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Abstract

Graph is a common way to represent rela-
tionships among a set of objects in a va-
riety of data analysis fields. We consider
the case that the input data is not only a
graph but also numerical features, each one
of which corresponds to a node in the graph.
In practice, the primary importance is often
in understanding interactions on the graph
nodes which effect on covariance structure of
the numerical features. We propose a Gaus-
sian based analysis which is a combination of
graph constrained covariance matrix estima-
tion and factor analysis (FA). We show that
this approach, called graph FA, has desirable
interpretability. In particular, we prove the
connection between graph FA and a graph
node clustering based on a perspective of ker-
nel method. This connection indicates that
graph FA is effective not only on the con-
ventional noise-reduction explanation of the
observation by FA but also on identifying im-
portant subgraphs. The experiments on syn-
thetic and real-world datasets demonstrate
the effectiveness of the approach.

1 Introduction

Analyzing relationships among objects is an essential
task for a variety application areas of machine learn-
ing such as bioinformatics (Ideker et al., 2002), web
mining (Kosala and Blockeel, 2000), and social net-
work analysis (Boyd and Ellison, 2007). Graph is an
established way to describe those relationships math-
ematically, in which a node represents an object and
an edge connecting two nodes represents a relationship
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between the two nodes. For instance, protein-protein
interaction (PPI) networks regard a protein as a node
and an interaction as an edge in a graph. On the other
hand, we often have numerical data as well, i.e., a set of
feature vectors, and in particular we consider the case
that each dimension of a feature vector corresponds to
each node of the given graph. In PPI networks, a gene
expression value corresponds to each protein (a node),
and they are required to analyze simultaneously. For
practical analysis , the primary importance is often in
analyzing coordinated variations of the features on the
graph to understand underlying mechanisms of how
the graph is related to the observed numerical data.

Based on the motivation mentioned above, our prob-
lem setting in this paper can be stated as follows:

Identifying covariance structure generated
from interactions on given graph nodes, and
creating an interpretable representation of
those interactions.

When we consider the numerical input data only, prin-
cipal component analysis (PCA) (Jolliffe, 2002) and
factor analysis (Harman, 1960) are effective basic tools
to achieve this goal, which provide an interpretable
data reduction using a linear latent variable model.
Obviously, these well-known methods are not optimal
for our purpose because they do not consider the graph
at all.

For better interpretability, we employ a Gaussian
based approach, in which the graph connectivity is
interpreted as conditional dependency. Our method,
called graph FA, first maps numerical data onto a
graph using a Gaussian model having the graph con-
nectivity as the conditional dependency, by which we
extract covariance explained by the graph. From the
estimated Gaussian, we construct a lower dimensional
linear model by FA. The extracted lower dimensional
representation is easy to interpret because of the Gaus-
sian assumption, and summarizes coordinated varia-
tions explained by the graph connectivity, while naive
application of classical methods (like PCA) can not
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deal with the graph structure. We emphasize that the
procedure of graph FA is simple but has not been ex-
plored in depth so far.

An important contribution in this paper is to explore
the connection between graph FA and a graph node
clustering. We prove that graph FA is a continuous
approximation of a graph node clustering based on
a graph path-based kernel. This connection indicates
that graph FA is effective not only on the conventional
noise-reduction explanation of the observation by FA
but also on identifying important subgraphs having
strong interactions. In our experiments, we perform
a clustering based empirical evaluation on synthetic
datasets, and also show results on a significant sub-
graph identification problem in a biological network.

2 Factor Analysis on a Graph

Suppose that we have n feature vectors X := {xi}ni=1,
where xi ∈ Rd. Without loss of generality, the mean
of xi is assumed to be zero. A graph G := {V, E} is
defined by a set of nodes V := {1, . . . , d} and a set of
pairs of nodes E := {(i, j) | i, j ∈ V}. Let Σ ∈ Rd×d

+ be

a covariance matrix and Θ := Σ−1 be the correspond-
ing inverse covariance matrix, where Rd×d

+ is a d × d
positive definite matrix. We focus on a Gaussian dis-
tribution which has the conditional dependency pat-
tern specified by the given graph G:

T := {Θ | Θij = 0 for (i, j) /∈ Ẽ , Θ ∈ Rd×d
+ },

where Ẽ includes the diagonal entries Ẽ := E ∪
{(i, i)}di=1. In this set of matrices, the (i, j)-element
should be 0 if a pair of nodes (i, j) does not have an
edge.

