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A Outline

In Section B, we give the counterexample establishing Proposition 1 and give theorem proofs for
the continuous rating setting. In Section C, we give theorem proofs for the discrete rating setting.
In Section D, we prove the lemmas used in our theorem proofs, beginning with lemmas common
to both the continuous rating setting and discrete rating setting and, then, presenting the lemmas
on the continuous rating setting and discrete rating setting, separately. In Section E, we provide
the proofs of the necessary and sufficient conditions. In Section F, we prove Proposition 2 and that
the models f(z,y) = 2'y and f(z,y) = |z — y||, are equivalent by adding a dimension. Finally, in
Section G, we give some bounds that we use in the proofs for reference.

Unless otherwise indicated, all probability statements are with respect to {;}ie[n,]U{Yu fue[na] Y
2 in the continuous ratings setting and with respect to {&;}ie[n,] Y {Yufuefna] V{Qu,1 fuena] ie[r—1] Y
Q in the discrete ratings setting.

B Proofs for Section 5.1

To begin, we introduce some additional notation. When y, and y, are random, we write [y 4
instead of R, , for emphasis.

Proof of Proposition 1. Consider the functions

and



Next, we analyze Pairwise-Rank (PR), bounding the probability that Pairwise-Rank cannot
distinguish between items ¢ and j when | f(x;, yu) — f(z;,yu)| > €, ie., the event

D5 5= Af(@iyu) + € < f(zj,94)} 0 {PR(u,4, 5,8, k) = 1)})
v {f(muyu) > f(mjayu) + 5} N {PR(u,i,j,ﬁ,k) = O})

Theorem B.1. Suppose Vu € [na], gu(2) is strictly increasing. Let €,0 >0 andn e (0, §). Suppose
that almost every y € Y is (§,0)-discriminative. Let r be a positive nondecreasing functzon such
that r(5) = 6 and r(n) < g. Suppose that almost every y € Y is r-discerning. Let 0 < v < 5. If

_1
p = max(n, ta My 2+O‘), nip? = 16, and ny is sufficiently large, for all u € [n2] and i # j € [n4],

the output of Pairwise-Rank with k =1 and 8 = p22"1 18 such that
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)+ (n = 1) exp(— )

Priz.y g0 (D5 5) < 2exp(—
2n1p2 )
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)7(n)) + 3(ng — 1)p* exp(—

The structure of the proof of Theorem B.1 is similar to the proof of Theorem 1 from Lee et al.
(2016). The lemmas are distinct, however.

Proof of Theorem B.1. Fix u € [nsg], i, € [n1] such that ¢ # j. Define:
Wi (B) = {v € [n2] : [N (u,0)| = B, (i,v), (j,v) € Q.
Further, define the events:

(ng — 1)p? 3(ng — 1)p?

A=A{Wi7(B)l e 3 ; 5 1},
1)
B={ max p(yu,yY,) =1-— 5},
)
S .
C = {|Ruv — p(Yu, Yo)| < <7 Yo e W7 (B8)}.

By several applications of the law of total probability, we have that
Pr(D;,, ;) = Pr(D;, ; ;|A, B,C)Pr(A, B,C) + Pr(Dy, ; ;|(An BnC)°)Pr((An BnC))
Pr(Dy ; ;|A, B,C) + Pr(A°) + Pr((An B n C)°|A)
Pr(Dy, ; ;|A, B,C) + Pr(A°) + Pr(B|A) + Pr(C°|A, B).

NN

We will upper bound each term in the above bound. By Lemma D.7, Pr(Dy, ; ;|A, B,C) = 0.
Setting A = % in Lemma D.1 yields that

(ng — 1)p? 3(ng — 1)p?
2 ’ 2 ])

)+ (12 = Dyexp(="120),

Pr(A€) = Pr(|W,7 (8)| ¢ [

(ng —1)p?
12

< 2exp(—



Lemma D.5 yields that

Pr(B[A) = Pr( max p(yu,yo) <1-— gIA) <Pr( max p(yy,y,) <1-r(n)lA)

veW, () veWy? (B)
(na—1)p?
< (1 ()] 3 (1)
ng — 1)p?
< exp(~(12 ) . ®

Line (1) follows by Lemma D.5 since conditional on A, Wii(3) > ("1;1)7’2 and line (2) fol-

lows by the inequality 1 — x < exp(—xz). Since by hypothesis a € (O,%) is fixed such that
_1 _1

p = max(n, 2+a,n2 27 there exists a sufficiently large no such that line (2) is less than 1.

Then, by Bayes rule, the union bound, and Lemma D.6,

Pr(C°|A)
Pr(B|A)

. o
= 2Pr(3v € Wi (8), [Ruw = plyas )] > $14)

Pr(C°|A, B) < < 2Pr(C°|A)

< - vt es-T |5

= 3na = D e | ")

5%n,p?
20

< 3(ny — 1)p? exp(—

)

where the last line follows because nip? > 16 and Vz > 16, [%J > . Putting it all together, we
have

(ng — 1)p? nip?
12
(ng —1)p?

2

Pr(Dy ; ;) < 2exp(— ) + (ng — 1) exp(—

)
§%n.p?
20

+ exp(—( )7(0)) + 3(ng — 1)p* exp(— )

Proof of Theorem 1. For any u € [na], i # j € [n1], define the event

Error;, ; o = ({f(®i, yu) + € < f(zj,9u)} 0 {Auiy =1})
U ({f (@i, yu) > f(@j,yu) + €} 0 {Au,ij = 0}).

Suppose that there exists u € [ng] and distinct 4,5 € [n1] such that Error, , ; occurs. Without

loss of generality suppose that f(x;,y.) + € < f(z;,y.), and A, ;; = 1. Then, inspection of the
Multi-Rank algorithm reveals that 1 = A, ;; = Pairwise-Rank(u, 1, j, 5, k). Thus, D¢ , ; occurs.

u,2,J



Therefore, by Theorem C.1 and the union bound,

Pr(3u € [na],i # j € [n1] s.t. Errory, ; ;)
< Pr(Ju e [na],i # j € [m] s.t. Dy, 5)
— 1p? 2
<na('y J2esp(- 25 1 2 = 1) exp(-E5)
ny — 1)p? 5%nqp?

