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A Families of Sets and Functions

Lemma A.1 (Proof of Proposition 2.1). C is a universal Donsker class if X is Rd or Œ0; 1�d .

Proof. We apply Corollary 6.20 of Dudley (2014).

(i) The set � has finite VC dimension bounded by 2d + 1. PP Consider arbitrary 2d + 1 points x1; x2; : : : 2 X. Now,
there is at least one element xi which attains the maximum in dimension j , 1 � j � d , i.e. xij D maxl�d xlj . Select
for every dimension such an element and, in the same way, select d minimizers. Denote the joint set of these points with
B . Then every element from � that contains B also contains x1; : : : ; x2dC1 and there is no set A 2 � which fulfills
A \ fxi W 1 � i � 2d C 1g D B . QQQQ

(ii) The set X is a Borel set. Hence �X 2 ˇ2.X; P / for every probability measure P on the Borel sets and �X is an
envelope function of C .

(iii) C is image admissible Suslin. PP Let Y D X� Œ0;1Œ equipped with the natural topology, which is the one induced by
the Euclidean metric, and the corresponding Borel � -algebra. Y is a Polish space since it is a closed subset of the complete
space RdC1.

Consider now the map T .y; h/ D �.Œy; y C h1�/ if Œy; y C h1� 2 � and �.;/ otherwise. T maps Y onto C . We need to
verify that .y; h; x/ 7! .T .y; h//.x/ is jointly measurable, that is for any Borel subset A of R

B D f.y; h; x/ W x; y 2 X; h 2 Œ0;1Œ; .T .y; h//.x/ 2 Ag

must be in the product � -algebra. T .y; h/.x/ attains either the value 0 or 1 hence there are four events we need to consider.
First A D ; which implies B D ; and f0; 1g � A which implies B D Y are always in the � -algebra.

So consider now a set A such that 1 2 A but not 0, then

B D f.y; h; x/ W x; y 2 X; h 2 Œ0;1Œ; �.Œy; yC h1�/.x/ D 1g
D f.y; h; x/ W x; y 2 X; h 2 Œ0;1Œ; x 2 Œy; yC h1�g:

This set is closed in the natural topology of X � Œ0;1Œ�X since, if .y; h; x/ is not in B then with � < d.x; Œy; y C h1�/,
where d is the Euclidean metric, we have that the open ball

f.u; �; �/ W d.y; u/; d.h; �/; d.x; �/ < �=3; u; � 2 X; � 2 Œ0;1Œg � Y �XnB

contains .y; h; x/. And, since,

.Y �X/nB D f.y; h; x/ W x; y 2 X; h 2 Œ0;1Œ; .T .y; h//.x/ D 0g

the latter set is open. Hence, both sets are in the Borel algebra B.Y �X/.

It remains to show that the product algebra equals the Borel algebra, that is,

B.Y /˝B.X/ D B.Y �X/:

This follows from Fremlin (2003)[4A3D(ci)] if Y � X is a hereditary Lindelöf space. Though, every second countable
space like Y �X is hereditary Lindelöf and the result follows. QQQQ

Lemma A.2 (Proof of Lemma 2.3). Let X be any set and G be a � -algebra of subsets of X. G is a VC-class if, and only
if, G is a finite family of sets.

Proof. Any finite collection of sets is a VC-class. For the other direction assume G is infinite.

(i) There exists a countably infinite sequence of disjoint sets in G . PP We prove by induction that for any n 2 N there
exist n disjoint sets in G . The induction hypothesis is trivially fulfilled for n D 1. For the induction step let us assume that
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A1; : : : ; An 2 G are not empty and mutually disjoint. There exists an elementB 2 G that is not contained in �.A1; : : : ; An/
since otherwise G D �.A1; : : : ; An/ and G would be finite. Take such an element B . If Bn

S
i�nAn 2 G is not empty

then add this to the sequence as AnC1. AnC1 is then obviously disjoint from all A1; : : : ; An. If Bn
S
i�nAn D ; then

B ¨
S
i�nAn. Furthermore, there is some i � n such that AinB 6D ; 6D Ai \ B , because otherwise B would be a union

of a subset of A1; : : : ; An. Now, remove Ai from the sequence and add AinB and Ai \ B to the sequence. This way we
gain nC1 disjoint elements that are all contained in G . This implies now directly that there is a countably infinite sequence
of disjoint sets contained in G . QQQQ

(ii) By .i/ we can choose a sequence fAngn2N of disjoint and non-empty subsets of G . By countable choice we can
select a sequence fxngn2N such that xn 2 An. Consider any k 2 N, points x1; : : : ; xk and any subset of these, say
fxni W i � l; 0 � n1 < n2 : : : < nl � kg for l � k and consider the corresponding sequence of sets fAni W i � lg then
fxni W i � lg D fxngn�k \

S
fAni W i � lg and the set fxigi�k is shattered. Since this argument applies to any k 2 N we

know that G is not a VC-class.