Let S be a sample covariance matrix estimated from
{xi}ni=1. We first project S onto the set T to extract
covariance associated with graph connectivity. We
consider the minimization of Kullback-Leibler diver-
gence (KL divergence) (Kullback and Leibler, 1951):

KL(p(x)∥q(x)) =
∫
p(x) log

p(x)

q(x)
dx,

where p and q are d-dimensional probabilistic den-
sity functions. By substituting the Gaussian distri-
bution N (0,S) into p, and the Gaussian distribution
N (0,Σ), which has the sparse inverse covariance Θ,
into q respectively, the following minimization problem
is derived:

min
Θ∈Rd×d

+

− log detΘ+ trace(ΘS) (1)

s.t. Θij = 0, (i, j) /∈ Ẽ .

This problem is also known as the maximum likelihood
estimation of graphical Gaussian model (GGM) (Whit-
taker, 1990). Since KL divergence can be interpreted
as a pseudo-distance between two density functions,
the solution of the minimization problem (1) is the
best approximation to N (0,S) by the Gaussian hav-
ing the dependency structure specified by the graph
N (0,Σ). Our intuition behind this process is twofold:

• Extracting covariance which can be explained by
the graph

• Removing covariance which can not be explained
by the graph

For the Gaussian estimated by (1), we consider factor
analysis (Harman, 1960), which is a standard statisti-
cal model represented by the following linear model:

x = Af + ϵ, f ∼ N (0, I), ϵ ∼ N (0,Ψ),

where A ∈ Rd×k is a factor loading matrix having a
smaller number of columns k < d and f ∈ Rk is a
k-dimensional latent vector, and ϵ ∈ Rd is an indepen-
dently distributed error term having a diagonal matrix
Ψ ∈ Rd×d

+ as a covariance matrix. Since f and ϵ are
assumed to be independent, the covariance matrix of
the above model is AA⊤ +Ψ.

Suppose that Σ̂ := Θ̂
−1

is the inverse of the optimal
solution Θ̂ of the minimization of KL divergence (1),
the maximum likelihood estimation of factor analysis
for Σ̂ is

min
A∈Rd×k,Ψ∈Dd

+

− log det(AA⊤ +Ψ)−1

+ trace((AA⊤ +Ψ)−1Σ̂), (2)

where Dd
+ is a space of d×d diagonal matrices in which

all the diagonal elements are positive.

The resulting A is expected to explain the covariance
structure on the graph. One of the important goals of
the standard factor analysis is to interpret the factor
loading matrixA describing relations between features
and factors. Our interest is in a coordinated variation
occurring on a connected subgraph (defined as subsets
of the nodes and edges of the entire graph G and there
must exist a path between every pair of nodes). Here-
after, we will show that the loading matrix A obtained
by the above procedure has advantageous properties
for this purpose mainly through a perspective of ker-
nel method.

3 Kernel-based Interpretation

In this section, we show a connection between graph
FA and a graph node clustering based on a path-based
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graph kernel. This connection indicates usefulness of
graph FA for simultaneously analyzing graph connec-
tivity and Gaussian covariance structure, which is our
main focus in this paper.

3.1 Sparse Inverse Covariance as a Kernel
Matrix for a Graph

Since Σ̂ is positive-definite, it can be regarded as a
kernel matrix :

KGGM := Σ̂.

We call this KGGM GGM kernel. GGM kernel would
be expected to reflect the graph connectivity structure

since Σ̂(= Θ̂
−1

) is calculated based on the graph G
constraint shown in (1).

