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A Outline

In Section B, we give the counterexample establishing Proposition 1 and give theorem proofs for
the continuous rating setting. In Section C, we give theorem proofs for the discrete rating setting.
In Section D, we prove the lemmas used in our theorem proofs, beginning with lemmas common
to both the continuous rating setting and discrete rating setting and, then, presenting the lemmas
on the continuous rating setting and discrete rating setting, separately. In Section E, we provide
the proofs of the necessary and sufficient conditions. In Section F, we prove Proposition 2 and that
the models fpx, yq “ xty and fpx, yq “ }x´ y}2 are equivalent by adding a dimension. Finally, in
Section G, we give some bounds that we use in the proofs for reference.

Unless otherwise indicated, all probability statements are with respect to txiuiPrn1sYtyuuuPrn2sY

Ω in the continuous ratings setting and with respect to txiuiPrn1sYtyuuuPrn2sYtau,luuPrn2s,lPrL´1sY

Ω in the discrete ratings setting.

B Proofs for Section 5.1

To begin, we introduce some additional notation. When yu and yv are random, we write Ru,v

instead of Ru,v for emphasis.

Proof of Proposition 1. Consider the functions

fpzq “

"

εz : z P r0, 12 s
εp1´ zq : z P p 12 , 1s

and

gpzq “

"

´εz : z P r0, 12 s
εpz ´ 1q : z P p 12 , 1s
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Next, we analyze Pairwise-Rank (PR), bounding the probability that Pairwise-Rank cannot
distinguish between items i and j when |fpxi, yuq ´ fpxj , yuq| ą ε, i.e., the event

Dε
u,i,j – tfpxi,yuq ` ε ă fpxj ,yuqu X tPRpu, i, j, β, kq “ 1quq

Y tfpxi,yuq ą fpxj ,yuq ` εu X tPRpu, i, j, β, kq “ 0uq.

Theorem B.1. Suppose @u P rn2s, gupzq is strictly increasing. Let ε, δ ą 0 and η P p0, ε2 q. Suppose
that almost every y P Y is p ε2 , δq-discriminative. Let r be a positive nondecreasing function such

that rp ε2 q ě δ and rpηq ă δ
2 . Suppose that almost every y P Y is r-discerning. Let 0 ă α ă 1

2 . If

p ě maxpn
´ 1

2`α
1 , n

´ 1
2`α

2 q, n1p
2 ě 16, and n2 is sufficiently large, for all u P rn2s and i ‰ j P rn1s,

the output of Pairwise-Rank with k “ 1 and β “ p2n1

2 is such that

Prtxiu,tyuu,ΩpD
ε
u,i,jq ď 2 expp´

pn2 ´ 1qp2

12
q ` pn2 ´ 1q expp´

n1p
2

8
q

` expp´p
pn2 ´ 1qp2

2
qτpηqq ` 3pn2 ´ 1qp2 expp´

δ2n1p
2

20
q.

The structure of the proof of Theorem B.1 is similar to the proof of Theorem 1 from Lee et al.
(2016). The lemmas are distinct, however.

Proof of Theorem B.1. Fix u P rn2s, i, j P rn1s such that i ‰ j. Define:

W i,j
u pβq “ tv P rn2s : |Npu, vq| ě β, pi, vq, pj, vq P Ωu.

Further, define the events:

A “ t|W i,j
u pβq| P r

pn2 ´ 1qp2

2
,

3pn2 ´ 1qp2

2
su,

B “ t max
vPW i,j

u pβq
ρpyu,yvq ě 1´

δ

2
u,

C “ t|Ruv ´ ρpyu,yvq| ď
δ

4
, @v PW i,j

u pβqu.

By several applications of the law of total probability, we have that

PrpDε
u,i,jq “ PrpDε

u,i,j |A,B,CqPrpA,B,Cq ` PrpDε
u,i,j |pAXB X Cq

cqPrppAXB X Cqcq

ď PrpDε
u,i,j |A,B,Cq ` PrpAcq ` PrppAXB X Cqc|Aq

ď PrpDε
u,i,j |A,B,Cq ` PrpAcq ` PrpBc|Aq ` PrpCc|A,Bq.

We will upper bound each term in the above bound. By Lemma D.7, PrpDε
u,i,j |A,B,Cq “ 0.

