single patient, omitting
the patient specific index for simplicity of notation. We
describe how mutations may be created, how resistance
may be acquired, the relation to the therapy outcome
and the transition to time t+ 1. Then we describe the
entire generative process.

Focusing on a single chain k, let dt,k be a binary variable
denoting whether drug k was taken at time t and let
Ot be the multi-drug treatment outcome (Ot = 1 for
a successful treatment). Let mt,k be a binary variable
representing the existence of mutations resistant to
drug k in the serum, and let Rt,k be a binary variable
representing whether permanent resistance to drug k
already exists (through viral reservoirs) at time t. If
permanent resistance was already acquired at time t
(i.e. Rt,k = 1), then the drug resistant strain may also
be found in the serum: mt,k = 1. Otherwise, when
Rt,k = 0, when drug k is taken (dt,k = 1), new drug
resistant mutations may appear with probability pMk .
If the drug is not taken at time t, no such mutations
will prevail. Equation 1 summarizes this relation:

Pr(mt,k = 1|Rt,k, dt,k) =

 1 if Rt,k = 1
pMk if Rt,k = 0, dt,k = 1
0 otherwise

(1)

When drug resistant mutations appear in the serum
(mt = 1) and are not suppressed (Ot = 0), these may
form reservoirs, and the virus will consequently acquire
permanent resistance to drug k (Rt+1,k = 1). We de-
note the probability for this event by pC . There are
two conditions for this situation: (1) Mutations resis-
tant to drug k have emerged, and (2) The treatment
fails, i.e., no other drug taken at time t is successful
in suppressing the virus. It is also possible, that viral
reservoirs resistant to drug k had already existed at
time t and will be preserved at time t + 1. Finally,
there is also a low probability for a new infection by
a strain resistant to drug k between time t and t+ 1
leading to the creation of a new viral reservoir. We

denote the probability for this event by pI . In practice,
we assume pC = 1− ε and pI = ε for a small fixed ε.

Pr(Rt+1,k = 1|Rt,k,mt,k, Ot) =


1− ε if Rt,k = 1
1− ε if Rt,k = 0,

mt,k = 1,
Ot = 0

ε otherwise
(2)

We place a prior pR0

k = Pr(R1,k = 1) on resistance
that had already been acquired by the patient before
the first recorded treatment. Such resistance may be
acquired due to past treatments missing from our data
before t = 1, or due to an initial infection by a drug
resistant strain Ocfemia et al. [2015], Van de Vijver
et al. [2006].

In combined antiretroviral therapy, the therapy is ex-
pected to succeed if the virus is sensitive to at least one
of the compounds in it, for at least one k, mt,k = 0. To
account for deviations from this model and since medi-
cal records are prone to errors, we model the observed
outcome as a noisy version of this expected outcome:
Let OE

t be the expected therapy outcome and let Ot be
the therapy outcome observed in the EHR data, then

OE
t =

∨
{k:dt,k=1}

¬mt,k

Pr(Ot = OE
t |~mt, ~dt) = 1− pN (3)

At any given time t, the observed treatment outcome,
Ot, depends only on a small number of variables mt,k

(typically 2−3) associated with the drugs in the CART.

The generative process is as follows:

1. For all drug compounds k ∈ 1, . . . ,K

(a) draw mutation probability pMk ∼ Beta(β)
(b) draw prior resistance probability pR0

k ∼
Beta(γ)

2. draw outcome noise probability pN ∼ Beta(η)
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3. For all patients i=1,. . . ,N

(a) for t=1,. . . ,T
i. for all drugs k=1,..,K
A. if t = 1, draw Ri,1,k ∼

pR0

k , else draw Ri,t,k ∼
Pr(Ri,t,k|Ri,t−1,k, Oi,t−1,mi,t−1,k)

B. draw mi,t,k conditioned on Ri,t,k, di,t,k
ii. draw treatment outcome Ot conditioned

on ~mi,t, ~di,t

where N is the number of patients and β, γ, and η are
Beta priors that we treat as hyper-parameters of the
model. This model is depicted in Figure 2(b).