A general way to define a kernel function between two
nodes on a graph is to sum evaluation scores for a
set of paths between the two nodes (S.-Taylor and
Cristianini, 2004). Let Pij be a set of paths between
nodes i and j on the graph. A path P ∈ Pij is
defined by a set of nodes ordered from i to j, i.e.,
P := {(p1, . . . , pm)|p1 = i, pm = j,m ≤ d}. An evalu-
ation KP for a path P ∈ Pij is defined by a product
of scores for neighboring nodes on the path:

KP :=
∏

{k|pk,pk+1∈P}

κpk,pk+1
, (3)

where κpk,pk+1
is a base score for a pair of neighboring

nodes. This score for a path KP represents a connec-
tion between i and j through the path P, and thus the
simplest way to define a kernel for a node pair (i, j) is
to sum up all possible paths

∑
P∈Pij

KP .

In our case, we define the base score κpi,pi+1
by

κpi,pi+1
= −Θpi,pi+1

. (4)

In the quadratic term of the Gaussian density function
−x⊤Θx, −Θij is a coefficient for the interaction term
of i- and j-th dimensions. We thus regard −Θij as
an evaluation score for the strength of the connection
of neighboring nodes, and it is also known that the
inverse covariance matrix Θ represents conditional in-
dependency. In particular, when the diagonal entries
of Θ is scaled as 1, −Θij is identical to the conditional
correlation between i and j.

Using the base score κpi,pi+1
(4), GGM kernel can be

decomposed into the following weighted sum of possi-
ble paths:

Theorem 1 (Path-based decomposition of GGM ker-
nel). The (i, j)-element of the kernel matrix KGGM

can be written as a weighted sum of all possible paths

KGGM
ij =

∑

P∈Pij

det (ΣP)KP

KP =
∏

{k|pk,pk+1∈P}
κpk,pk+1

i

j

κp1,p2

Figure 1: A schematic illustration of GGM kernel,
which is a weighted sum of all possible paths.

between i and j as follows:

KGGM
ij =

∑
P∈Pij

det (ΣP)KP , (5)

where ΣP is a sub-matrix of Σ constructed by features
in the path P, and KP is defined by (3) with the base
score (4).

Sketch of proof. The equation can be easily derived
from a covariance decomposition theorem (Jones and
West, 2005) with some simple algebric operations. See
supplementary appendix A for detail.

Figure 1 shows an illustration of GGM kernel. Ac-
cording to (5), each path is weighted by det (ΣP)
which evaluates amount of information of features in
P. The determinant of covariance is also called gen-
eralized variance as a measure of multi-dimensional
dispersion.

Our discussion so far can be summarized by the fol-
lowing remark:

Remark 1. GGM kernel can be written as a sum of
evaluation scores of all possible paths weighted by a
generalized variance for dimensions included in each
path. Based on this analysis, we see that an intuitive
interpretation of GGM kernel is an evaluation of a
relationship between two nodes on a graph through the
connectivity structure.

Kernels for graph nodes have been widely studied such
as diffusion kernel (Smola and Kondor, 2003). A no-
ticeable characteristic of GGM kernel is its direct link
to Gaussian distribution of the input space which pro-
vides highly interpretable results of graph FA.

3.2 GGM Kernel k-means

We show an equivalence between kernel k-means clus-
tering with GGM kernel and graph FA, which indicates
the subgraph identification property of graph FA. Sup-
pose {ϕj}dj=1 is a set of d instances in some feature

space ϕj ∈ F induced by a kernel matrix KGGM , i.e.,
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KGGM = ΦΦ⊤ where Φ := [ ϕ1, . . . ,ϕd ]⊤. We re-
gard ϕi as a feature representation for a graph node.

Assuming that we already have the maximum likeli-
hood estimate Ψ̂ for Ψ. Since the diagonal elements
of Ψ represent noise strength in each node, we con-
sider defining instance importance for kernel k-means
problem based on Ψ̂. The objective function of our
weighted kernel k-means is then defined by

k∑
i=1

∑
j∈Ci

ψ̂−1
j

∥∥ϕj − µi

∥∥2 ,
where Ci for i = 1, . . . , k, is an index set of the i-th
cluster, and µi is a centroid of the i-th cluster. This
weighting means that errors for features with larger
independent components are less important. Suppose
that Z is a d × k cluster indicator matrix, in which
(i, j) element takes 1 if i ∈ Cj or takes 0 otherwise. We
extend Z to have negative indicator, i.e., it takes 1 or
−1 if i ∈ Cj or takes 0 otherwise. This means that each
cluster can select ϕi or −ϕi adaptively to minimize the
above objective (ignoring sign differences).