Lemma A.3 (Proof of Lemma 5). Let .�;A; P / be a probability space and � � A a disjoint family of sets such that for
each A 2 � there exists fAngn2N in � with �nA D

S
n2NAn and ; 2 � . For any measure Q for which there exists a

constant c > 0 such that for all A 2 � , jQ.A/ � P.A/j � cP.A/, we have that supA2�.�/ jQ.A/ � P.A/j=P.A/ � c.

Proof. We apply the monotone class theorem. A;B 2 � then either A \ B D ; 2 � or A D B 2 � . Define

D WD fA W A D
[

E;E � � a countable family; jQ.A/ � P.A/j � cP.A/g:

D is a Dynkin class: (1) ; 2 D ; (2) A 2 D then by assumption�nA D
S
n2NAn for some elements An 2 � and because

the An are disjoint we have

jQ.�nA/ � P.�nA/j �
X
n2N

jQ.An/ � P.An/j � c
X
n2N

P.An/ D cP.�nA/

and �nA 2 D . (3) If fAngn2N is a disjoint sequence in D , thenˇ̌̌
Q
�[
n2N

An

�
� P

�[
n2N

An

�ˇ̌̌
�

X
n2N

jQ.An/ � P.An/j � cP
�[
n2N

An

�
:

Since each An is a countable family of elements on � we know that
S
n2NAn is also a countable family of elements of �

and therefore
S
n2NAn 2 D . The result follows now from the monotone class theorem since � � D .

Corollary A.1 (Proof of Proposition 2.1). Let .Œ0; 1�d ;A; P / be a probability space such that P has a density p that
is lower bounded by b > 0. Let f�ngn�1 be a non-decreasing sequence in NC such that limn!1 �n D 1 then
k�n.A/k�.��n / 2 O

�
P .
p

log.n/2d�n=2/. Furthermore, for any Borel setA and � > 0 there exists an n 2 N andB 2 �.��n/
such that P.A�B/ � �.

Proof. The universal approximation property of the family of sets � is well known. We provide here for completeness a
simple proof. The set �.�n/ contains many intervals. In particular, to every element x0 in fx W xi 2 ln; i � ng, where
ln D f

P�n
iD1 di=2

i W di 2 f0; 1gg, and any element x00 in fx W xi 2 rn; i � ng, where rn D f1 �
P�n
iD1 di=2

i W di 2 f0; 1gg,
corresponds an interval I D Œx0; x00/ 2 �.�n/. Both,

S
n�1 ln and

S
n�1 rn lie dense in Œ0; 1�. This implies that any half-

open interval Œa;b/, 0 � ai < bi � 1 for all i � d , can be approximated arbitrary well in Lebesgue measure, i.e. for � > 0
and with � denoting Lebesgue-measure, there exists an n 2 N and an I 2 �.�n/ such that Œa;b/ � I and �.InŒa;b// � �.
Consider now any Borel subset A of Œ0; 1�d and � > 0. Let fIngn�1 be a sequence of half-open intervals in Œ0; 1�d such that
A �

S
n�1 In and �.

S
n�1 In/ � �.A/C �=4. Furthermore, select for each In an half-open interval I0n 2

S
m�1 �.�m/

such that In � I0n and �.I0nnIn/ � �=2nC2 then A �
S
n�1 I0n and

�.
[
n�1

I0n/ � �.
[
n�1

I0nn
[
n�1

In/C �.
[
n�1

In/ � �.A/C �=4C �.
[
n�1

.I0nnIn// � �.A/C �=2:

Choose an N such that �.
S
n�N I0n/ � �=2 and define B D

S
n<N I0n 2

S
m�1 �.�m/. Then �.BnA/ �

�.
S
n�1 I0nnA/ � �=2 and �.AnB/ � �.