+exp(— (20 ) 4 30, — 12 exp(~ )
Now, suppose that Yu € [n2] and 4, j € [n1] such that i # j, (Errory, ; ;) occurs. Then, by Lemma
D.2,6 =(64,...,0n,) with 6, = Copeland(A,,. ) satisfies disq.(, H) = 0. O

Proof of Corollary 1. Ignoring constants, the two dominant terms in the bound in Theorem 1 are
of the form n?ng exp(—ngp?) and n3n3 exp(—nip?). Then, under the conditions of Theorem B.1,
as ng «— ©

exp(2log(n1) + log(na) — n3®)
exp((1 + 2C1) log(ng) — n3®) — 0.

ning exp(—ngp?) <
<

Now, observe that

ning exp(—nip®) = exp(2log(ng) + 2log(n1) — n1p?)

< exp(2log(ng) + 2log(ng) — n3i%)
<

exp(4 max(log(ns), log(ny)) — n3%)

Suppose that n; = no. Then, clearly, the limit of the RHS as ny — o0 is 0. Now, suppose that

n1 < ng. Then, if C3% > 4, then as ny —> 0,

n3ni exp(—n1p?) < exp(4log(nz) — ni®)
<

exp([4 — C3*]log(nz2)) — 0.

C Proofs for Section 5.2

To begin, because the model for the discrete ratings section is different, we introduce new notation
in the interest of clarity. Fix y,,y, € V. Define

0 (Yus Yo) = Prg, gv.z..2 [Gu(f(@Ts,Yu)) — gu(f(@e, yu)) 9o (f (®s, 0)) — go(f (x4, 90))] = 0).
Note that in this setting, the meaning of (e, §)-discriminative is slightly different.

Definition C.1. Fix y € Y. Let ¢,6 > 0. We say that y is (e,d)-discriminative if z € B.(y)©
implies that p'(y,2z) <1 —4.



In a sense, the notion requires in addition that the distribution of the monotonic functions
reveals some differences in the preferences of the users.

Unless otherwise indicated, all probability statements are with respect to {;}ie[n,] U {Yu fue[na] Y
{au,1}uelna] ier—17 © 2. Next, we prove a theorem that is analogous to Theorem B.1. Recall the
notation:

Dyij= {f (@i, yu) + € < f(xj,9u)} 0 {PR(u, 1,5, 8,k) = 1)})
o ({f(w“yu) > f(wjvyu> + 6} N {PR(U,i,j,ﬂ, k) = O})

Theorem C.1. Let€¢,d > 0 andn € (0, ). Suppose that Pg is diverse and that almost every y € Y

is (£, 0)-discriminative. Let r be a positive nondecreasing function such that r($) > 6 and r(n) < 3.
_1 1
Suppose that almost every y € Y is r-discerning. Let % >a>a >0. If p > max(n, 2+a,n2 2Jra),

nip? =16, ny = Cy log(ng)ﬁ for some suitable universal constant C1, and ny is sufficiently large,

for all uw € [ny] and i # j € [n1], the output of Pairwise-Rank with k = ng and 8 = p22"1 is such
that

€ (ng — 1)272 711]?2 €
Prizy tyufaui.0(Dh ) <2 GXP(—T) + (n2 — 1) eXP(—T) + 2€XP(—7(Z)]€)
1 8%nip?
. [3(ns — 1)p?exp(—
+17T(§)[ (n2 = 1)p" exp(=—5—)
€ 3(ngy — 1)p?
Fexp([t — w(5) + () + tog(XU2 Dy

no — 1)p2
~klog(k) — 7(n) "2 1))

Proof of Theorem C.1. Fix u € [na], 4,7 € [n1] such that i # j. Define:
Wi (B) = {v € [na] : [N (u,0)| = B, (i,v), (j,v) € Q.
Further, define the events:

(ng — 1)p? 3(ng — 1)p?

A= %,
W Bl e l——F", 5 1}
_ (k) / J

B - {maX’UEW,i’j(B)p (yuvyv) 2 1 - 2}7

RS

C= {|Ruv - pl(yuayv)‘ <+, Vwe Wé’](ﬁ)}
E=A{f(xzi,yu) — f(x},Yyu)

M = {Fve W (B) st. o (Yu,ys) =1 — g and 3l € [L — 1] s.t. ayy € (f(x),Y0), f(xi,yo))}

> €}



By several applications of the law of total probability, we have that

Pr (D'sz) <Pr
=Pr uzj| )

(D +Pr(DS , |E°)
(D
<Pr(DS,;|A, B,C, M, E) + Pr(A°|E) + Pr(B°|A, E)
(
(
(¢

u1|) u,t
) J

+Pr(C°|A, B, E) + Pr(M°|A, B,C, E)
= Pr(D5;;|A, B,C, M, E) + Pr(A°) + Pr(B°|A, E) (3)
+Pr(C°|A, B,E) + Pr(M°|A, B,C, E)

Line (3) follows from the independence of € from {x,}c[pn,] and {Yo }ye[n,)- We will bound each
term in the above upper bound. By Lemma D.12,

Pr(DS , |A, B,C,M,E) = 0. (4)

u,,j

Setting A = % in Lemma D.1 yields that

Pr(a) = Pr(W i ()] ¢ (1210 e D

e 3~ L7y,
—1)p? 2
<2exp(~ 220 4y 1) exp(- "), (5)
Next, we bound Pr(B¢|A, E). By Bayes theorem,
Pr(B¢|A)
Pr(B°|AE) < ———=~
~ Pr(B°|A)
= TPu(B) (6)
Pr(B¢|A)
, 7
) "

Line (6) follows from the independence of € from {z,}e[n,] and {Y, }ve[n,]- Line (7) follows since
by hypothesis almost every y € ) is r-discerning.

Since almost every y € Y is ({,0d)-discriminative and r-discerning, and 7 > 0 is such that
r(n) < %, Lemma D.9 yields that

Pr(BF|A) = Pr(max, /(g 90) < 1 5[4)
< Pr(max( ) Wi J(,B),O (yuyyv) <1- T( )|A)
< exp((1— n(5) + 7() + 1oa(3 2k ktog(h) — ~() 2V )

Next, we bound Pr(C*|A, B, E). By Bayes theorem,

Pr(C¢|A, B)

P “|/A,B,E) < ———=~.
HC°IA, B B) < 55



Fix y, = y, r-discerning such that A and B occur. Then, since {€;}sc[n,]; {Yo}ve[no], and €2 are
independent and v, is r-discerning,

Pr{yv}vE[ng]1{1:5}56[”1]7n(|f(w7;7yu) - f(wj7yu)| > 6|’yu = yu)
= Prwi,®j(|f($i7yu> - f(wjayu)| > €|yu = yu)
€
= Prm77m](|f(w’tayu) - f(mjayu” > 6) >1- T(§)

Since the above bound holds for all y, such that A n B holds, taking the expectation of the above
bound with respect to y, over the set A n B gives

Pr(|f (@i ya) = F(@;,90)| > el 4, B) > 1= 7(3).