2.1 Patient Adherence

The generative process in Section 2 assumes full knowl-
edge of the drugs taken by the patient, i.e. that patients
take drugs as prescribed. However, in real life, patients
often fail to adhere to the prescribed drug regimen
Kim et al. [2014], Glass et al. [2006]. Therefore, when
a therapy fails, there is now uncertainty if this is due
to drug resistance or due to lack of adherence.

We extend the model described in the previous section
to account for patient adherence: Let ai,t be a binary
variable denoting whether patient i has taken the pre-
scribed drugs at time t, and let pAi = Pr(ai,t = 1)
be the patient specific adherence probability. Since
modern CART therapies typically use a single pill that
contains all therapy drugs, all drugs can either be
taken or not at a specific time t, and a single adherence
variable ai,t for all drugs is sufficient. We extend the
generative process to include adherence by adding the
following steps as a prior process before the generative
process described in Section 2:

1. For all patients i ∈ 1, . . . , N

(a) draw pAi ∼ Beta(α)
(b) for t=1,. . . ,T

i. draw ai,t ∼ pAi
ii. set di,t,k = ai,t ∧ si,t,k for all k = 1 . . .K

where si,t,k is a binary variable indicating whether
drug k was prescribed to patient i under the therapy
at time t and α is a Beta hyper-parameter. Note
that these additional steps only set di,t,k to the drugs
taken in practice by patient i at time t which are
now unobserved. Once these drugs have been set, the
generative process proceeds as before. This extended
model is depicted in Figure 2(c). This extension also
modifies the factorial structure of the chain by adding
a new interchain dependency at each time point, as the
adherence ai,t affects all di,t,k for all therapy drugs (for
which si,t,k = 1).

2.2 Related Models

FResist is closely related to Factorial HMM Ghahra-
mani et al. [1997], with the addition of observed treat-
ment, and an effect of the observed therapy outcome
at time t on the hidden states at time t+ 1. FResist
specifies a structure on the hidden states of each one
of the chains induced by the relations between R and
m. Further, since CARTs consist of only 2-3 drugs,
the observation in FResist at each time (therapy out-
come) depends on only 2-3 chains. The two models
are depicted in figures 1(c) and 2(b). Modeling patient
adherence adds a dependency between the chains, this
time through a latent variable (Figure 2(c)).

Coupled HMMs Brand et al. [1997] are a related class
of models where the chains interact during their pro-
gression. However, each chain has its own observations:
st,i, the state of chain i at time t depends on the
states of other chains, but the observation ot,i depends
only on st,i. Pan et al. [2012] model influence by
human interaction in a social network using coupled
HMMs and employ variational EM algorithm for ap-
proximate learning. Dong et al [2012] and Fan et al.
[2015] model disease infection in a social network using
Graph-coupled HMM, a special case of coupled HHM.
They take advantage of a sparse network structure to
derive a Gibbs Sampling algorithm for a disease spread
model. Dong et al [2016] developed variational infer-
ence methods for a class of coupled HMM models for
spread of an epidemic.

Our work differs from those mentioned above in the
structure of the model, the algorithm we use for ap-
proximate learning and the application.

3 Approximate Learning

Similar to Factorial HMM and coupled HMM, exact
learning in FResist is intractable. Various approaches
have been suggested for approximate learning in these
models, including EM and variational EM Ghahramani
et al. [1997], Pan et al. [2012], Dong [2016], EM with
Gibbs sampling Ghahramani et al. [1997], Fan et al.
[2015] and Gibbs Sampling for graphs with sparse con-
nectivity between the chains Dong et al. [2012].