S
n�1 I0nnB/ � �=2. Hence, �.A�B/ � �. Since P is absolutely continuous

with respect to Lebesgue-measure we can choose for every � > 0 a ı > 0 such that �.A�B/ � ı implies P.A�B/ � �
and the second part of the proposition follows.
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B Conditioning

Proposition B.1 (Proof of Proposition 3.1). If � � BS is a finite set with infB2� P.B/ > 0, F is a subset of ˇ1.P /

uniformly bounded in supremum norm and F� is a P�Donsker class then

sup
f 2F

sup
B2�

jEn .f jB/ �E .f jB/j 2 O
�
P .n

�1=2/:

Furthermore, if � 0 � BS, is such that C 0
�

is a P -Donsker class then

sup
A2� 0

sup
B2�

jPn.AjB/ � P.AjB/j 2 O
�
P .n

�1=2/:

Proof. For a finite family of measurable sets � the corresponding set of indicator functions C is always a P -Donsker class
since for a single element the standard CLT provides the necessary statement and finite unions of P -Donsker classes are
again P -Donsker due to (Dudley, 2014)[Thm 4.34]. Hence,

sup
f 2F ;B2�

ˇ̌̌̌Z
B

f dPn �

Z
B

f dP

ˇ̌̌̌
D sup
f 2F ;B2�

ˇ̌̌̌Z
f � �.B/ dPn �

Z
f � �.B/ dP

ˇ̌̌̌
D O�P .n

�1=2/

and
sup
B2�

jPn.B/ � P.B/j D O
�
P .n

�1=2/:

By definition this implies that for � > 0 there exists an M1 such that Pr�fsupB2� jP.B/ � Pn.B/j > M1n
�1=2g < �=2

for all n � 1. Let N WD d.2M1= infB2� P.B//
2
e. Because infB2� P.B/ > 0, for all n � N we have for any A 2 � that

fPn.A/ < inf
B2�

P.B/=2g � fPn.A/ < P.A/=2g D fP.A/ � Pn.A/ > P.A/=2g

� f sup
B2�

jP.B/ � Pn.B/j > P.A/=2g � f sup
B2�

jP.B/ � Pn.B/j > inf
B02�

P.B 0/=2g

� f sup
B2�

jP.B/ � Pn.B/j > M1n
�1=2
g:

Similarly, there exists an M2 such that Pr�fsupf 2F ;B2�

ˇ̌R
B
f dPn �

R
B
f dP

ˇ̌
> M2n

�1=2g < �=2. The events

�n WD

�
sup
B2�

jP.B/ � Pn.B/j �M1n
�1=2

�
\

(
sup

f 2F ;B2�

ˇ̌̌̌Z
B

f dPn �

Z
B

f dP

ˇ̌̌̌
�M2n

�1=2

)
have outer probability Pr�.�n/ � 1 � � and for all n � N and B 2 � , �n � fPn.B/ � infB02� P.B

0/=2g. In the event
�n, n � N , we know that Pn.B/ > 0 and

En .f jB/ �E .f jB/ (8)

D

�Z
B

f dPn

��
Pn.B/ �

�Z
B

f dP

��
P.B/

D

�
P.B/

Z
B

f dPn � Pn.B/

Z
B

f dP

��
.Pn.B/P.B//

D

 
P.B/

�Z
B

f dPn �

Z
B

f dP

�
C .P.B/ � Pn.B//

Z
B

f dP

!�
.Pn.B/P.B//:

Therefore, for n � N in the event �n,

n1=2 sup
f 2F ;B2�

ˇ̌̌̌ �Z
B

f dPn

��
Pn.B/ �

�Z
B

f dP

��
P.B/

ˇ̌̌̌
� 2 .M2 C bM1/

ı
c2;

where b WD supx2S;f 2F jf .x/j and c WD infB2� P.B/ > 0.

For any n < N and B with Pn.B/ D 0 the estimate En .f jB/ D 0 by definition and

sup
f 2F

jEn .f jB/ �E .f jB/j D sup
f 2F

ˇ̌̌̌ �Z
B

f dP

��
P.B/

ˇ̌̌̌
� b <1:
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For any n < N with Pn.B/ > 0 we have that

n1=2 sup
f 2F ;B2�

ˇ̌̌̌ �Z
B

f dPn

��
Pn.B/ �

�Z
B

f dP

��
P.B/

ˇ̌̌̌
� 2n1=2b <1

and with the constant M WD maxf2.M2 C bM1/=c
2; 2N 1=2bg we have

Pr�f sup
f 2F

sup
B2�

jEn .f jB/ �E .f jB/j > Mn�1=2g � �:

This is sufficient to prove the first claim. The second claim follows from the first by substituting C 0 for F .