Thus,
Pr(C°|A, B
Pr(C°|A, B, E) < M 9)
1-— 7'(5)
_1 _1 ,
Since by hypothesis 1 > o > o/ > 0, p > max(n, 2t Mgy 2+O‘) and k = ng , if ny is sufficiently

large, the bound in line (8) is less than % Then, by Bayes rule, the union bound, and Lemma D.10,

c Pr(Ce|4) c

g , 5
= ZPI‘(HU € W;J(ﬂ)7 ‘Ru‘v - P (yuvyv)| > Z|A)

< 302~ )5 Pr(| Fuw — /(3 w0)| > §14) (10)
<3(ng —1)p° exp(*%2 V;J)

= 3(ny — 1)p? exp(—%Q [”14]’2J)

< 3(ns — 1)p? exp(~ ) (1)

where line (10) follows by the union bound and line (11) follows because n;p? > 16 and Vz > 15,
151> %
1 f%Jra 7%+a

Since by hypothesis 5 > a > 0, p > max(n, , Mg, ), and ny = C4 log(ng)ﬁ for some

constant C1, if ng is sufficiently large, the bound in line (9) is eventually less than % Thus, using
Bayes rule and Lemma D.11,

Pr(M°|A, B, E)
Pr(C|A, B, E)
< 2Pr(M°|A, B, E)

< 2exp(—1(k). (12)

Pr(M¢|A, B,C, E) <

EN|



Putting together lines (3), (4), (5), (7), (8), (9), (11), and (12) we have

ng — 1)p? nip? €
Pr(Df,5) <2exp(—2 D) 4y 1) exp(- 120 4 2exp(— ()
1 %n.p?
— 1)n? _
+1 7T(§)[3(n2 )p eXp( 20 )

(ng — 1)p?

o — 112
(ng —1)p . 1.

)k = klog(k) — 7(n)

+exp([1— /{(i) + 7(n) + log(3
O

Proof of Theorem 2. The proof follows the same steps as the proof of Theorem 1, but applies
Theorem C.1 instead of Theorem B.1. O

Proof of Corollary 2. The only new term that did not appear in Corollary 2 is, ignoring constants,
of the form

n3n? exp(log(nap® )k — klog(k) — nap?).
Using a > o/ and n; < Cyng, as ng —> o0,
nini exp(log(nap®)k — klog(k) — nap?)
< exp(2log(ny) + 2log(ny) + log(n2*)ng — ng log(na)a/ — n3®)

< exp((2 + 2C1) log(ns) + (2 — o) log(ng)ng‘/ —n3%)

— 0

D Technical Lemmas

We separate the lemmas into three sections: lemmas for both the continuous and discrete rating
settings, lemmas for the continuous rating setting, and lemmas for the discrete rating setting.

D.1 Lemmas Common to the Continuous Rating Setting and the Dis-
crete Rating Setting
Lemma D.1 establishes that for a user u € [ns] and distinct items ¢, j € [n1], with high probability

there are many other users that have rated items ¢ and j and many items in common with user u.
It is similar to Lemma 1 from Lee et al. (2016).

Lemma D.1. Fiz u € [ng], i # j € [n1], and let A > 0 and 2 < 8 < msz' Let Whi(B) = {v €
[n2] : |N(u,v)| = B, (i,v), (j,v) € Q}. Then,
Pro([Wy7(B)] ¢ [(1 = X)(n2 = 1)p?, (1 = X)(n2 — 1)p°])

X 2P 4y — 1) exp( "),

< 2exp(—



Proof. Define the following binary variables for all v € [na]\{u}. E, = 1 if |[N(u,v)| = S and 0
otherwise, F;, = 1 if (¢,v) € @ and 0 otherwise, and G, = 1 if (j,v) € © and 0 otherwise. Observe
that [W27(8)] = X,., EoFuGy. Fix 0 < a < b < ny — 1. Observe that if 3} . F,G, € [a,b]
and ), B, = ny — 1, then |[W27(3)| € [a,b]. Thus, the contrapositive implies that for any
0<a< b < ng — 1,

Pr9(|WZJ(ﬁ)| ¢ [a’b]) < PI“Q(Z F,G, ¢ [a’b] Y Z E, <ng— 1)

vFEU v#EU
<Pro(). F,G, ¢ [a,0]) + Pra( ), E, <ny — 1).
vFEU vEU

Y wzu FoGy is a binomial random variable with parameters no — 1 and p?. Letting a = (1 —\)(ng —
1)p? and b = (1 + \)(n2 — 1)p?, Chernoff’s multiplicative bound (Proposition G.2) yields that

A2(ng — 1)p?

Pro( )] F,Gy ¢ [(1 = X)(n2 — 1)p?, (1+ A)(ny — 1)p*]) < 2exp(— 3 ).

vFEU

Since N(u,v) is binomial with parameters n; and p?, by Chernoff’s multiplicative bound (Propo-
sition G.2),

PI‘Q(EU = 0) = PrQ(N(U,’U) < /8)

anQ)
2

< Pro(N(u,v) <

2
< exp(—22).

Then, by the union bound,

PI'Q(E E, <ng—1) =PrqAve [n\{u}: E, =0)
vFEU

2
nip

).

< (ng — 1) exp(—
O

To convert the pairwise comparisons to a ranking, we use the Copeland ranking procedure
(Algorithm 3 in the main document). Lemma D.2 establishes that if the output of the Pairwise-
Rank algorithm is such that for all 7, j € [n1] and u € [n2], Dy, ; ; does not occur, then applying the

Copeland ranking procedure to A (as defined in Multi-Rank) yields a & such that dise.(c, H) = 0.

Lemma D.2. Lete > 0, u € [nz2], A as defined in Multi-Rank (Algorithm 1), and 5, = Copeland(A,...).

