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A Proof of Lemma 1

Proof. Since zij ≤ mij by construction, we have

E[‖Z‖0] ≤ E

[
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mij

]
= E
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∑
j 6=i

rirj + r0
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rj


= E

[
G2 −

∞∑
k=1

r2k + r0G

]
. (7)

Following Lemma 1 of Zhou (2015), it is straightfor-
ward to show that the right hand side of (7) is the
same as that of (4) in main article.

B MCMC Convergence and
Complexity Analysis

We show in Figure C.1 the trace plots of four represen-
tative model parameters, including two weight compo-
nents of the gamma process ri, the number of inferred
nodes, and the total number of edges. The plots are
obtained by running the model on the Beijing meteoro-
logical data. They show that the proposed Gibbs sam-
pling algorithm converges fast and mixes well. Each
Gibbs sampling iteration of the SGLDS has a complex-
ity of O(KP 3 +K +NZ +K2 +TK3), where T is the
length of observed time series, K is the latent dimen-
sion of xt, NZ is the number of non-zero elements in
the transition matrix (W � Z), and P is the dimen-
sion of the observation. By contrast, a vanilla LDS has
a sampling complexity of O(K + K2 + TK3 + KP 3).
Considering that NZ < K2, we can conclude that our
algorithm does not notably increase the complexity of
the sampling algorithm.

C Additional figures

Shown in Figure C.2 is the graphical representation of
our model.

Figure C.3 shows that the loops within the inferred
sparse random graph capture the seasonal components
of the time series. Note different loops could have over-
lapping nodes.
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Figure C.1: Trace plots of four different model parameters.
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Figure C.2: Graphical Model
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Figure C.3: The six-dimensional time series of the Beijing meteorological data and the reconstructed components using
the states belonging to loop 1, 2, or 3 shown in Figure 2.
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