Setting λ “ 1
2 in Lemma D.1 yields that

PrpAcq “ Prp|W i,j
u pβq| R r

pn2 ´ 1qp2

2
,

3pn2 ´ 1qp2

2
sq

ď 2 expp´
pn2 ´ 1qp2

12
q ` pn2 ´ 1q expp´

n1p
2

8
q.
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Lemma D.5 yields that

PrpBc|Aq “ Prp max
vPW i,j

u pβq
ρpyu,yvq ă 1´

δ

2
|Aq ď Prp max

vPW i,j
u pβq

ρpyu,yvq ă 1´ rpηq|Aq

ď r1´ τpηqs
pn2´1qp2

2 (1)

ď expp´p
pn2 ´ 1qp2

2
qτpηqq. (2)

Line (1) follows by Lemma D.5 since conditional on A, W i,j
u pβq ě

pn1´1qp2

2 and line (2) fol-
lows by the inequality 1 ´ x ď expp´xq. Since by hypothesis α P p0, 12 q is fixed such that

p ě maxpn
´ 1

2`α
1 , n

´ 1
2`α

2 q, there exists a sufficiently large n2 such that line (2) is less than 1
2 .

Then, by Bayes rule, the union bound, and Lemma D.6,

PrpCc|A,Bq ď
PrpCc|Aq

PrpB|Aq
ď 2 PrpCc|Aq

“ 2 PrpDv PW i,j
u pβq, |Ruv ´ ρpyu,yvq| ą

δ

4
|Aq

ď 3pn2 ´ 1qp2 expp´
δ2

4

Z

β

2

^

q

“ 3pn2 ´ 1qp2 expp´
δ2

4

Z

n1p
2

4

^

q

ď 3pn2 ´ 1qp2 expp´
δ2n1p

2

20
q

where the last line follows because n1p
2 ě 16 and @x ě 16,

X

x
4

\

ě x
5 . Putting it all together, we

have

PrpDε
u,i,jq ď 2 expp´

pn2 ´ 1qp2

12
q ` pn2 ´ 1q expp´

n1p
2

8
q

` expp´p
pn2 ´ 1qp2

2
qτpηqq ` 3pn2 ´ 1qp2 expp´

δ2n1p
2

20
q

Proof of Theorem 1. For any u P rn2s, i ‰ j P rn1s, define the event

Errorεu,i,j “ ptfpxi,yuq ` ε ă fpxj ,yuqu X tAu,i,j “ 1uq

Y ptfpxi,yuq ą fpxj ,yuq ` εu X tAu,i,j “ 0uq.

Suppose that there exists u P rn2s and distinct i, j P rn1s such that Errorεu,i,j occurs. Without
loss of generality suppose that fpxi,yuq ` ε ă fpxj ,yuq, and Au,i,j “ 1. Then, inspection of the
Multi-Rank algorithm reveals that 1 “ Au,i,j “ Pairwise-Rankpu, i, j, β, kq. Thus, Dε

u,i,j occurs.
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Therefore, by Theorem C.1 and the union bound,

PrpDu P rn2s, i ‰ j P rn1s s.t. Errorεu,i,jq

ď PrpDu P rn2s, i ‰ j P rn1s s.t. Dε
u,i,jq

ď n2

ˆ

n1
2

˙

r2 expp´
pn2 ´ 1qp2

12
q ` pn2 ´ 1q expp´

n1p
2

8
q

` expp´p
pn2 ´ 1qp2

2
qτpηqq ` 3pn2 ´ 1qp2 expp´

δ2n1p
2

20
qs.

Now, suppose that @u P rn2s and i, j P rn1s such that i ‰ j, pErrorεu,i,jq
c occurs. Then, by Lemma

D.2, pσ “ ppσ1, . . . , pσn2q with pσu “ CopelandpAu,:,:q satisfies dis2εppσ,Hq “ 0.

Proof of Corollary 1. Ignoring constants, the two dominant terms in the bound in Theorem 1 are
of the form n21n2 expp´n2p

2q and n21n
2
2 expp´n1p

2q. Then, under the conditions of Theorem B.1,
as n2 ÐÝ 8

n21n2 expp´n2p
2q ď expp2 logpn1q ` logpn2q ´ n

2α
2 q

ď exppp1` 2C1q logpn2q ´ n
2α
2 q ÝÑ 0.

