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A Appendix

A.1 MVML optimization

Here we go through the derivations of the solutions
A, D and w for our optimization problem. The pre-
sented derivations are for the case without Nystrom
approximation; however the derivations with Nystrom
approximation are done exactly the same way.

Solving for g and w

Let us first focus on the case where A and w are fixed
and we solve for g. We calculate the derivative of the
expression in Equation :
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By setting this to zero we obtain the solution

g = HwT'eL,)T(wloL,) H+ A TH(w! oL, y.

As for w when A and g are fixed, we need only to
consider optimizing

II‘I)\i’n ly — (w" ®1,)Hg|>. (19)

If we denote that Z € R™*? is equal to reshaping Hg
by taking the elements of the vector and arranging
them onto the columns of Z, we obtain a following
form:

min |y — Zw|?. (20)

One can easily see by taking the derivative and setting
it to zero that the solution for this is

w=(2"2)"'72"y. (21)

Solving for A in @

When we consider g (and w) to be fixed in the MVML
framwork @, for A we have the following minimization
problem:

min A (g, Afg) + 7] A|%

Derivating this with respect to A gives us

d
L t 2
TA Mg, Afg) +n|All%

d
_a t

TA /\<g,A g> +ntr(AA)
= -ATggTAT[]+27A

Thus the gradient descent step will be
AR = (1 2m) A + A (AF)' gg” (AF)

when moving to the direction of negative gradient with
step size p.

Solving for A in ((11])

To solve A from equation (11)) we use proximal mini-
mization. Let us recall the optimization problem after
the change of the variable:
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and denote
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and
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for the two terms in our optimization problem that
contain the matrix A.

"Matrix cookbook (Equation 61): https://www.math/
uwaterloo.ca/ hwolkowi/matrixcookbook.pdfl
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Without going into detailed theory of proximal opera-
tors and proximal minimization, we remark that the
proximal minimization algorithm update takes the form

AR = proxum(Ak — uFVh(AR)).

It is well-known that in traditional group-lasso situation
the proximal operator is

n
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where z is a vector and + denotes the maximum of
zero and the value inside the brackets. In our case we
are solving for a matrix, but due to the equivalence
of Frobenious norm to vector 2-norm we can use this
exact same operator. Thus we get as the proximal
update

AR,
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We can see from the update fromula and the derivative
that if AF is a positive matrix, the update without
block-multiplication, A* — u*Vh(AF), will be positive,
too. This is unfortunately not enough to guarantee the
general positivity of A**!. However we note that it is,
indeed, positive if it is block-diagonal, and in general

whenever a matrix of the multipliers «

B B n
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is positive, then A**1 is, too (see [I2] for reference -
this is a blockwise Hadamard product where the blocks
commute).

A.2 Proof of Theorem [I]

Theorem 1. Let H be a vector-valued RKHS asso-
ciated with the the multi-view kernel K defined by
FEquation [} ~ Consider the hypothesis class Hy =
{z = fualz) = Talz)*v : A € A|ully < B},
with A = {A : A > 0, |Allr < a}. The empirical
Rademacher complexity of Hy can be upper bounded as
follows:
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where ¢ = (tr(K2))l > and K is the Gram matriz
computed from the training set {x1,...,2x,} with the
kernel k; defined on the view l. For kernels k; such that
tr(K?) < mn, we have
v
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Proof. We start by recalling that the feature map asso-
ciated to the operator-valued kernel K is the mapping
I': X — L(Y,H), where X is the input space, Y = RY,
and L£(Y,H) is the set of bounded linear operators
from Y to H (see, e.g., [19,[7] for more details). It is
known that K (z, z) = I'(z)*I'(z). We denote by I's the
feature map associated to our multi-view kernel (Equa-
tion [d). We also define the matrix ¥ = (o), € R™
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Here (1) and (3) are obtained with reproducing prop-
erty, (2) and (4) with Cauchy-Schwarz inequality, and
(5) with Jensen’s inequality. The last equality follows
from the fact that tr(H?) = 37, tr(K;?). For kernels
ki that satisfy tr(K?) < 7n, I = 1,...,v, we obtain
that
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