Spectral relaxation is often used to approximate clus-
tering methods, by which the weighted kernel k-means
can be reformulated as follows (see supplementary ap-
pendix C for derivation):

Definition 1 (Spectral relaxation of weighted kernel

k-means). Defining V k := Ψ̂
−1/2

ZC1/2, which lead

V ⊤
k V k = C1/2ZΨ̂

−1
ZC1/2 = C1/2C−1C1/2 = I,

we derive the spectral relaxation of the weighted kernel
k-means as follows:

max
V k∈Rd×k

trace

(
V ⊤

k Ψ̂
−1/2

Σ̂Ψ̂
−1/2

V k

)
, (6)

subject to V ⊤
k V k = I.

From the definition of V k, the indicator matrix Z is
estimated as

Ẑ = Ψ̂
1/2

V kC
−1/2. (7)

Based on the above definition, the following equiva-
lence between FA and weighted kernel k-means can be
derived:

Theorem 2. Given Ψ̂ as a weight, an optimal so-
lution of the spectral relaxation of weighted kernel k-
means Ẑ (7) is identical to Â of (2) up to a constant
in each column vector.

Sketch of proof. Given Ψ̂, the first order optimality
condition for A in FA can be formulated in a simi-
lar form of the eigenvalue decomposition to (6), which
results in the theorem above. See supplementary ap-
pendix D for more detail.

We would like to stress the following important remark
to clarify the advantage of graph FA.

Remark 2. Graph FA is equivalent to the spectral re-
laxation of weighted k-means in the GGM kernel in-
duced feature space, which reflects the graph connectiv-
ity through the path-based evaluation. This means that
the matrix Â approximately indicates strongly con-
nected subgraphs, while summarizing covariance struc-
ture on the graph, simultaneously.

3.3 Post-processing to Improve
Interpretability

In the context of factor analysis (Harman, 1960), a
post-processing called rotation is applied to improve
the interpretability of A. In the context of the spec-
tral relaxation of k-means, Zha et al. (2001) performed
a similar post-processing to obtain better cluster indi-
cator. We derive a rotation for graph FA which con-
siders optimalities of both of FA and kernel k-means.
Let Q ∈ Rk×k be an orthogonal matrix. For example,
varimax rotation (Kaiser, 1958) estimates Q by maxi-
mizing the variance of squared elements of the rotated
matrix ÂQ, which improves interpretability because
the elements of ÂQ tend to be either large magnitude
or close to 0. In this paper, we use the following form
of transformation:

Ârot := Â(Λk − I)−1/2Q. (8)

This transformation keeps optimality, shown by the
following theorem:

Theorem 3. The matrix Ârot in (8) is identical to an
optimal solution of the spectral relaxation of weighted
kernel k-means (6) up to a constant of each column
vector, and it also keeps the optimality of the like-
lihood by modifying the factor distribution as f ∼
N (0,Q⊤(Λk − I)Q).

See supplementary appendix E for the proof. The ro-
tation (8) thus improves interpretability while keeping
the both optimalities of kernel k-means and the like-
lihood by allowing the non-identity covariance of the
factors.

4 Relations to Other Approaches

In this section, we describe relationships between our
approach and other existing methods.

4.1 Graph based Regularization

A standard approach to incorporating a graph into
machine learning algorithms is to use an additional
penalty which makes parameters smooth on the given
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graph (Li and Li, 2008; Sandler et al., 2008; Tibshi-
rani and Taylor, 2011; Yang et al., 2012). Let W be
an adjacency matrix of the graph G in which the (i, j)
element is Wij = 1 if (i, j) ∈ E , and Wij = 0 other-
wise. Let L ∈ Rd×d be the graph Laplacian matrix
defined as L := DW − W , where DW is a diagonal
matrix in which i-th diagonal entry DW is equal to∑

j Wij . The simplest way is to add traceA⊤LA as
an additional penalty, by which rows ofA are forced to
have similar values if they are closely connected in the
graph. However, this approach has the following two
problems: 1) A regularization parameter to balance
the effect of the graph Laplacian is usually necessary,
but selecting an appropriate value is difficult. 2) Neg-
ative correlation is difficult to incorporate 1.

