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Plug-in Estimators for Conditional Expectations and Probabilities

A Families of Sets and Functions
Lemma A.1 (Proof of Proposition 2.1). ‘€ is a universal Donsker class if X is R¢ or [0, 1]¢.

Proof. We apply Corollary 6.20 of Dudley (2014).

(i) The set C has finite VC dimension bounded by 2d + 1. PP Consider arbitrary 2d + 1 points X1, X5,... € X. Now,
there is at least one element x; which attains the maximum in dimension j, 1 < j < d,ie. X;; = max;<q X;;. Select
for every dimension such an element and, in the same way, select d minimizers. Denote the joint set of these points with
B. Then every element from C that contains B also contains Xi,...,X474+; and there is no set A € C which fulfills
AN{x; :1<i<2d+1}=B.Q

(ii) The set X is a Borel set. Hence yX € £2(X, P) for every probability measure P on the Borel sets and yX is an
envelope function of €.

(iii) € is image admissible Suslin. P Let Y = X x [0, oo[ equipped with the natural topology, which is the one induced by

the Euclidean metric, and the corresponding Borel g-algebra. Y is a Polish space since it is a closed subset of the complete
d+1

space R™".

Consider now the map 7(y,h) = x([y,y + #1]) if [y,y + h1] € C and y(9) otherwise. T maps Y onto €. We need to
verify that (y, 2, x) — (T (y, h))(x) is jointly measurable, that is for any Borel subset A4 of R

B ={(y,h,x):x,ye X,h €[0,00[,(T(y,h))(x) € A}

must be in the product o-algebra. T'(y, ) (x) attains either the value 0 or 1 hence there are four events we need to consider.
First A = @ which implies B = @ and {0, 1} € A which implies B = Y are always in the o-algebra.

So consider now a set A such that 1 € A but not 0, then
B ={(y.h,x):x,y € X,h €[0,00[, x([y,y + h1])(x) = 1}
={(y,h,x):x,ye X,h €[0,00[,x € [y,y + h1]}.

This set is closed in the natural topology of X X [0, co[xX since, if (y, /,X) is not in B then with € < d(x,[y,y + /1)),
where d is the Euclidean metric, we have that the open ball

{@.n.8) - d(y.u).d(h,n),d(x.§) <€/3,u.§ e X,ne[0,00[} Y xX\B
contains (y, &, X). And, since,
(Y xX\B ={(y.h.x) : x,y € X, h € [0,00[. (T (y, h))(x) = 0}
the latter set is open. Hence, both sets are in the Borel algebra B(Y x X).
It remains to show that the product algebra equals the Borel algebra, that is,
BY) @ B(X) = B(Y x X).

This follows from Fremlin (2003)[4A3D(ci)] if Y x X is a hereditary Lindelof space. Though, every second countable
space like Y x X is hereditary Lindelof and the result follows. Q O

Lemma A.2 (Proof of Lemma 2.3). Let X be any set and § be a o-algebra of subsets of X. § is a VC-class if, and only
if, § is a finite family of sets.
Proof. Any finite collection of sets is a VC-class. For the other direction assume § is infinite.

(i) There exists a countably infinite sequence of disjoint sets in §. P We prove by induction that for any n € N there
exist n disjoint sets in §. The induction hypothesis is trivially fulfilled for » = 1. For the induction step let us assume that
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A1, ..., A, € § are not empty and mutually disjoint. There exists an element B € § that is not contained in 0 (A, ..., Ay)
since otherwise ¥ = o (41, ..., A,) and § would be finite. Take such an element B. If B\ | J;., 4» € § is not empty
then add this to the sequence as A,+1. A,+1 is then obviously disjoint from all Ay, ..., 4,. If_B\ U;j<p An = @ then
B < |; ., An. Furthermore, there is some i < n such that A;\B # @ # A; N B, because otherwise B would be a union
of a subset of Aq,..., A,. Now, remove A; from the sequence and add A;\ B and A; N B to the sequence. This way we
gain n + 1 disjoint elements that are all contained in §. This implies now directly that there is a countably infinite sequence
of disjoint sets contained in §. Q