Proposition B.2 (Proof of Proposition 3.2). If � � BS, C and F� are P -Donsker classes, F is a subset of ˇ1.P /

uniformly bounded in supremum norm and P has a density which is lower bounded by a constant b > 0 then with
�n WD fC W C 2 � ; �.C / � n�˛g and ˛ 2 Œ0; 1=2/

sup
f 2F

sup
B2�n

jEn .f jB/ �E .f jB/j 2 O
�
P .n

˛�1=2/:

Furthermore, if � 0 � BS is such that C 0
�

is a P -Donsker class then

sup
A2� 0

sup
B2�n

jPn.AjB/ � P.AjB/j 2 O
�
P .n

˛�1=2/:

Proof. As in the the proof of Proposition 3.1, supf 2F ;B2�

ˇ̌R
B
f dPn �

R
B
f dP

ˇ̌
2 O�P .n

�1=2/ and
supB2� jPn.B/ � P.B/j 2 O�P .n

�1=2/. Hence, for a given � > 0 there exists a M1 such that
Pr�fsupB2� jP.B/ � Pn.B/j > M1n

�1=2g < �=2. In particular, since by assumption infB02�n P.B
0/=2 �

b infB02�n �.B
0/=2 � .b=2/n�˛ we have for N WD d.2M1=b/

1=.1=2�˛/e and all n � N;B 2 �n that

fPn.B/ < inf
B02�n

P.B 0/=2g � f sup
B2�n

jP.B/ � Pn.B/j > inf
B02�n

P.B 0/=2g

� f sup
B2�n

jP.B/ � Pn.B/j > .b=2/n
�˛
g � f sup

B2�n

jP.B/ � Pn.B/j > M1n
�1=2
g

� f sup
B2�

jP.B/ � Pn.B/j > M1n
�1=2
g:

and, since the last event has an outer probability strictly less than �=2, there exists anM2 such that for all n � N the events

�n WD

�
sup
B2�

jP.B/ � Pn.B/j �M1n
�1=2

�
\

(
sup

f 2F ;B2�

ˇ̌̌̌Z
B

f dPn �

Z
B

f dP

ˇ̌̌̌
�M2n

�1=2

)
have outer probability Pr�.�n/ � 1 � � and fPn.B/ � infB02�n P.B

0/=2g � �n for all n � N .

Using the bound (8)ˇ̌̌̌ �Z
B

f dPn

��
Pn.B/ �

�Z
B

f dP

��
P.B/

ˇ̌̌̌
�

ˇ̌̌̌�Z
B

f dPn �

Z
B

f dP

��
Pn.B/

ˇ̌̌̌
C

ˇ̌̌̌
.P.B/ � Pn.B//

Z
B

f dP

�
.Pn.B/P.B//

ˇ̌̌̌
:

Let c D supx2S supf 2F jf .x/j <1 then
ˇ̌R
B
f dP

ˇ̌
� cP.B/ and, since Pn.B/ � .b=2/n�˛ on �n, for n � N

sup
f 2F

sup
B2�n

jEn .f jB/ �E .f jB/j � .2M2=b/n
˛�1=2

C .2cM1=b/n
˛�1=2:

As in the the proof of Proposition 3.1 the errors for n < N can be bounded since infn<N infB2�n P.B/ � bN
�˛ and the

first result follows. Substituting C 0 for F yields the second claim.

Lemma B.1. If G is a � -algebra consisting of finitely many elements then there exists a unique partition PG such that
each element of G can be represented as a finite union of elements of PG .
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Proof. (i) Uniqueness. Assume there are two partitions PG and P 0
G

. There must be an element B 2 P 0
G

that is not in
P 0

G
(or vice versa) since otherwise P 0

G
D PG .This B is equal to A1 [ : : : [ An for some n 2 N and disjoint, non-empty,

elements A1; : : : ; An 2 PG . Now A1 ¨ B but A1 cannot be a finite union of elements of P 0
G

since P 0
G

is a partition.

(ii) Enumerate G as A1; : : : ; An where n is the cardinality of G . We construct a partition iterartively. I.e. we construct for
each i � n a family of sets Bi D fB1i ; : : : ; Bmi ;ig that is disjoint and such that A1; : : : Ai can be represented as unions of
the Bj;i elements. For i D 1 let B11 D A1. Now assume we have such a family of sets for i and we want to get a family
of disjoint sets for A1; : : : ; AiC1. Consider the following family of set

BiC1 D fAiC1n
[

Big [ fBnAiC1 W B 2 Big [ fAiC1 \ B W B 2 Big:

Clearly ever B 2 Bi can still be represented as a union of elements since B D .BnAiC1/ [ .B \ AiC1/. Similarly,
AiC1 D .AiC1n

S
Bi / [ .AiC1 \

S
Bi / can be represented. The family of sets is also disjoint: any element of the

form BnAiC1 is certainly disjoint from any B 0 \ AiC1 and AiC1nB 00 � AiC1n
S

Bi . Also, since the elements in
Bi are disjoint any two BnAiC1 and B 0nAiC1 will be disjoint. Finally, any AiC1 \ B is disjoint of AiC1n

S
Bi and

.AiC1 \ B/ \ .AiC1 \ B
0/ D ;. This concludes the induction.