If for all i # j € [n1] f(zi,yu) > f(2j,yu) + € implies that A, ;; = 1, then for all i # j € [n4]
ha(@is yu) > hu(@j,yu) and f (@i, y0) > f(25,50) + 2€ implies that 5., (i) > 0u(J)-

Proof. Let i # j € [n1] such that hy, (2, yu) > hu(xj,yy) and f(zi, yu) > f(2), yu) +2€. Let [ € [nq]
such that [ # ¢ and [ # j. We claim that if 4, ;; = 0, then A, ;; = 0. If A, ;; = 0, then by the
hypothesis £(zi,yu) < f{w1 ) + . Then,

f(xjayu) +2e < f('Ilayu) < f(l‘hyu) + €



so that f(z;,yu) + € < f(z1,y4). Then, by the hypothesis, A, ;; = 0, establishing the claim.
The contrapositive of the claim is that if A, ;; = 1, then A, ;; = 1. Then,

ni ni n1
I; = 2 Ay i = Z Ay i < Z Apig=1L—1<1;
=T I=1,0¢{,i} 11,1 ()i}
so that (%) > 7,(5). O

Recall the definition of our problem-specific constants: 7(e) = infy cy Pry, (dy(yo,yu) < €),
k(€) = infyoey Pry, (dy (Yo, Yu) > €), and v(€) = infoe(- v N Play ey GL € [L— 1] dr(2, @uy) <
€). Lemma D.3 establishes that under our assumptions, for all ¢ > 0, 7(¢) > 0, x(¢) < 1, and
~(e) > 0.

Lemma D.3. If there exists € > 0 such that T(€) = 0, or k(e) = 1, then there exists a point z € Y
such that Py(Be(z)) = 0. Similarly, if there exists € > 0 such that v(e) = 0, then there exists
z € [=N, N] such that P;(Be(z)) =0 for alll € [L —1].

Proof. Let € > 0 and suppose 7(¢) = 0. Then, there exists a sequence of points 21, 22, ... € Y such
that for every n, Py(B.(zn)) < % Since )Y is compact by assumption, there exists a convergent
subsequence z;,, 2i,, ... t0O 2.

We claim that for all 2’ € Y, there exists a sufficiently large N such that 2’ € B(z;,, ) if and only
if 2/ € Be(z). Fix 2/ € Be(z). Since B(z) is open, there exists § > 0 such that dy(z,2') < <e.
Let N large enough such that dy(z,z;,) < € —d. Then, by the triangle inequality,

d(,ziy) <d(Z',2) +d(ziy,2) SO +e—0 =€

so that 2’ € Be(ziy ). A similar argument shows the other direction of the claim. Since a probability
space has finite measure, by the dominated convergence theorem,

. . 1
Py(B(2)) = lim Py(Bi(s,) < lim = =0,

Next, suppose x(€) = 1. Then, there exists a sequence of points z1, za,... € ) such that for
every n, Py(Be(z,)¢) = 1 — L. Then, for every n, Py(Bc(z,)) < + A similar argument from the
7(+) case using the dominated convergence theorem shows that Py (B.(z)) = 0.

Since [—N, N] is compact and v has a similar definition to 7, the result for v(-) follows by an
argument similar to the one used for the 7(-) case. O

D.2 Lemmas for Continuous Rating Setting

Lemma D.4 uses the notion of r-discerning to relate the distance between points in ) and to a
lower bound on p(yu, y»).

Lemma D.4. Let r be a positive nondecreasing function. If y, € Y is r-discerning, then for any
€>0, if yy € Bc(yu), then p(yu,yy) > 1 —r(e).

Proof. Suppose that d(y,,y,) < €. Suppose that x; = x; and x; = x; such that |f(x;,y.) —
f(z;,yu)| > 2¢ and without loss of generality suppose that hy(z;,yu) = hy(z;,9,). Then, since f
is Lipschitz,

f(ﬂ%yv) = f($zayu) —€> f(xjvyu) +e= f(xjﬁyv)'

10



Hence, hy(zi, yv) = hy(2;,ys). Thus,

p(ymyv) = Prmi,:ﬂj(|f(wiayu) - f(mjayu” > 26) >1- T(€)7

where the last inequality follows from the hypothesis that y, is r-discerning. Thus, we conclude
the result. O

Lemma D.5 establishes that if S < [ny]\{u} is a large enough set, then with high probability
there is at least one element y, in S that tends to agree with y,.

Lemma D.5. Let r be a positive non-decreasing function and suppose that almost every y € Y is
r-discerning. Let S < [ng]\{u}. Then, Ve > 0,

Pryv,yu(mﬁ% P(Yu,Yu) <1 —1(e)) <[1 - T(E)J\SI.
ve

Proof. Fix y, =y, € Y that is r-discerning. By Lemma D.4, if y, = y, is such that d(y., y») <€,
then p(yu,yv) > 1 — r(e). Hence,

Pry, (d(yu, yv)) < €) < Pry, (p(Yu, Yo) > 1 —1(e)).
Then,
Pry, (p(Yu, Yv) <1 —1(€)) < Pry, (d(yu,Yv)) > €) =1 — Pry, (d(yu, Yov)) <€) <1 —7(e).

The RHS does not depend on ¥, and y,, y,, are independent and almost every y € Y is r-discerning,
so we can take the expectation with respect to y, to obtain

Pry, v, (p(Yo, yu) < 1 —1(€)) <1 —7(e). (13)
Finally,
Pr(y. s, (AKX PG ) < 1= 1(9) = Pry, g, (p(yo, yu) < 1= 1(e)"”]
< [1-7(e)]",
where tl)le first equality follows from the independence of y1, ..., yn, and the inequality follows from
line (13). O

Lemma D.6 establishes that R,, , concentrates around p(Yu, Yu)-

Lemma D.6. Let u # v € [n2], i # j € [n1], n >0, 8 =2, and W27 (B) be defined as in Lemma
D.1. Then,

.. 2
Pr(|Ru — Pt 90)| > Tl € Wi (8) < 2exp(~2 \/;J)

Proof. Fix y, = y, and y, = y,. Recall that if I(u,v) # &, then

1
Ry = Z H(hu(®s; yu) — hu(@t, yu)) (o (Ts, Y0) — ho(xt,90)) = 0}
(s,t)el(u,v)

11



Since I(u,v) consists of pairs of indices that do not overlap, conditioned on y, = Y., Y» = Y, and

any nonempty I(u,v), {1{(hu(®s, yu) — Pu(Tt, Yu)) (o (s, o) — o (@1, 90)) = 0} & (s,t) € I(u,v)}
is a set of independent random variables. Further, each has mean p(y,,y,). Thus, by Chernoff’s
bound (Proposition G.1),

2
Pr(|Ruw = p(0us 00)| > 119 = Y Yo = s 1(1,0) < exp(="2-|(u,v)])

When v e ve Wi (), [I(u,v)| = [gJ Since the above bound holds for all y,, y,, it follows that

.. 2
Pr(|Ruo — Pt 90)| > Tl € Wi (8) < 2exp(~L \/;J)

O

Lemma D.7 establishes that conditional on A, B, C (defined in the proof of Theorem B.1), the
event Dy ; ; does not occur with probability 1.