(ii) By (i) we can choose a sequence {A,},en of disjoint and non-empty subsets of §. By countable choice we can
select a sequence {x,}nen such that x, € A,. Consider any k € N, points xy,...,x; and any subset of these, say
{Xn; 10 <1,0<n1 <ny...<n; <k}forl <k and consider the corresponding sequence of sets {4,, : i < [} then
{xXn, 11 <1} = {xn}n<k N U{An; 11 <[} and the set {x;}; <« is shattered. Since this argument applies to any k € N we
know that § is not a VC-class. O

Lemma A.3 (Proof of Lemma 5). Let (2, A, P) be a probability space and C C A a disjoint family of sets such that for
each A € C there exists {An}nen in C with Q\A = \J, e An and @ € C. For any measure Q for which there exists a
constant ¢ > 0 such that for all A € C, |Q(A) — P(A)| < cP(A), we have that sup 4¢,(cy |Q(A) — P(A)|/P(A) < c.

Proof. We apply the monotone class theorem. A, B € C theneither AN B =@ € Cor A = B € C. Define
D={A4:A= U &, & C C acountable family, |Q(A) — P(A)| < cP(A)}.

D is a Dynkin class: (1) @ € D; (2) A € D then by assumption Q\A = | J,,cp 4n for some elements A, € C and because
the A, are disjoint we have

10(2\4) — P@\A)] = 3 10(An) — P(An)| < ¢ Y P(4n) = cP(Q\A)
nelN nelN
and Q\A € D. (3) If {4, }nen is a disjoint sequence in D, then

\Q(HNA”) - P(%An) = 2010040 - P4 < e (| 4n).

ne nelN

Since each A, is a countable family of elements on C we know that | J, <) 4 is also a countable family of elements of C
and therefore | ), cpy An € D. The result follows now from the monotone class theorem since C € D . O

Corollary A.1 (Proof of Proposition 2.1). Let ([0,1]¢, A, P) be a probability space such that P has a density p that
is lower bounded by b > 0. Let {An}n>1 be a non-decreasing sequence in Ny such that lim, .o A, = 00 then
[va(Dlloce,,) € 0;(\/10g(n)2d1"/2). Furthermore, for any Borel set A and € > 0 there existsann € Nand B € 6(C;,,)
such that P(AAB) < e.

Proof. The universal approximation property of the family of sets C is well known. We provide here for completeness a
simple proof. The set 0(C,) contains many intervals. In particular, to every element X' in {x : X; € l,,i < n}, where
Ly ={Y4" d;/2" : d; € {0,1}}, and any element X" in {X : X; € ry,i < n}, where r, = {1 —Y_1", d; /2" : d; € {0, 1}},
corresponds an interval I = [x',x”) € 0(Cp,). Both, |, l» and | J,,~ r» lie dense in [0, 1]. This implies that any half-
open interval [a,b),0 < a; <b; < 1foralli <d,can be approximatea arbitrary well in Lebesgue measure, i.e. for e > 0
and with u denoting Lebesgue-measure, there exists an 7 € N and an I € 0(C,) such that [a,b) € Iand p(I\[a, b)) < €.
Consider now any Borel subset 4 of [0, 1]¢ and € > 0. Let {I,,},>1 be a sequence of half-open intervals in [0, 1]¢ such that
A S Upsq Inand n(U,»1 In) < u(A) + €/4. Furthermore, select for each I, an half-open interval I, € |, 0(C)

such that I, € I, and u(I,\I,) < €/2"*? then A C |J,,-., I, and

n>1"n

(L) < n(UJr\ ) + (T = w) + /4 + n(|J@\L)) < 1(4) + €/2.
n>1 n>1 n>1 n>1 n>1
Choose an N such that u(lJ,-nyI,) < €/2 and define B = |J,.yI, € U,>;0(Cn). Then u(B\A) <
w(Upsq L\A) < €/2 and n(A\B) < u(U,~; I,\B) < €/2. Hence, u(AAB) < €. Since P is absolutely continuous
with respect to Lebesgue-measure we can choose for every € > 0 a § > 0 such that /(AAB) < § implies P(AAB) < ¢
and the second part of the proposition follows. O
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B Conditioning