In this paper we suggest a novel Collapsed Gibbs Sam-
pling algorithm for factorial HMMs in general and for
FResist in particular. It differs from Gibbs sampling as
in Dong et al. [2012] by integrating out the continuous
variables rather than sampling them. This approach is
commonly applied in topic models such as LDA Grif-
fiths and Steyvers [2004] and in the context of a single
HMM Griffiths et al. [2004]. We derived the sampling
equations for the general case of factorial HMM and
we provide them in Appendix A. Here we describe the
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Figure 2: a. Multi-drug therapy model. Notice the addition of drugs (d) and the effect of treatment outcome
on the patients health. b. The suggested model, FResist, is a special case of the model in (a). c. FResist with
patient adherence (a).

sampling equations for the special case of FResist.

3.1 Collapsed Gibbs Sampling for FResist

In collapsed Gibbs Sampling Liu [1994], the discrete
variables are sampled while the continuous variables
are integrated out. In the case of FResist, the discrete
variables need to be sampled are m and R, and in the
adherence model of Section 2.1 also a 3. The continuous
variables that integrated out are pM , pR0, pN and in
the case of adherence also pa. We assume that the Beta
priors are known and set ε = 0.014.

We iterate over all patients and their treatments t, and
at each iteration sample ~Rt, ~mt, at of a specific patient
conditioned on all other variables (omitting again the
patient specific subscripts for ease of notation). Due to
the determinstic relations between ~Rt, ~mt, at in some
cases, (e.g. mt,k = 1 and Rt,k = 0 implies at,k = 1)
we sample these 2K + 1 variables together as a block.
We use the factorization of the joint posterior distribu-
tion given in equation 4 to sample them efficiently (in
time linear, rather than exponential, in the number of
prescribed drugs). ~Rt, ~mt, at are sampled conditioned
on all other variables, observations and hyper parame-
ters. To simplify and shorten the equations below, we
only explicitly write the variables on which ~Rt, ~mt, at
depend (and omit all others. We also omit the hyper
parameters and observed prescriptions on which we
always condition).

Pr( ~Rt, ~mt, at|~Rt−1, ~Rt+1, Ot−1, Ot) (4)

= Pr( ~Rt|~mt, at, ~Rt−1, ~Rt+1, Ot−1)

Pr( ~mt|~Rt−1, ~Rt+1, at, Ot−1, Ot, )

Pr(at|Ot−1, Ot, ~Rt−1, ~Rt+1)

3dt,k is simply computed from at and the observed st,d;
formally at and ~dt are block sampled together.

4ε (or pC and pI) could be integrated out exactly like
the other probabilities in the model. In practice, setting
ε = 0.01 proved sufficient and simplifies the presentation of
the sampling algorithm.

The factorization given by equation 4 implies that we
first sample at averaging over the 2K variables ~Rt, ~at,
then sample ~mt conditioned on the already sampled
at and average over the ~Rt, and finally sample ~Rt

conditioned on at, ~mt.

We begin with sampling ~Rt: The individual ele-
ments Rt,k of ~Rt are conditionally independent given
at,mt, Rt+1, Rt−1, Ot−1, Ot and we can sample them
individually:

Pr(Rt,k|Rt−1,k, Rt+1,k,mt, at, Ot−1, Ot) (5)
∝ Pr(Rt+1|Rt,k, Ot,mt,k)

Pr(mt,k|Rt,k, at)

Pr(Rt,k|Rt−1,k, Ot−1)

where the terms in equation 5 can be computed using
equations 2, and 11.

For sampling ~mt, we use the factorization Pr( ~mt| . . .) =∏
k Pr(mt,k|mt,k′<k, . . .) to individually sample mt,k

conditioned on mt,k′ for all k′ < k and averaged over
mt,k′ for all k′ > k as described in equations 6 - 7.

Pr(mt,k|~Rt−1, ~Rt+1, at, Ot, Ot−1,mt,k′<k) (6)

∝
∑
Rt,k

Pr(Rt+1,k|mt, Ot, Rt,k)

Pr(Ot|mt,k′≤k, ~Rt−1,k′>k, ~Rt+1,k′>k)

Pr(mt,k|at, Rt,k) Pr(Rt,k|Rt−1,k, Ot−1)

Computing Pr(Ot|mt,k, ~Rt−1, ~Rt+1,mt,k′<k) requires
averaging over all configurations of mt,k′>k (an expo-
nentially large number). We show in equation 7 how
to compute it in linear time. The other factors from
equation 6 are computed using equations 2 and 11.