Lemma D.7. Under the setting described in Theorem B.1, let u € [na] and i # j € [n1]. Then,
Pr(Dt , ;|A,B,C) =0.

u,t,j
Proof. Define the events

Ey = {f(muyu) +te< f(x]ayu)}
E2 = {f(mwyu) > f($j7yu) + 6}

By the union bound and law of total probability,

u,t,J
+ Pr(PR(u, 1,5, 8,k) = 0n Es|A, B,C)
< Pr(PR(u,14,j,8,k) = 1|A, B,C, Ey)
+ Pr(PR(u,i,7,8,k) = 0|A, B,C, E»).

Pr(D;,, ;|A, B,C) < Pr(PR(u, 1,7, 8,k) = 1n E1|A, B,C)
r

The argument for bounding each of these is similar and, thus, we bound the term Pr(PR(u, i, 7, 8, k) =
1|4, B, C, Ey).

Fix {Yy = Yo }ve[ny] r-discerning and (§, d)-discriminative, {x, = 2} se[n,], and 2 = Q such that
the event A~ B n C n E; occurs. We claim that Pairwise-Rank puts V' = {v} (see Algorithm 2 for
definition of V) such that y, € Be (y4). On the event B, there is v € W27 (8) with p(yu,y.) = 1— 9.
Since y, is (§,6)-discriminative, it follows that y, € Be (y,). Suppose that w e W27 () such that
Yw € Bg(yu)®. Since y, is (5, 0)-discriminative, p(yw,yn) < 1 — 3. Then,

5
Ry < p(Yws Yu) + 1 (14)
3
1-25
=t
5
< p(yua yv) - Z
< Ruw (15)



where lines (14) and (15) follow by event C and v, w € W27 (). Thus, the claim follows. Conditional
on Ei, we have that f(z;,vy,) + ¢ < f(z;,ys). Then, using the Lipschitzness of f,

F@iy) < f@iya) + = < @), 00) — = < fl@,90)-

<
2 2

Since g, is strictly increasing by hypothesis, h,(2:,yv) < ho(2j,9ys). Thus, Pairwise-Rank with
k = 1 outputs 0. Consequently,

PI‘(PR(U, iaj767 k) = 1|Av B, O, En, {yv = y'u}ve[nz] {ms = xs}se[nl]a Q= Q) =0

Since almost every y € ) is r-discerning and (§,§)-discriminative, taking the expectation wrt
{Yu}vefna]s 1®s}se[ni], @ on the set An B n C n Ey of the last equality gives the result. O

D.3 Lemmas for Discrete Rating Setting
Lemma D.8 is the analogoue of Lemma D.4 for the discrete case. The proof is very similar.

Lemma D.8. Let r be a positive non-decreasing function. If y, € Y is r-discerning, then for any
€>0, if y» € Be(yu), then p'(yu,y0) > 1 —1(e).

Proof. Suppose y, is such that d(y,,y,) < e. We claim that under this assumption
P (YuYo) = Pra, o, (1 (@i yu) — f(@5,u)] > 2e). (16)

Fix g, = g, and g, = gy, and x; = x; and x; = z; such that |f(x;, y.) — f(z;,yu)| > 2e. Without
loss of generality, suppose that hy(x;, yu) = hy(2;,Yu). Then, since f is Lipschitz,

f(x'byv) = f(xﬂyu) —€> f(x]7yu) +ez= f(xj7y’u)
Hence, hy(zi,yy) = hy(x;, yy), establishing that
pl(yuvyv|gu = Gu,gv = gy)

= Pro,a; ([9u(f (@i, yu)) — gu(f (@5, yu)] g0 (f (@i, y0)) — gu(f(25,90))] = 0)
= Prmi@jqf(wiayu) - f(mﬁ yu)' > 26)' (17)

Since {gu, gv, T;, x;} are independent, taking the expectation with respect to g, and g, in line (17)
establishes line (16). Thus,

p/(yuayv) = Prmi,wj(‘f(wmyu) - f(wj’yu)| > 26) >1- T(G)’
where the last inequality follows from the hypothesis that y, is r-discerning. O
Lemma D.9 is the analogoue of Lemma D.5 for the discrete case.

Lemma D.9. Let ¢,6 > 0. Let r be a positive nondecreasing function such that r(e) = ¢ and
r(n) < § for some n > 0. Suppose that almost every y € Y is (¢, 0)-discriminative and r-discerning.
Let Ry = Ry = 0 be constants. Then, for any S < [na] depending on @ and k < Ry,

k
Pry, y, (max\¥) g o' (Yo, yu) < 1= 1(n) |Rr < |S] < Ry)

< exp((1 = k(€) + 7(n) + log(Ra))k — klog(k) — 7(n)R1)| Ry < [S] < Ra).
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Proof. Let Cy, = Pry, 4. (¢ (Yo, yu) <1 —1(n)).

Claim: C, <1-—17(n).

Fix y, = y, € Y r-discerning. By Lemma D.8, if y, = y, is such that d(y,,y,) < €, then
P (Yu,yv) > 1 —r(e€). Hence,

Pry, (d(Yu, Yv)) < €) < Pry, (0'(Yu, yo) > 1 = 7(c)).

Then,

Pry, (Pl(yu’yv) <1-r(e) < Pry“(d(yu, Yp)) >€) =1~ Pry, (d(Yu,Yv)) <€) <1 —17(€),

where the last inequality follows by the definition of 7(-). The RHS does not depend on y,, and
Yy, Yo, are independent, so we can take the expectation with respect to y, to establish the claim.
Claim: 1-C, <1—k(e).
Since almost every y € Y is (e, §)-discriminative and r(n) < 4, Y is almost-everywhere (¢, r(n))-
discriminative. Fix y, = ¥, such that y, is (e, 7(n))-discriminative. Then, Yy, € Y, p'(Yu, Y») >
1 — r(n) implies that dy (Y., y») < €. Thus,

Pry, (0 (Yus Yo) > 1 —1(n)) < Pry, (dy(yu, Yo <€)
=1- Pryv (dy(yu, yv) > 6)
< 1—k(e).