Proposition B.1 (Proof of Proposition 3.1). If C C Bs is a finite set with infgee P(B) > 0, F is a subset of L'(P)
uniformly bounded in supremum norm and ¥¢ is a P—Donsker class then

sup sup |Ex (f | B) — E (f | B)| € Op(n~"?).
fe¥ BeC

Furthermore, if C' C Bs, is such that ‘6’0 is a P-Donsker class then

sup sup |P,(A|B) — P(A|B)| € Op(n~'/?).
AeC’ BeC

Proof. For a finite family of measurable sets C the corresponding set of indicator functions € is always a P-Donsker class
since for a single element the standard CLT provides the necessary statement and finite unions of P-Donsker classes are
again P-Donsker due to (Dudley, 2014)[Thm 4.34]. Hence,

/fdP,,—ffdP': sup
B B fe¥F ,BeC

sup |P»(B) — P(B)| = O} (n~"?).
BeC

By definition this implies that for € > 0 there exists an M, such that Pr*{supg.c | P(B) — P,(B)| > Min~V/2} < ¢/2
foralln > 1. Let N := [(2M;/infgce P(B))*]. Because infgce P(B) > 0, forall n > N we have for any A4 € C that

sup
fe¥F ,BeC

[ % xwar - [ 5 X(B)dP‘ — 03

and

{Pn(4) < inf P(B)/2} S {Pu(A) < P(A)/2} = {P(A) — Pn(A) > P(A)/2}
C {sup |P(B) — Pn(B)| > P(A)/2} C {sup |P(B) — P,(B)| > inf P(B')/2}
BeC BeC B’eC

C {sup |P(B) — Py(B)| > Min~'/2}.
BecC

Similarly, there exists an M, such that Pr*{supsc5 pce |5 f dPn — [ f dP| > Man™'/2} < €/2. The events

/deP,,—/deP

have outer probability Pr*(22,) > 1 —e and foralln > N and B € C, Q, C {P,(B) > infgcec P(B’)/2}. In the event
Qu,n > N, we know that P, (B) > 0 and

E.(f|B)—E(f|B) ®)

= (/dePn)/Pn(B) — (/deP)/P(B)

- (P(B) /B F dPy — Pa(B) fB fdP) / (Pa(B)P(B))

- (P(B) ( /B P, - /B fdP)+(P<B)—Pn(B)) /B fdP) / (Pa(B)P(B)).

Therefore, for n > N in the event 2,

(/depn)/Pn(B) — (/deP)/P(B)

where b := sup,eg, e |f(x)| and ¢ := infgec P(B) > 0.
For any n < N and B with P,(B) = 0 the estimate E, (f | B) = 0 by definition and

Q, = %sup |P(B) — Py(B)| < Mln_l/z} N sup
BecC fe¥F ,BeC

< Mzn_l/Z}

1/2

n sup

fe¥F ,BeC

<2 (My+bMy) /2,

<b < o0.

sup |En (f | BY— E (/| B)| = sup‘(/deP)/P(B)

feF fe¥F
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For any n < N with P,(B) > 0 we have that

(/dePn)/Pn(B)— (/dep)/P(B)

and with the constant M := max{2(M, + bM;)/c2,2N'/2b} we have

1/2

n sup < 2n'%p < 0

fe¥F,BeC

Pr*{sup sup |E, (f |B)— E(f|B)| > Mn~"?} <e.
fe¥ BeC

This is sufficient to prove the first claim. The second claim follows from the first by substituting €’ for % . O