Now, observe that

n21n
2
2 expp´n1p

2q “ expp2 logpn2q ` 2 logpn1q ´ n1p
2q

ď expp2 logpn2q ` 2 logpn1q ´ n
2α
1 q

ď expp4 maxplogpn2q, logpn1qq ´ n
2α
1 q

Suppose that n1 ě n2. Then, clearly, the limit of the RHS as n2 ÝÑ 8 is 0. Now, suppose that
n1 ă n2. Then, if C2α

2 ą 4, then as n2 ÝÑ 8,

n22n
2
1 expp´n1p

2q ď expp4 logpn2q ´ n
2α
1 q

ď exppr4´ C2α
2 s logpn2qq ÝÑ 0.

C Proofs for Section 5.2

To begin, because the model for the discrete ratings section is different, we introduce new notation
in the interest of clarity. Fix yu, yv P Y. Define

ρ1pyu, yvq “ Prgu,gv,xs,xtrgupfpxs, yuqq ´ gupfpxt, yuqqsrgvpfpxs, yvqq ´ gvpfpxt, yvqqs ě 0q.

Note that in this setting, the meaning of pε, δq-discriminative is slightly different.

Definition C.1. Fix y P Y. Let ε, δ ą 0. We say that y is pε, δq-discriminative if z P Bεpyq
c

implies that ρ1py, zq ă 1´ δ.
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In a sense, the notion requires in addition that the distribution of the monotonic functions
reveals some differences in the preferences of the users.

Unless otherwise indicated, all probability statements are with respect to txiuiPrn1sYtyuuuPrn2sY

tau,luuPrn2s,lPrL´1s Y Ω. Next, we prove a theorem that is analogous to Theorem B.1. Recall the
notation:

Dε
u,i,j – ptfpxi,yuq ` ε ă fpxj ,yuqu X tPRpu, i, j, β, kq “ 1quq

Y ptfpxi,yuq ą fpxj ,yuq ` εu X tPRpu, i, j, β, kq “ 0uq.

Theorem C.1. Let ε, δ ą 0 and η P p0, ε4 q. Suppose that PG is diverse and that almost every y P Y
is p ε4 , δq-discriminative. Let r be a positive nondecreasing function such that rp ε4 q ě δ and rpηq ă δ

2 .

Suppose that almost every y P Y is r-discerning. Let 1
2 ą α ą α1 ą 0. If p ě maxpn

´ 1
2`α

1 , n
´ 1

2`α
2 q,

n1p
2 ě 16, n1 ě C1 logpn2q

1
2α for some suitable universal constant C1, and n2 is sufficiently large,

for all u P rn2s and i ‰ j P rn1s, the output of Pairwise-Rank with k “ nα
1

2 and β “ p2n1

2 is such
that

Prtxiu,tyuu,tau,lu,ΩpD
ε
u,i,jq ď2 expp´

pn2 ´ 1qp2

12
q ` pn2 ´ 1q expp´

n1p
2

8
q ` 2 expp´γp

ε

4
qkq

`
1

1´ rp ε2 q
r3pn2 ´ 1qp2 expp´

δ2n1p
2

20
q

` exppr1´ κp
ε

2
q ` τpηq ` logp

3pn2 ´ 1qp2

2
qsk

´k logpkq ´ τpηq
pn2 ´ 1qp2

2
qs.

Proof of Theorem C.1. Fix u P rn2s, i, j P rn1s such that i ‰ j. Define:

W i,j
u pβq “ tv P rn2s : |Npu, vq| ě β, pi, vq, pj, vq P Ωu.

Further, define the events:

A “ t|W i,j
u pβq| P r

pn2 ´ 1qp2

2
,

3pn2 ´ 1qp2

2
su,

B “ tmax
pkq

vPW i,j
u pβq

ρ1pyu,yvq ě 1´
δ

2
u,

C “ t|Ruv ´ ρ
1pyu,yvq| ď

δ

4
, @v PW i,j

u pβqu

E “ t|fpxi,yuq ´ fpxj ,yuq| ą εu

M “ tDv PW i,j
u pβq s.t. ρ1pyu,yvq ě 1´

δ

2
and Dl P rL´ 1s s.t. av,l P pfpxj ,yvq, fpxi,yvqqu
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By several applications of the law of total probability, we have that