Pr(Ot|mt,k′≤k, Ot−1, ~Rt−1,k′>k, ~Rt+1,k′>k) (7)

∝
∑
o=0,1

∑
m∈Mo

[
Pr(Ot|OE( ~mt = o))

Pr(~mt,k′>k|at, Rt−1,k′>k, Ot−1) Pr(Rt+1,k′>k|Ot,mt,k′)

]
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where M1 = {m : OE(m) = 1} and M0 = {m :
OE(m) = 0} are the sets of all configurations of ~m
that yield the specific expected outcome OE . The sum
over M0 includes the single term where all mk = 1 (for
drugs prescribed at time t). The other sum, over M1

includes all other configurations. We compute it in
time linear in the number of drugs in the therapy using
the factoriaztion:

Pr(~mt|~Rt−1, at) Pr(~Rt+1|Ot, ~mt, at) = (8)∏
k

[∑
Rk

Pr(mt,k|Rt,k, at) Pr(Rt+1,k|Ot,mt,k, Rt,k)

Pr(Rt,k|Rt−1,k, Ot−1)

]

Similarly, at is sampled while averaging over ~mt, ~Rt in
linear time:

Pr(at|Ot−1, Ot, ~Rt−1, ~Rt+1) (9)

∝ Pr(at) Pr(Ot|at, ~Rt−1, ~Rt+1) (10)

where Pr(Ot|at, ~Rt−1, ~Rt+1) is computed using equa-
tion 7 setting k′ = 0 (i.e. averaging over all mk, Rk).

The other probabilities required for sampling according
to equations 5-7 are computed from counts of sampled
variables:

Pr(mt,k = m|Rt,k = 0, at = 1) =
CM

k,m + β∑
m′ CM

k,m′ + 2β
(11)

Pr(Ot|~mt) =
COt=OE

t (m) + η∑
n Cn + 2η

(12)

Pr(R1,k = r) =
CR0

k,r + γ∑
r′ C

R0

k,r′ + 2γ
(13)

Pr(ai,t = a) =
CA

i,a + α∑
a′ CA

i,a′ + 2α
(14)

Where CM
k,m, C

R0

k,r, C
A
i,a are the counts of the sam-

pled variables m·,k, ni,t, R0,k, ai respectively excluding
~mi,t, ~R0,i,k, ai,t, and Cn counts the number of times
Ot is equal or different from OE

t (computed from the
sampled m’s).

To summarize, despite the coupling of the chains
through patient adherence and therapy outcome, we
have derived a sampling algorithm linear in the num-
ber of variables to be sampled. This is in contrast to
sampling in a general factorial HMM (see appendix A
in the supplementary material for details).

4 Planning Long-Term Therapies

Having modeled drug resistance evolution using FResist
and having learned the model dynamics, we proceed

to using the model for therapy design. Our goal is
to plan an entire series of treatments a1, . . . , aT , pos-
sibly different from each other, that would optimize
patient’s health over the entire time period (in contrast
to optimizing only for the first treatments). Due to
the Markovian structure of FResist, optimizing such
a sequence of treatments is a finite Markov Decision
Process (MDP) that can be solved using dynamic pro-
gramming to find a policy that would maximize the
total cumulative reward5. Let qt = (m,R, a)t the state
at time t, at ∈ A the action (a combination of drugs)
we take at time t and Ot(qt, at) the outcome of the
treatment at if the patient is at state qt at time t.
We define the immediate reward of a treatment at to
be 1 if the treatment is successful and 0 otherwise,
and the expected reward of a state qt and action at is
E(Ot′ |qt, at, . . . , aT ). We define the value of state qt at
time t to be the expected outcome of the best treat-
ment (optimized over all possible actions): Our goal is
to find the sequence of actions (therapies) yielding an
overall maximal reward (maximal cumulative patient
health along the entire time period).