Proposition B.2 (Proof of Proposition 3.2). If C € Bs, € and F¢ are P-Donsker classes, ¥ is a subset of L(P)
uniformly bounded in supremum norm and P has a density which is lower bounded by a constant b > 0 then with
C,={C:CelC,u(C)y=n"*tanda €[0,1/2)

sup sup |E, (f | B)— E(f|B)| € Op(n®'/?).
feF BeCy,

Furthermore, if C' C Bs is such that €y, is a P-Donsker class then

sup sup |P,(4|B) — P(A|B)| € Op(n*'/?).
AeC’ BeCy,

Proof. As in the the proof of Proposition 3.1, supscg pec|[p fdPn— [p fdP| € Op(n™'/?) and
Supgee |Pn(B) — P(B)| € O}",(n_l/z). Hence, for a given ¢ > 0 there exists a M; such that
Pr*{supgce | P(B) — Py(B)| > Min~Y2} < €/2. In particular, since by assumption infgree, P(B')/2 >
binfprec, (B')/2 > (b/2)n~® we have for N := [(2M;/b)"/(1/2=®7 and alln > N, B € C, that

(Pa(B) < inf P(B)/2) € {sup |P(B) = Pa(B)| > inf P(B)/2)

C { sup |P(B) — Pa(B)| > (b/2)n™*} S { sup |P(B) — Py(B)| > Myn~"/?}
BeC, BecC,

C {sup |P(B) — P,(B)| > Myn~'/?}.
BeC

and, since the last event has an outer probability strictly less than € /2, there exists an M5 such that for all n > N the events

fodP,,—fodP

have outer probability Pr*(2,) > 1 — € and {P,(B) > infp/ce, P(B')/2} 2 Q, foralln > N.
Using the bound (8)

(o) ([ rr) o

(/ rae, - [ fdP) /Pn(B)‘+'(P<B)—Pn<B>>/ fdP/(Pn(B)P(B))‘-
B B B

Let ¢ = sup,eg SUpsey | f(x)| < oo then ]fB fdP| < cP(B) and, since P,(B) > (b/2)n™% on Q,, forn > N

Q= %sup |P(B)— P,(B)| < Mln_l/z} Nn{ sup
BeC feF ,BeC

< Mzn—l/Z}

=

sup sup |En (f|B)—E (f|B)| < @My/b)n® "2 + (2c¢ My /b)n® /2.
fe¥F BeCy

As in the the proof of Proposition 3.1 the errors for n < N can be bounded since inf, <y infgee, P(B) > bN~* and the
first result follows. Substituting €’ for ¥ yields the second claim. O

Lemma B.1. If § is a o-algebra consisting of finitely many elements then there exists a unique partition Pg such that
each element of § can be represented as a finite union of elements of Pg.
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Proof. (i) Uniqueness. Assume there are two partitions g and #g. There must be an element B € £ that is not in
3’}; (or vice versa) since otherwise 3’; = JP¢.This B isequalto A; U ... U A, for some n € N and disjoint, non-empty,
elements Aq,..., A, € Pg. Now A1 & B but A; cannot be a finite union of elements of J’é since ,7’; is a partition.

(ii) Enumerate § as A1, ..., A, where n is the cardinality of §. We construct a partition iterartively. I.e. we construct for
each i < n afamily of sets B; = {B1;,..., B, i} that is disjoint and such that A1, ... A; can be represented as unions of
the B;; elements. Fori = 11let B;; = A;. Now assume we have such a family of sets for i and we want to get a family
of disjoint sets for Ay, ..., Aj4+1. Consider the following family of set