Since the RHS does not depend on y,,, and y,, and y, are independent, we can take the expectation
with respect to y, to establish the claim.
Main Probability Bound: Fix Q = Q such that Ry < |S| < Ra.

k
Pry, g, (max™) 0/ (4o, ya) <1 - r(n)|Q = Q)
k

&
<k Jmex <f|)cn5|l(1 —Cy)

e o <|f|> (1= ()71 = w(e))’

<k (B0 = )0 ) a8)
<kle{0{1}_aj§_l}exp(l + llog('lﬂ) —7([IS] = 1] — k(e)) (19)
= e exp([1 — w(e) + ()]l + llog(@) —)|S))
<kespl([1 = w(e) + )]k + kog( ) — r(n)ls) 20

= exp([1 — #(e) + 7(n) + log(|S))]k — klog(k) — T(n)[S5]))
<exp([1 —k(e) +7(n) + log(R1)]k — klog(k) — 7(n)R2))
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where line (18) follows from the the inequality (}) < (%¢)*, line (19) follows from the inequality
(1 —z) < exp(—=x), and line (20) follows since |S| = k and 1 — k() > 0 by Lemma D.3. Finally,
we can take the expectation with respect to £ = Q over the set Ry < |S| < R to conclude the

result. O

Lemma D.10 is the analogoue of Lemma D.6 for the discrete case.

Lemma D.10. Consider the discrete ratings setting. Let u # v € [na], i # j € [n1], n >0, 8 > 2,
and W3 (B3) be defined as in Lemma D.1. Then,

, Ui ' | B
PR~ /()| = Tlo e WEH(9) < 2exn(- 2 |2,
Proof. Fix yy = Yu, Yo = Yu, and gy, = gu, go = g»- Recall that if I(u,v) # ¢, then
1
Ry = m Z H[hu(s, yu) = hul®e, yu) [P (s, y0) — ho (@, 30)] = 0}

(s,t)el(u,v)

Since I(u,v) consists of pairs of indices that do not overlap, conditioned on y, = ¥y, Yy = Yu,
9u = Gu, 9o = gv and any nonempty I(u,v),

{1{(gu(f(msayu)) - gu(f(mtayu)))(gv(f(msayv)) - gv(f(mtayv))) = 0} : (57t) € I(U,U)}

is a set of independent random variables. Further, each has mean p'(yu, Yu|gu = Gu, gv = gv). Thus,
by Chernoff’s bound (Proposition G.1),

Pr(|Ru,v - pl(yuayv|gu = GusGv = g'u)| > Z|yu =YusYv = Yv, Gu = Gu,Gov = gv,I(u,U))

7]2
< exp(— L |1(u,0))

When v € v e Whi(B), [I(u,v)] = [gJ Since the above bound holds for all y.,, Yy, gugv, it follows
that

2
Pr(|Ruw — 0 (yu, yo)| > Z'U e Wii(B)) < zexp(_”Z VJ)_

O

Lemma D.11. Let €,§ > 0, % >a > o >0, and v be a positive nondecreasing function such
that r(§) = 0 and r(n) < g for some n > 0. Suppose that almost every y € Y is r-discerning and
<. 0)-discriminative. Fix u € [no], i # j € [n1], and k < (n2—1)p” As in the proof of Theorem C.1,
1 2

define

(ng — 1)p? 3(ng — 1)p?
2 ’ 2 ]}7

A={W,7(B) e

k 0
B = (max Gy o) (U 9) 2 1= 5},

E=A{lf(ziyu) — (@), yu)| > €}

M = {Fve WHi(B) s.t. p'(Yu,yo) =1 — g and 3l € [L —1] s.t. ayy € (f(xj,y0), f(xi,y0))}-
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Then,

Pr(M°|4, B, E) < exp(=1(7)k).
Proof. Fix {y, = Yu}ven,] r-discerning and (§,d)-discriminative, @ = Q, and {x; = 2,}e[n,] such
that A n B n E holds. Let R = {v e [n2]\{u} : v e W} (8) and p'(yu,ys) > 1 — $}. Events A and

B imply that |R| > k. Since y, is (£,d)-discriminative and for all v € R, p/(yu,y0) = 1 — 3, it
follows that for all v € R, y, € B< (yu).
By E, |f(zi,yu) — f(zj,yu)] > €. Suppose that f(z;,yu) > f(z;,ys) + € (the other case is

similar). Then, by Lipschitzness of f, for all v € R

Fgm) < g w) + & < F@iya) — Se < flzo ) —

€
4 4 2

Thus, for all ve R, (f(xj,yv), f(2i,yy)) is an open interval of length at least 5. Fix v" € [na]\{u}.
Since R is a finite set, the following is well-defined:

I:= ~ arg min Pria, biepy @€ [L—1] st avy € J). (21)
Je{(f(z5,yv),f (zi,y0)):vER}
Then,
Pr{avyl}(vv eER,Vle [L - 1]; Ayl ¢ (f(xja yv)7 f(xzvyv)”{yv = yv}ve[ng]v Q= Qa {:125 = xS}SE[nz])
= Pr{av,l}(vv € R7 Vie [L - 1]7 Q| ¢ (f(xﬁyv)? f(xia yv))) (22)
< Pr{av,l}(Vv eRVie[L—-1],a,;¢1) (23)
= Pr{avlyl}lE[L_l] (VZ € [L - 1]7 Q] ¢ I)k (24)
= [1=Pra, ey Gl [L—1] st ay € D]
€
< (-5 (25)
€

< exp(—’y(i)k‘). (26)

Line (22) follows from the independence of {Yy }ve[n,], 2, and {Zs}sen,] from {@. 1 }vefn,]1e[L—1]-
Line (23) follows from the definition of I in line (21) and because the monotonic functions {gy }ye[n,
are identically distributed. Line (24) follows since {g,}ser are i.i.d., line (25) follows from the
definition of v, and line (26) follows from the inequality 1 — z < exp(—=z). Note that since Pg is
diverse by hypothesis, by Lemma D.3, v(§) > 0.

Since {Yo }oena]s RU{T s} se[n, ] and { @y 1} ven,],ie[z—1] are independent and almost every y € ) is
r-discerning and (g, §)-discriminative, taking the expectation of line (26) with respect to {Yu }ve[ns],
Q, and {x,}e[n,] over An B n E finishes the proof.

O

Lemma D.12 gives a bound on the probability of Dy ; ; conditional on An BnCnEn M
(defined in the proof of Theorem C.1).

Lemma D.12. Under the setting described in Theorem C.1, let u € [n2] and i # j € [n1]. Then,

Pr(DS, ;|A,B,C,E,M) = 0.
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Proof. Define the sets

E = {f(wwyu) +e< f(wjayu)}
By = {f(zi,yu) > f(wjva) + €}

Then, by the union bound and the law of total probability,

Pr(D5,; ;|A, B,C, B, M) < Pr(PR(u,i,j, 8,k) = 1 n E1|A, B,C, E, M)
+ Pr(PR(u,i,j, 3, k) = 0 n E3|A, B,C, E, M)
< Pr(PR(u,4, 4, 8, k) = 1|A, B,C, Ey, M)

+ Pr(PR(u,i,7, 3, k) = 0|A, B,C, Es, M).