Note that the same idea is often used to control
smoothness in terms of instances {1, . . . , n}. For exam-
ple, in graph-based semi-supervised learning methods
(Zhu et al., 2003; Zhou et al., 2004; Belkin et al., 2006),
each data instance xi is regarded as a graph node,
and the prediction is regularized to be smooth on the
graph. On the other hand, our focus in this paper is on
the graph which represents relationships between dif-
ferent dimensions of the feature vector {1, . . . , d}, and
thus these approaches including (Zheng et al., 2011;
Jiang et al., 2013) are not directly applicable to our
problem setting.

4.2 Graph Clustering

Another direction of research having potential re-
lationships with our approach are graph clustering
(Schaeffer, 2007) and community/module detection in
graph (Newman, 2006). Given a (weighted) graph,
these methods find subgraphs in which nodes are
strongly connected to each other. Spectral clustering
(Shi and Malik, 2000; Ng et al., 2001; Meila and Shi,
2001) can be considered as a method in this category,
which is also based on graph Laplacian (Chung, 1997).
One of the standard formulations of spectral cluster-
ing is the following spectral relaxation of minimum cut
(see e.g., von Luxburg, 2007, for detail):

min
F∈Rd×k

trace (FLF ) (9)

s.t. F⊤F = I.

This can also be interpreted as a dimensionality re-
duction of the graph into the k-dimensional space F .
To obtain the cluster assignment, for example the stan-
dard k-means clustering is applied to F . Saerens et al.

1Although some methods use the signed graph (Gold-
berg et al., 2007; Wu et al., 2011), then negative weights
represent dissimilarity between two nodes. We would like
to regard negative correlation as a possible interaction in
a graph (e.g., inhibition).

(2004) shows that the dimensionality reduction by
spectral clustering, called Laplacian eigenmap (Belkin
and Niyogi, 2003), can be interpreted as PCA in the
space defined by a commute distance in the graph.
Furthermore, if we regard the inverse matrix of the
graph Laplacian matrix as a kernel matrix, spectral
clustering can also be interpreted as weighted kernel
k-means (Dhillon et al., 2004). Thus, spectral cluster-
ing is closely related to our approach. However, spec-
tral clustering has the following difficulties for our pur-
pose: 1) Negative correlation is again difficult to deal
with. 2) Unlike the standard PCA under the Gaus-
sian assumption, resulting eigenvectors are difficult to
interpret in a sense of the original input space X .

Graph FA avoids these difficulties based on the Gaus-
sian model. Stochastic block model is also widely used
for network analysis (e.g., Karrer and Newman, 2011),
but it is not for providing interpretable representation
of the input distribution.

5 Experiments

We evaluate graph FA using synthetic datasets and a
gene expression dataset originally used by the research
of breast cancer. We also use PCA instead of factor
analysis (i.e., Ψ = σ2I), which we call graph PCA.
For comparison, we used the standard principal com-
ponent analysis (PCA), factor analysis (FA), PCA reg-
ularized by graph Laplacian (Lap-PCA), and spectral
clustering (SC). In this paper, Lap-PCA indicates a
PCA regularized by the graph Laplacian matrix which
is described in Section 4. To define the objective func-
tion of Lap-PCA, we used a similar technique to Jiang
et al. (2013) (see supplementary appendix F for detail).
All methods can produce k (< d) vectors (e.g., prin-
cipal direction in PCA, and eigenvectors of the graph
Laplacian matrix in SC) which are parsimonious rep-
resentation of the data. We refer to those vectors in
general as basis vectors. For rotation, we used vari-
max rotation (Kaiser, 1958). In Lap-PCA, we used
the unnormalized graph Laplacian matrix, and gave
weights to each edge by the standard Gaussian kernel
for which the width parameter was determined by the
median heuristics (Gretton et al., 2007). The standard
SC often uses Gaussian kernel, but here we used the
absolute value of covariances as the edge weights for
SC.