Vt(qt) = max
at,...,aT

T∑
t′=t

E(Ot′ |qt, at, . . . , aT ) (15)

With this definition, it follows that:

VT (qT ) = max
a∈A

E(OT (qT , a)) (16)

Vt−1(qt−1) = max
a

E(Ot−1(qt−1, a) (17)

+
∑
qt

p(qt|qt−1, a)V (qt))

Equations 16-17 can be solved by dynamic program-
ming with a single backward pass.

5 Experiments

We empirically evaluate and analyse the performance
of FResist using synthetic and real data sets. We use
predictive log likelihood on a previously unseen test set
as our means of validating the model and comparing
to other methods. We compare it to logistic regression
and random forest as these are the methods currently
being used in state of the art decision support systems
for selecting a therapy for HIV patients Revell et al.
[2016, 2014], Rosen-Zvi et al. [2008]. In a previous
work, Wang et al. [2009] compared random forest to
artificial neural networks and SVM with RBF kernel
and concluded that random forest outperformed the
other methods. The systems in Revell et al. [2016,

5For optimizing the total cumulative reward indefinitely,
one can define a decay factor and use value iteration to
solve the optimization problem.
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2014], Rosen-Zvi et al. [2008] use a diverse range of fea-
tures including demographic features and have shown
them to be very informative for predicting treatment
outcome. However, in the comparisons we include in
this paper we use only clinical data in the form of
therapy and its outcome, as the focus of this paper is
on the drug resistance evolution. As a part of decision
support system, the method suggested in this paper
can be used as an additional feature to logistic regres-
sion or random forest similar to the use of a Bayesian
network in Rosen-Zvi et al. [2008]. Following Rosen-
Zvi et al. [2008], the clinical features that we used for
both logistic regression and random forest were: drugs
of the current therapy, drugs previously taken by the
patient, number of previous treatments, outcome of
last treatment.

In the first experiment, we generated a family of
datasets with varying outcome noise levels (pN from
equation 3) in the range 0− 0.2. There were 1000 pa-
tients in all the datasets, all of them with full adherence
(ai = 1). Each patient received two randomly selected
combination therapies, each of which was a series of 10
continuous treatments, to a total of 20 treatments per
patient. Each therapy was a random combination of 3
antiretroviral compounds out of a total of 5 available
compounds to choose from (yielding

(
5
3

)
possible ther-

apies). We split each of these datasets to a train set
with 500 patients and a test set with the remaining 500.
Figure 3(a) shows predictive log likelihood of the three
methods as a function of outcome noise. As expected,
FResist outperforms the other methods on data gen-
erated according to the model. It is interesting to see
that as we add noise to the data, the performance of all
methods dropped drastically, well beyond the decrease
in likelihood expected only due to introducing noisy
outcomes in the test set (where random values need
to be predicted). The reason for this decrease is that
observing a noisy therapy failure, even if just one, is a
strong indication that persistent resistance has evolved.

In the second experiment, we tested the effect of patient
adherence on predicting therapy outcome. Similar to
the first experiment, we generated a family of datasets
with the same characteristics, but without any outcome
noise (pN = 0) and we varied the adherence level ai
between 1 and 0.8. Figure 3(b) shows predictive log like-
lihood of the three methods as a function of patient’s
adherence. Again, FResist outperforms the other two
methods (the performance of FResist decreased com-
pared to the previous experiment as adherence was
sampled rather than set). Once again, we see a signif-
icant drop in performance for all methods as patient
adherence decreases. The reason is the increased uncer-
tainty when observing a treatment failure regarding its
cause - whether it is due to drug resistance or because

the patient simply did not take the prescribed drugs.