The argument for bounding each of these terms is similar, so we only bound Pr(PR(u,i,7,8,k) =
114, B,C, E1, M).

Fix {Y» = Yo }ve[ny] T-discerning and (g, 6)-discriminative, {xs = 2s}en,], @ = Q, and {a,; =
av,l}ve[nz],le[L—l] such that'A NBnCnE;nM occurs . We claim that the set V' in Pairwise-Rank
consists of vy, ..., v € W7 (B) such that for all [ € [k], y, € B<(yu). The event B implies that there

are v1,. .., v such that for all I € [k], p'(Yu, Yv,) =1 — g. Then, since y, is (§,J)-discriminative, it

follows that %y, , ..., ¥y, € Bs(yu). Suppose that w e W27 (3) such that y,, € Be(y,). Then, since
Yu is (§,0)-discriminative, it follows that that p'(yu,%w) <1 — 0. Then, for all [ € [£],

6
Rwﬂi = p/(ywayu) + 1 (27)
3
1—-¢
=T
é
< p/(yuvyvl) - Z
S Ry, (28)

where lines (27) and (28) follow by event C and v;,w € W2 (). Thus, Pairwise-Rank selects
1, .., v € WhI(B) such that for all I € [k], y,, € Bz (yu). Thus, the claim follows.
Event E; implies that f(z;,y.) + € < f(z;,yu). Fix [ € [k]. Then, by the Lipschitzness of f,

€

f(xhyvz)gf(xhyu)‘f'f<f(xj>yu)_ 9

4 <f(xj7yvz)_

2€
4
Hence, Vi € [k], f(zi,yv) + 5 < f(2j,Y0) and hy (24, y0,) < hy(75,90,). Then, event M implies
that there is some [ € [k] such that hy, (2, Yv,) < hy, (%, ys,). Thus, the majority vote outputs the
correct result. Thus,
Pr(PR(uaiaj7ﬂvk) = 1|AaBaC7 El,M,

{yo = yv}ve[n2]7 {x, = zs}se[nl]7

Q=0Q, {a'u,l = av,l}ve[ng],lE[L—l]) =0. (29)
Since line (29) holds for all {y,},e[n,] r-discerning and (§,d)-discriminative, {av,i}vefn,] ie[z—1]:

{zs}se[n,], 2 conditioned on the set the set A n B n C n Ey n M and almost every y € Y is
r-discerning and (§, §)-discriminative, the result follows. O
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E Proofs for Section 6

Proof of Theorem 3. By compactness of Y, there exists a finite subcover {Cy,...,C,} of J where
each open ball C; has diameter §. Since by assumption, for all 7 > 0 and y € Y, Py(B,(y)) > 0,
we have that Py(C;) > 0 for all i = 1,...,n. Let Q,, denote the event that for every [ € [n] and
i,7 € [n1], there exists u € [ng] such that y, € C; and we observe (i,u) € Q and (j,u) € €. Since
p >0, as ng — 0, Pr(Q,,) — 1.

Let {z; = Zi}ic[ni]» {Yu = Yutue[ns], and = Q such that Q,, occurs. Let o € S"**"2 be an

§-consistent minimizer of dis(-, H) over the sample. Towards a contradiction, suppose there exists
Yu and i # .7 € [nl] such that 0(7;7“‘) < U(j7 u), hu(xiayu) > hu(xjvyu)v and f(xla yu) > f(xjayv)"_e'
Without loss of generality, suppose that y, € C;.

Since @, occurs by assumption, there exists v € [ns] such that y, € Cy and (i,v), (j,v) € Q.
Since o is an §-consistent collection of rankings and the diameter of C is 5, o gives the same
ranking to y,, and y,. Then, since (i, u) < o(j,u), it follows that o(i,v) < o(j,v). By Lipschitzness

of f,

= f(xjayv)' (30)

N

Fiy) 2 f(enya) = 5 > flag o) +

Since g, is strictly increasing, line (30) implies that h,(2;,ys) > ho(xj,yv). Thus, o is not a
minimizer of dis(-, H)-a contradiction. Thus, Yu € [ny] and ¢ # j € [n1] if o(4,u) < o(j,u) and
ha (i, yu) > ho(2j,yu), then f(z;,y,) < f(xj,yu) + €, implying that dis.(c, H) = 0. O

Proof of Theorem 4. Fix {x; = i}ie[n,]- By compactness of ), there exists a finite subcover
{Cy,...,Cy} of Y where each open ball C; has diameter . For every [ € [n], fix z; € C) and define

g.
Pr=A{(i,7) : f(zi,21) > f(xj,20) + §}.
Fix [ € [n] and (i, j) € P,. Let Q;;27 denote the event that there exists y, € C; with (i,u), (j,u) €
Q and a4 € (f(z;,Yu), f(2i,yu)) for some g € [L — 1]. Further, define
Qny = Nielnl, (i.j)ep, Q-

Observe that by the Lipschitzness of f, for every z € Cy, if (i,7) € Py, then f(x;,2) > f(x;,2) + §.
Since n is fixed and finite, | P,| is fixed and finite, and the probability of observing a rating, p, is
fixed, there exists a positive constant C' > 0 such that Pry, o(QL% [{zs = zs}se[n,)) = C. Thus,
Pr(QLH [{@s = xs}se[n,)) — 1 as ny —> 0. Then, by the union bound,

. . ni i\ j
i Py (@l | = o)) < i n( 51 )Pry. QT (e = 2. uetu)
=0.
Since E[1{Qn, }|{xi}ie[n,]] < 1, by the dominated convergence theorem,
ngligoo PI‘(an) = n}ﬂooE{EI}E[l{an}H"BZ}ZE[TH]]
= Bg,y Jim  E[H{Qn, }[{zi}iefn,]

=1
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Now, condition on {Z; = Zi}ic[n,] {Yu = Yutuelna]s @ = Q{@ui = @uituens] ie[L—1] Such that

Qn, happens. Let 0 € §™*"2 be an g-consistent minimizer of &1\5(, H). Towards a contradiction,
suppose there exists y,, and i # j € [nq] such that o(i,u) < o(j,u), hu(zi, yu) > hu(z;,yu), and
(@i, yu) > f(z;,y0) + €. Without loss of generality, suppose that y,, € Ci. We have that (i, j) € P,

since

f(zi,21) = fi,yu) —

™

= f(xj’yu) +

] W oo ~300 ™

m

= f(mjvzl) +

Therefore, the event @, implies that there exists y, € Cy such that (i,v),(j,v) € ©Q and
there exists a, 4 € (f(2;,%), f(xi,ys)). By the Lipschitzness of f, f(z;,y,) < f(xi,ys), so that
h(zj,y») < h(zi,y,). Since o is g-consistent, o(i,v) < o(j,v). But, then o is not a minimizer of
dis(+, H) over the sample—a contradiction. Thus, Yu € [ng] and ¢ # j € [nq] if o(i,u) < o(j,u) and
hu(xia yu) > hu(mja yu)7 then f(xia yu) < f(xja yu) + ¢, implying that diSe(O', H) =0.