For the estimation process of graph FA (and graph
PCA) we can utilize existing optimization methods for
graphical Gaussian model and factor analysis (For the
GGM step, we can also use graphical lasso when the
graph is not available, and the properties that we dis-
cussed still hold in that case as well). For the opti-
mization of FA, we need an initial value of Ψ (once we
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fix Ψ, we can obtain A). We first scaled a covariance
matrix into a correlation matrix for numerical stabil-
ity (then ψi is in (0, 1]), which can be recovered after
the optimization, and simply set Ψ = 0.1I as an ini-
tial value. A simple heuristics here is that we chose a
relatively small value for Ψ because we would like A
to explain covariance as far as possible.

5.1 Synthetic Dataset

We first use synthetic datasets. The graph is gener-
ated by the three network models called lattice, Watts-
Strogatz, and Barabási-Albert (Cohen and Havlin,
2010). In the lattice model, a set of nodes is located
on grid points (we used 2 dimensional grid), and each
node simply has links to its nearest neighbors (4 neigh-
bors in the case of the 2 dimensional grid). The Watts-
Strogatz model is generated by randomly rewiring a 1
dimensional lattice graph with a certain probability
(we used 0.1). The Barabási-Albert model generates
a graph having the so-called scale free property which
often appears in real world networks (we set both of
the number of initial nodes and the number of edges
of new nodes as 3 in the generative process of this net-
work). We set the number of nodes of each graph as
d = 100.

We generated n = 100 instances of the input {xi}100i=1

using a Gaussian distribution in which large covari-
ances concentrating on randomly chosen connected
subgraphs. To choose the subgraphs, we first di-
vided d features into 5 disjoint groups having the
same number of features, and then defined the maxi-
mum connected component in each group as the sub-
graph. Defining the 5 subsets of nodes as {Si}5i=1,
where Si ⊂ {1, . . . , d} is an index set of each connected
component. Based on this grouping, we first gener-
ated a covariance matrix Σ0 = AA⊤ +Ψ+E, where
A ∈ Rd×5 is a loading matrix, Ψ is diagonal matrix,
and E ∈ Rn×n is a noise term. These three variables
are defined as follows: Aij ∼ N (0, 1) for i ∈ Sj , and 0

otherwise, Ψii ∼ Γ(5, 0.1), andE = 0.1ẼẼ
⊤
/d, where

each element of Ẽ ∈ Rd×d is generated by N (0, 1). A
true covariance matrix for synthetic data is then de-
fined by the solution of (1) with S = Σ0, by which the
graph connectivity is embedded as the underlying de-
pendency. We used k = 5 for all methods, which is the
true value for the number of the activated subgraphs.
Results are the average of the 30 trials.

We first compared KL divergence between estimated
covariance by each method and ΣG . Table 1 shows
the results. Graph FA has the best values for all the
three networks. Graph FA and graph PCA were more
accurate compared with FA and PCA, respectively.
This confirms that giving dependency structure im-

Table 1: Comparisons of KL divergence with the true
covariance for the synthetic datasets. We use the func-
tion (1) which does not contain constant terms. The
best method and comparable methods according to
the t-test at the significance level of 5% against the
best method are specified by boldface. The left-most
column shows network models (L: Lattice, WS: Watts-
Strogatz, and BA: Barabási-Albert).

Graph PCA Graph FA PCA FA Lap-PCA
L 120.64 102.43 154.29 108.01 125.58

(6.88) (5.94) (9.20) (6.19) (7.12)
WS 119.70 102.11 153.32 107.53 124.79

(8.96) (7.49) (11.94) (7.55) (9.01)
BA 80.73 68.77 106.30 73.73 85.50

(7.50) (5.46) (12.23) (5.40) (7.55)

proves estimation accuracy. On the other hand, graph
FA and FA have better results compared with graph
PCA and PCA, respectively. We see that absorbing
differences of individual variances also improves accu-
racy. Overall, these results are not surprising because
graph FA and graph PCA have true dependency as
the graph, but by combining subsequent results on ac-
tivated subgraph identification, we see that our basis
vectors is accurate in both senses of low dimensional
representations of Gaussian and activated subgraph in-
dicators, which can not be realized simultaneously by
other methods.