The EuResist dataset6 is an integrated database con-
taining clinical and demographic data of more than
65000 patients in Europe. From this dataset, we ex-
tracted all patients with at least 30 viral load mea-
surements. From these, we selected a random subset
of 1000 patients and split them to train and test sets
of 500 each. The dataset that we extracted included
clinical samples taken between 1997 and 2013. Similar
to Rosen-Zvi et al. [2008] and others, we associated a
clinical sample with a therapy if the sample was taken
at least 8 weeks after the therapy started and before the
therapy was stopped. We used viral load as the therapy
outcome. A treatment was considered successful when
the viral load was below 500 copies/mL and failure
otherwise (see additional discussion below). Figure 4
compares the predictive log likelihood of FResist, logis-
tic regression and random forest on the 500 patients
from the EuResist test set. FResist outperforms the
other two methods. To better understand FResist’s
performance we inspected the samples drawn by it from
the posterior distribution. For example, estimating an
average patient adherence pA by averaging all variables
ap,t, the value learned by FResist is 0.87, which sug-
gests that modeling patient adherence is important. To
verify that, we compared the performance of FResist
with a range of pre-set values for patient adherence,
and we indeed see its importance as shown in Figure
6 (in this experiment, each adherence value was set
to all patients, which performs worse than an individ-
ually learned value on the train set, but generalizes
better to the test set in this setting where adherence
is not individually fit to the patients in the test set).
Another interesting observation is the importance of
modeling the prior resistance (Figure 5): In our dataset
(train and test combined), 473 out of 1000 of the first
treatments failed.

It is important to note some limitations of the above
empirical validation: The EuResist data is retrospec-
tive (in contrast to data from clinical trials): Drugs
were selected by physicians who expected them to be
effective for a specific patient. This means that a ther-
apy prescribed for patient i is more likely to succeed for
i than for others. However, the above methods ignore
this bias and assume that apriori (before observing any
treatment outcome) there is no difference between the
patients with respect to therapy chance of success. We
did not adjust for this bias in our study and this is a
subject for future work.

Another limitation of the above analysis is the signifi-
cant progress made in HIV research and treatment dur-
ing the years in which the EuResist data has been col-

6https://www.euresist.org
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Figure 3: a. Test log likelihood of FResist (black), logistic regression (LR, red) and random forest (RF, green)
as a function of the noise added to synthetic data. b. Test log likelihood as a function of patient adherence
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Figure 4: Log likelihood (test) of FResist, logistic
regression and random forest on the EuResist dataset.
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Figure 5: EuResist: Modeling prior drug resistance
greatly outperforms assuming full initial drug sensitiv-
ity.
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Figure 6: Patient Adherence: Optimal value is smaller
than 1.

lected: availability of drugs and guidelines has changed
with the introduction of new drugs and new drug classes.
Moreover, the ability to detect HIV in the blood has
improved significantly. While in the past viral load
below 500 copies/mL could not be detected, it is now
possible to detect the virus even when its level in the
blood is below 50 copies/mL. To avoid an inconsistent
definition of treatment success in different years, we
chose 500 as our threshold for therapy success (for
untreated patients, viral load is in the range of tens -
hundreds of thousands).

6 Summary

In this paper we presented FResist, a novel probabilis-
tic graphical model for the evolution of drug resistance
in HIV. The model derives from Factorial HMM and
specifies relations between therapy drugs, mutations,
persistent resistance and therapy outcome. It further
extends Factorial HMMs by modeling patient adher-
ence. Approximate learning in FResist is done using
a novel Collapsed Gibbs Sampling algorithm that we
developed, new also in the context of Factorial HMM.

Compared to state of the art decision support systems
for HIV therapy selection, FResist more accurately
predicts therapy outcome, and gains insight regarding
patient adherence to the therapy. Further, it plans
a series of treatments optimizing patient’s health in
the long term, while existing systems provide greedy
therapy recommendations optimized for the success of
a single treatment at a time.

While motivated by drug resistance in HIV, it would
be interesting to apply FResist to other diseases with
emerging drug resistance and multi-drug therapies such
as certain types of cancer. Other directions for future
research include adjusting for bias in the clinical data
used for training, taking possible side effects into ac-
count when planning a series of treatment or consider-
ing drug cross resistance.
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