PrpDε
u,i,jq ďPrpDε

u,i,j |Eq ` PrpDε
u,i,j |E

cq

“PrpDε
u,i,j |Eq

ďPrpDε
u,i,j |A,B,C,M,Eq ` PrpAc|Eq ` PrpBc|A,Eq

`PrpCc|A,B,Eq ` PrpM c|A,B,C,Eq

“PrpDε
u,i,j |A,B,C,M,Eq ` PrpAcq ` PrpBc|A,Eq (3)

`PrpCc|A,B,Eq ` PrpM c|A,B,C,Eq

Line (3) follows from the independence of Ω from txsusPrn1s and tyvuvPrn2s. We will bound each
term in the above upper bound. By Lemma D.12,

PrpDε
u,i,j |A,B,C,M,Eq “ 0. (4)

Setting λ “ 1
2 in Lemma D.1 yields that

PrpAcq “ Prp|W i,j
u pβq| R r

pn2 ´ 1qp2

2
,

3pn2 ´ 1qp2

2
sq

ď 2 expp´
pn2 ´ 1qp2

12
q ` pn2 ´ 1q expp´

n1p
2

8
q. (5)

Next, we bound PrpBc|A,Eq. By Bayes theorem,

PrpBc|A,Eq ď
PrpBc|Aq

PrpE|Aq

“
PrpBc|Aq

PrpEq
(6)

ă
PrpBc|Aq

1´ rp ε2 q
. (7)

Line (6) follows from the independence of Ω from txsusPrn1s and tyvuvPrn2s. Line (7) follows since
by hypothesis almost every y P Y is r-discerning.

Since almost every y P Y is p ε4 , δq-discriminative and r-discerning, and η ą 0 is such that

rpηq ă δ
2 , Lemma D.9 yields that

PrpBc|Aq “ Prpmax
pkq

vPW i,j
u pβq

ρ1pyu,yvq ă 1´
δ

2
|Aq

ď Prpmax
pkq

vPW i,j
u pβq

ρ1pyu,yvq ă 1´ rpηq|Aq

ď exppp1´ κp
ε

4
q ` τpηq ` logp3

pn2 ´ 1qp2

2
qqk ´ k logpkq ´ τpηq

pn2 ´ 1qp2

2
qq. (8)

Next, we bound PrpCc|A,B,Eq. By Bayes theorem,

PrpCc|A,B,Eq ď
PrpCc|A,Bq

PrpE|A,Bq
.
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Fix yu “ yu r-discerning such that A and B occur. Then, since txsusPrn1s, tyvuvPrn2s, and Ω are
independent and yu is r-discerning,

PrtyvuvPrn2s
,txsusPrn1s

,Ωp|fpxi, yuq ´ fpxj , yuq| ą ε|yu “ yuq

“ Prxi,xj p|fpxi, yuq ´ fpxj , yuq| ą ε|yu “ yuq

“ Prxi,xj p|fpxi, yuq ´ fpxj , yuq| ą εq ą 1´ rp
ε

2
q.

Since the above bound holds for all yu such that AXB holds, taking the expectation of the above
bound with respect to yu over the set AXB gives

Prp|fpxi,yuq ´ fpxj ,yuq| ą ε|A,Bq ą 1´ rp
ε

2
q.

Thus,

PrpCc|A,B,Eq ă
PrpCc|A,Bq

1´ rp ε2 q
. (9)

Since by hypothesis 1
2 ą α ą α1 ą 0, p ě maxpn

´ 1
2`α

1 , n
´ 1

2`α
2 q and k “ nα

1

2 , if n2 is sufficiently
large, the bound in line (8) is less than 1

2 . Then, by Bayes rule, the union bound, and Lemma D.10,

PrpCc|A,Bq ď
PrpCc|Aq

PrpB|Aq
ď 2 PrpCc|Aq

“ 2 PrpDv PW i,j
u pβq, |Ruv ´ ρ

1pyu,yvq| ą
δ

4
|Aq

ď 3pn2 ´ 1qp2 Prp|Ruv ´ ρ
1pyu,yvq| ą

δ

4
|Aq (10)

ď 3pn2 ´ 1qp2 expp´
δ2

4

Z

β

2

^

q

“ 3pn2 ´ 1qp2 expp´
δ2

4

Z

n1p
2

4

^

q

ď 3pn2 ´ 1qp2 expp´
δ2n1p

2

20
q (11)

where line (10) follows by the union bound and line (11) follows because n1p
2 ě 16 and @x ě 15,

X

x
4

\

ě x
5 .