Next, we compared how accurately each method cap-
tures the coordinated variations embedded in the sub-
graphs. In this case, ideally, the basis vectors obtained
by each method should have large absolute values for
the indices included in connected component {Si}5i=1.
Regarding the absolute values of each one of basis
vectors as indicators of one of {Si}5i=1, we calculated
area under the curve (AUC). Since there exist 5! possi-
ble assignment patterns between the basis vectors and
{Si}5i=1, we chose the best AUC values among those
possible patterns because the assignment between the
basis vectors and {Si}5i=1 is arbitrary. Only for SC,
instead of rotation, we applied k-means to the basis
vector, because the basis vector of SC is not suitable
to the above procedure. We calculated AUC for SC by
sorting nodes based on distances from the closest cen-
troid. We here further added noise term to the ground
truth covariance Σnoisy := ΣG/∥ΣG∥F + 0.1E/∥E∥F .
Our purpose is to see whether our approach still iden-
tifies activated subgraphs in this contaminated situa-
tion.

Table 2 shows the results. For all methods except for
SC, we provide the results of (a) after rotation and
(b) before rotation. First we focus on the rotated
cases. For all graph types, graph FA achieved the
best AUC values being followed by Graph PCA. For
the Barabási-Albert model, the AUC of graph FA was
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Table 2: The average best AUCs and their standard deviations for identifying activated subgraphs in the synthetic
datasets. The best method and comparable methods according to the t-test at the significance level of 5% against
the best method are specified by boldface. The left-most column shows network models (L: Lattice, WS: Watts-
Strogatz, and BA: Barabási-Albert).

Graph PCA Graph FA PCA FA Lap-PCA SC
(a) (b) (a) (b) (a) (b) (a) (b) (a) (b)

L .80 (.06) .76 (.07) .85 (.05) .83 (.05) .70 (.05) .65 (.04) .72 (.04) .67 (.04) .69 (.05) .65 (.04) .77 (.03)
WS .80 (.06) .75 (.07) .85 (.06) .81 (.05) .70 (.05) .66 (.04) .72 (.05) .67 (.03) .70 (.05) .66 (.04) .77 (.04)
BA .85 (.07) .83 (.06) .85 (.07) .83 (.07) .80 (.06) .79 (.05) .79 (.06) .79 (.06) .79 (.06) .79 (.05) .56 (.06)

still the best, and that of graph PCA was compara-
ble to graph FA. The other methods, i.e., PCA, FA,
Lap-PCA, and SC, could not capture the activated
subgraphs compared to our approaches. In this ex-
periments, the rotated results has higher or the same
AUC values before rotation.

Figure 2 shows illustrative examples of graph FA (ro-
tated), FA (rotated), and SC using a toy network with
k = 3. The covariance Σnoisy is used. Graph FA
clearly indicates covariance and connectivity simulta-
neously compared to FA. It is difficult to interpret
covariance structure from SC because of its difficulty
in distributional interpretations (note that all the ele-
ments of the first eigenvector is 1).

5.2 Analyzing Protein Network and Gene
Expression

Next we show the effectiveness of our approach by us-
ing protein-protein interaction network (PPI), path-
way networks and gene expression data. For better
understanding of the role of genes (and corresponding
proteins), investigating their behavior with a network
is quite important for recent biological data analysis.
We used a gene expression data from the study of
breast cancer (van de Vijver and et al., 2002). The
data contains n = 295 breast cancer patients in which
78 patients have distant metastasis within five years.
We retrieved the PPI network from Pathway Com-
mons database (Cerami and et al., 2011) regarding
Homo Sapiens proteins, and used only the pairs anno-
tated as “INTERACTS WITH”, and we further combined
another graph created by KEGG pathway (Kanehisa
and Goto, 2000) through R package graphite (Sales
et al., 2012) for which we used the edges annotated as
“activation” or “inhibition”. We first chose 2000
genes most correlated with metastasis, and then ex-
tracted the largest connected components in the corre-
sponding PPI networks. As a result, the PPI network
has d = 1829 features and 25187 edges. The experi-
ments were run 10 times using randomly sampled 90%
of instances.