Proposition B.3 (Proof of Proposition 3.3). If G � BS is a � -algebra consisting of finitely many sets, F is a subset of
ˇ1.P / uniformly bounded in supremum norm, FG is a P�Donsker class then

sup
f 2F

kEn .f jG / �E .f jG / kˇ1.P / 2 O
�
P .n

�1=2/:

Furthermore, if � � BS, is such that CG is a P -Donsker class then

sup
A2�

kPn .A jG / � P .A jG / kˇ1.P / 2 O
�
P .n

�1=2/:

Proof. If P.B/ D 0 for some B 2 G then
R
B
.En .f jG / � E .f jG // dP D 0. Let G 0 D fB W B 2 G ; P.B/ > 0g then

from Proposition 3.1 it follows that

sup
f 2F

sup
B2G 0

jEn .f jB/ �E .f jB/ j 2 O
�
P .n

�1=2/:

For � > 0, chooseM;N such that Fn D fsupf 2F supB2G 0 jEn .f jB/�E .f jB/ j �Mn�1=2g has probability P.Fn/ �
1 � � for all n � N . For B 2 G 0, let B1; : : : ; Bm 2 PG � G such that B D B1 [ : : : [ Bm, then P -a.s. E.f jG / DP
i�mE.f jBi / � �Bi andˇ̌Z

B

.En.f jG / �E.f jG // dP
ˇ̌
�

X
i�m

ˇ̌Z
B\Bi

.En.f jBi / �E.f jBi // dP
ˇ̌

�

X
i�m

jEn.f jBi / �E.f jBi /jP.B \ Bi / �Mn�1=2
X
i�m

P.B \ Bi /

DMn�1=2P.B/ �Mn�1=2:

Furthermore,

kEn.f jG / �E.f jG /kˇ1.P / � 2 sup
B2G

ˇ̌Z
B

En.f jG / �E.f jG / dP
ˇ̌
� 2Mn�1=2:

This implies the result. The second result follows again from the first.

Proposition B.4 (Proof of Proposition 3.4). Let .Œ0; 1�d ;B; P / be a probability space such that P has a density p that is
lower bounded by b > 0 and let f�ngn�1 be a non-decreasing sequence in NC such that

�n 2 o

�
1

3d log.2/
log
� np

log.n/

��
:

If F is a subset of ˇ1.P / uniformly bounded in supremum norm which fulfills Equation 4, then

sup
f 2F

kEn
�
f
ˇ̌
G�n

�
�E

�
f
ˇ̌
G�n

�
k1 2 O

�
P .
p

log.n/2.3=2/d�nn�1=2/:
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Furthermore, if � � BS, is such that C fulfills Equation 4 then

sup
A2�

kPn
�
A
ˇ̌
G�n

�
� P

�
A
ˇ̌
G�n

�
k1 2 O

�
P .
p

log.n/2.3=2/d�nn�1=2/:

Proof. By assumption and from Corollary 2.1 we know that

sup
f 2F

sup
B2G�n

ˇ̌Z
B

f dPn �

Z
B

fdP
ˇ̌
2 O�P .

p
log.n/2d�n=2n�1=2/;

sup
B2G�n

jPn.B/ � P.B/j 2 O
�
P .
p

log.n/2d�n=2n�1=2/:

Furthermore, infB2G�n
P.B/ � b2�d�n . By combining the technique in the proof of Proposition 3.2 with the assumption

on the rate of �n we have for any B 2 G�n thatn
Pn.B/ < inf

B02G�n

P.B 0/=2
o
�

n
sup

B2G�n

jP.B/ � Pn.B/j > M
p

log.n/2d�n=2n�1=2
o

for some constant N;M and all n � N . The same line of reasoning as in Proposition 3.2 then shows

sup
f 2F

sup
B2G�n

jEn.f jB/ �E.f jB/j 2 O
�
P .
p

log.n/2.3=2/d�nn�1=2/:

Substituting in the definition of En.f jG�n/ and E.f jG�n/ gives us the first result,

sup
f 2F

kEn.f jG�n/ �E.f jG�n/k1 � sup
f 2F

sup
B2G�n

jEn.f jB/ �E.f jB/j 2 O
�
P .
p

log.n/2.3=2/d�nn�1=2/:

The second claim is directly implied by this result.
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