Proof of Theorem 5. Let €1 = 1,...,Tn, = Tny, Y1 = Y1, -- -, Yny = Yn,. Lowards a contradiction,
suppose that o is not an e-consistent collection of rankings over T. Then, there exists i, j € [n1]
and u, v € [na] such that (7,4, u), (i,4,v) € T and

dy(yua yv) < (31)

o(j,u) < o(i,u), (32)

o(j,v) > o(i,v). (33)

Further, by definition of T,

|f(xjayu) _f(xhyu)' > € (34)

|f(zisyo) = [, 50)] > € (35)

h(mi,yu) 7 h(xﬁyu) (36)

h(zi, yo) # h(xjv Yo) (37)

Since dis¢(o, H) = 0 by hypothesis, and by inequalities (32), (33), (34), (35), (36), and (37) it
follows that h(z;,y.) < h(zs,yu) and h(z;, yy) < h(z;,yy). Thus, by monotonicity of g, gy,

€+ f(xjayu) < f(xi,yu)’
€+ f(xhyU) < f(%ﬂ%)
Then,
f(xmyu) - f(xivyv) = f(xz,yu) - f(xjvyu) + f(xjayu) - f(xjayv) + f(xj,yv) - f(xhyv)
> 2e + f(xwyu) - f(zjayv)'
Then, rearranging the above equation and applying the Lipschitzness of f, we have that
2e < f(j,y0) = (25, 00) + (@i yu) = F(@6,00) < 2dy (Yo, yu),

which contradicts inequality (31). O
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F  Proof of Proposition 2 and other Results

In the following proposition, we give a simple illustrative example of a 1-Lipschitz function that is
(¢, 0)-discriminative and r-discerning.

Proposition F.1. Let X = [0,1], Y = [0,1], Px be the Lebesque measure over X, and Py be
the Lebesgue measure over ). Suppose that for all w € [ng], g, is strictly increasing. Consider the
function

_foz sz € [0,y]
flz,y) = { y—x :xe(y1]
Then, for all 1 > € > 0, every y € Y is (e, €?)-discriminative. Further, there exists a positive
nondecreasing r such that lim,__,or(z) = 0 and every y € Y is r-discerning.

Proof. Let € € (0,1) and suppose that |y; — ya| = €. Without loss of generality, suppose that
y1 < y2. Then, when a1 < 22 € (y1,y1 + €), f(z1,1y1) > f(x2,y1) and f(x1,y2) < f(x2,y2). Since
gu 1s strictly increasing, hi(z1,y1) > h1(T2,y1) and ho(z1,y2) < ho(wa,y2). Since Py X Px ((y1,y1 +
€) x (y1,y1 + €)) = €2, it follows that p(y1,y2) < 1 — €.

Clearly, there exists a positive nondecreasing r such that lim,_,o7(z) = 0 and every y € ) is
r-discerning. O

This example can easily be generalized to f(z,y) = |z — y|,. The following proposition shows
that by adding a dimension, the model f(z,y) = x'y with x,y € R? is a special case of the model
f(@,9) = |z — g, with ,g € R¢T1. A similar construction in the other direction exists.

Proposition F.2. Let x1,...,T,, € R? and yi, ... yYn, € R, There exist Ti,...,%p, € Ré+1
and g1, ..., Yn, € R such that Yu € [ng] and Vi # j € [m], ®ly, > xby. if and only if
|Zi = Gully > |25 — Gull,-

Proof. Let B = maX;c(p,] |i],. For all i € [n], there exists v; > 0 such that &; = (z,7;)" and
|Z;]l, = B (by continuity and monotonicity of ||-|,). For all u € [n2], define g, = (—yl,0)".
Fix u € [n2] and i # j € [n1]. Then,
a2 a2 a2 e 12 omts 2 s 12 ot
12 = Gully = 125 — Gully = 12:l5 + 1Gulz — 2250 — (12515 + |5l — 22590)

= —2E[Gy + 2E5Y,,
= wiyu - $§yu

The result follows. O

Proof of Proposition 2. 1. Consider a fixed y € Y. Fix ®s = x5 € X. Then,

Prg, (x1 € BH:(:g—yH-FZe(y)\BH:cz—yH—Qe(y))

<
< sup Px(B.(y)\B:—1(y))
z€[0,2]

r(€)

Taking the expectation with respect to xo establishes the first part of this result.

Pro, ([ |lz1 = yly = @2 — yl, | < 2€)
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Fix y, € Y and € > 0 and set § = QPX(B%(yu))z. Fix y, € Be(yu)® n V. If ®1 = 21 € B (yu)
and xz = 72 € B¢ (yy), then

Lf (1, yu) = [ (22, yu)][f (21, 90) = f22,90)] <0

A similar argument applies to the case ©1 = 21 € B (y,) and x2 = 72 € Bg (y,). Thus, since
by hypothesis, g, is strictly increasing for all u € [nz],

P(Yu, Yo) <1 —0.

2. Both results follow immediately.

G Useful Bounds

Proposition G.1 (Chgrnoﬂ:"—Hoeffding’s Bound). Let X1,..., X, be independent random variables
with Xi € [ai,bi]. Let X = %Z?:l Xi. Then,
2n2t2

iy (bi —ai)?

Proposition G.2 (Chernoff’s multiplicative bound). Let Xy,...,X,, be independent random vari-
ables with values in [0,1]. Let X = > | X;. Then, for any € > 0,

Pr(|X —E[X]| > t) < 2exp(— ).

2 E[X]
3

2 E[X]
2

Pr(X > (1+ €)E[X]) < exp(— ),

Pr(X < (1 —¢)E[X]) < exp(— ).
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