Our aim here is to evaluate how biologically meaning-
ful subgraphs can be identified by each method. In

particular we evaluate the case that each method out-
puts subgraphs with similar sizes because it is difficult
to compare the significance between subgraphs with
different sizes. To extract the subgraph with a similar
size, for each basis vector, we first sorted the elements
of the basis vector in the descending order of the ab-
solute values, and then, from the top of the sorted
elements, we found the smallest subset of features in
which the maximum connected component contains at
least 50 nodes. Only for SC, we used k-means algo-
rithm as we did in the previous synthetic experiment,
and sorted the indices based on the distance from the
closest centroid. The detected maximum connected
component is defined as the subgraph for each basis
vector. To compare different sets of genes, we used
gene ontology (GO) (Ashburner, 2000) term enrich-
ment analysis. GO is a current standard for annotat-
ing genes (or gene products, i.e. proteins), providing
terms which specify gene products’ molecular function,
biological process, and localization to cellular compo-
nents. For each gene, we can search annotated terms
in GO, and we count how often each term appears in
the given set of genes. The statistical significance of
the terms can be evaluated by probabilities that the
terms are counted by chance using hypergeometric test.

The results are shown in Figure 3, in which the hori-
zontal axis is the negative log p-values (adjusted by
Bonferroni correction) and the vertical axis is the
number of enriched (significant) GO terms. We only
counted GO terms sequentially appearing on the con-
nected nodes in the graph. Even if the same GO term
appears at two nodes, they are not counted twice when
that node pair is not directly connected. This means
that nodes in a connected subgraph have to be related
to each other through the connection of the edges. We
here used k ∈ {5, 10, 15, 20} for all compared methods.

We first focus on the results obtained after rotation
(the solid lines). Graph FA found the largest number
of GO terms in all results in Figure 3 (except only for
− log10(p) of around 3 of k = 10, where graph PCA
had the largest number). This suggests that a sub-
graph found by graph FA can realize statistically sig-
nificant biological functions through the connections
on the graph because the larger number of significant
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(a) Graph FA (b) FA

(c) SC

Figure 2: Illustrative examples using a toy graph. The
input data was randomly generated by a Gaussian dis-
tribution in which the covariance is defined through
the graph and additional noise (see main text for de-
tail). The boxes in the right side represent basis vec-
tors, in which size of boxes indicates the absolute val-
ues of elements (filled: positive, and unfilled: nega-
tive). The width of edges represent the amount of co-
variances and the types of lines represent sign (solid:
positive, and dashed: negative). The basis vectors of
graph FA provides highly interpretable results (nodes
surrounded by the lines indicate a set of dimensions
having higher absolute values in the basis vector).

GO terms are shared by neighbouring nodes compared
to the other methods. The differences between graph
FA and graph PCA indicate that differences of sin-
gle variances in the models can bring largely different
results.

The rotation process increased the number of terms
for graph FA. Since the identification condition of the
original A is just for the computational reason, these
results are also reasonable.

6 Conclusion

We proposed Graph FA: factor analysis on graph for
analyzing coordinated variations of numerical features
on the graph. We showed that this approach has
the desirable interpretability due to the following two
links:
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Figure 3: The number of enriched GO terms (appear-
ing sequentially on neighboring nodes) as a function of
cutoff values of p-values. The bar of each point repre-
sents the standard deviation. The solid lines are with
rotation, and the dashed lines are without rotation.

(1) Gaussian graphical model and a path-based kernel

(2) Factor analysis and weighted kernel k-means

Although the graph FA procedure itself is quite sim-
ple, to the best of our knowledge, this approach has
not been considered in depth and the above relation
has not been recognized. The experiments on synthetic
and gene expression data demonstrated the effective-
ness of the approach.
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