£i+1 = {A,’+1\U£i}U{B\A,’+1 B e Bi}U{A,’+1 NB:Be c(l_)),}

Clearly ever B € B; can still be represented as a union of elements since B = (B\A4;4+1) U (B N A;+1). Similarly,
Aiv1 = (Ais1\U Bi) U (4i+1 N Bi) can be represented. The family of sets is also disjoint: any element of the
form B\A;1; is certainly disjoint from any B’ N A;4; and A;11\B” D A;+1\J B;. Also, since the elements in
B; are disjoint any two B\A;+1 and B’\A4;4+1 will be disjoint. Finally, any 4;4+1 N B is disjoint of A;+;\ |J B; and
(4;+1 N B) N (4;41 N B’) = @. This concludes the induction. O

Proposition B.3 (Proof of Proposition 3.3). If § C Bs is a 0-algebra consisting of finitely many sets, ¥ is a subset of
LY(P) uniformly bounded in supremum norm, Fg is a P—Donsker class then

;ug IEn (f 19)—E(f19)|ler1p) € 05 (n~12).
(S

Furthermore, if C C Bs, is such that €g is a P-Donsker class then

sup 1Py (A18) — P (A]9) | p1(py € Op(n~V?).
€

Proof. If P(B) = 0 for some B € § then [p(E, (f |9)—E(f|9))dP =0.Let§ ={B: B € §,P(B) > 0} then
from Proposition 3.1 it follows that

sup sup |E, (f|B)—E(f|B)| € Op(n™"?).
fe¥F Be§g’

For € > 0, choose M, N such that F,, = {supscg supgeg: |En (f | B)—E (f | B)| < Mn™'/2} has probability P(F,) >
1 —eforalln > N. For B € §,1let By,...,B, € g C § suchthat B = B; U...U By, then P-as. E(f|§) =
Y i<m E(f1Bi) x xB; and

[ @19 EGionar| = Y| [ 15— BB P

i<m

< Y |Ea(f1B:) — E(f|B)|P(BN B;)) < Mn™'> " P(BN By)

i<m i<m

=Mn~"2P(B) < Mn~"/2.

Furthermore,
IEA(f19) = ECF19)] o1y < 2 s /B Ea(f18) — E(f]8)dP| < 2Mn~"/2.
€

This implies the result. The second result follows again from the first. O

Proposition B.4 (Proof of Proposition 3.4). Let ([0, 1]¢, B, P) be a probability space such that P has a density p that is
lower bounded by b > 0 and let {1, }n>1 be a non-decreasing sequence in N ;. such that

A eo( ! 10( ! ))
" 3d log(2) £ V1og(n) .

If F is a subset of L1 (P) uniformly bounded in supremum norm which fulfills Equation 4, then

sup | En (f | 92,) — E (f | 62,) lloo € OF (1/1og(n)2C/244ny=1/2)
feF
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Furthermore, if C C Bs, is such that € fulfills Equation 4 then

sup || P (A ]ﬁln) —P(4 ]ﬁln) loo € Op(y/log(n)2@/2d4ny=1/2)
AeC
Proof. By assumption and from Corollary 2.1 we know that

sup sup | fdPn—/ fdP| € 0} (/log(n)2%/2p=1/2),
B

feF Beg,,, JB

sup |P,(B) — P(B)| € O} (y/log(n)2%4*/2p=1/2),
Beg/ln

Furthermore, infgeg,, P(B) > b2=*n By combining the technique in the proof of Proposition 3.2 with the assumption
on the rate of A, we have for any B € §;, that

{P,,(B)< inf P(B’)/z}g{ sup |P(B)—Pn(B)|>M‘/log(n)2“"/2n_1/2}
B'e€g), Be§,,,

for some constant N, M and all n > N. The same line of reasoning as in Proposition 3.2 then shows

sup sup |E,(f|B) — E(f|B)| € Op(y/log(n)2@/P44ny=1/2),
fe¥F Bég/ln

Substituting in the definition of E, (f|9,,) and E(f|§,,) gives us the first result,

sup IEq(f193,) — E(f 192,00 < sup sup |E,(f|B) — E(f|B)| € Op(y/log(n)2@/P94np=1/2),
€

feF Beg,,

The second claim is directly implied by this result. O
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