Since by hypothesis 1
2 ą α ą 0, p ě maxpn

´ 1
2`α

1 , n
´ 1

2`α
2 q, and n1 ě C1 logpn2q

1
2α for some

constant C1, if n2 is sufficiently large, the bound in line (9) is eventually less than 1
2 . Thus, using

Bayes rule and Lemma D.11,

PrpM c|A,B,C,Eq ď
PrpM c|A,B,Eq

PrpC|A,B,Eq

ď 2 PrpM c|A,B,Eq

ď 2 expp´γp
ε

4
qkq. (12)
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Putting together lines (3), (4), (5), (7), (8), (9), (11), and (12) we have

PrpDε
u,i,jq ď2 expp´

pn2 ´ 1qp2

12
q ` pn2 ´ 1q expp´

n1p
2

8
q ` 2 expp´γp

ε

4
qkq

`
1

1´ rp ε2 q
r3pn2 ´ 1qp2 expp´

δ2n1p
2

20
q

` exppr1´ κp
ε

4
q ` τpηq ` logp3

pn2 ´ 1qp2

2
qsk ´ k logpkq ´ τpηq

pn2 ´ 1qp2

2
qs.

Proof of Theorem 2. The proof follows the same steps as the proof of Theorem 1, but applies
Theorem C.1 instead of Theorem B.1.

Proof of Corollary 2. The only new term that did not appear in Corollary 2 is, ignoring constants,
of the form

n22n
2
1 expplogpn2p

2qk ´ k logpkq ´ n2p
2q.

Using α ą α1 and n1 ď C1n2, as n2 ÝÑ 8,

n22n
2
1 expplogpn2p

2qk ´ k logpkq ´ n2p
2q

ď expp2 logpn2q ` 2 logpn1q ` logpn2α2 qn
α1

2 ´ n
α1

2 logpn2qα
1 ´ n2α2 q

ď exppp2` 2C1q logpn2q ` p2α´ α
1q logpn2qn

α1

2 ´ n
2α
2 q

ÝÑ 0

D Technical Lemmas

We separate the lemmas into three sections: lemmas for both the continuous and discrete rating
settings, lemmas for the continuous rating setting, and lemmas for the discrete rating setting.

D.1 Lemmas Common to the Continuous Rating Setting and the Dis-
crete Rating Setting

Lemma D.1 establishes that for a user u P rn2s and distinct items i, j P rn1s, with high probability
there are many other users that have rated items i and j and many items in common with user u.
It is similar to Lemma 1 from Lee et al. (2016).

Lemma D.1. Fix u P rn2s, i ‰ j P rn1s, and let λ ą 0 and 2 ď β ď n1p
2

2 . Let W i,j
u pβq “ tv P

rn2s : |Npu, vq| ě β, pi, vq, pj, vq P Ωu. Then,

PrΩp|W
i,j
u pβq| R rp1´ λqpn2 ´ 1qp2, p1´ λqpn2 ´ 1qp2sq

ď 2 expp´
λ2pn2 ´ 1qp2

3
q ` pn2 ´ 1q expp´

n1p
2

8
q.
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Proof. Define the following binary variables for all v P rn2sztuu. Ev “ 1 if |Npu, vq| ě β and 0
otherwise, Fv “ 1 if pi, vq P Ω and 0 otherwise, and Gv “ 1 if pj, vq P Ω and 0 otherwise. Observe
that |W i,j

u pβq| “
ř

v‰uEvFvGv. Fix 0 ď a ă b ď n2 ´ 1. Observe that if
ř

v‰u FvGv P ra, bs

and
ř

v‰uEv “ n2 ´ 1, then |W i,j
u pβq| P ra, bs. Thus, the contrapositive implies that for any

0 ď a ă b ď n2 ´ 1,

PrΩp|W
i,j
u pβq| R ra, bsq ď PrΩp

ÿ

v‰u

FvGv R ra, bs Y
ÿ

v‰u

Ev ă n2 ´ 1q

ď PrΩp
ÿ

v‰u

FvGv R ra, bsq ` PrΩp
ÿ

v‰u

Ev ă n2 ´ 1q.

ř

v‰u FvGv is a binomial random variable with parameters n2´1 and p2. Letting a “ p1´λqpn2´
1qp2 and b “ p1` λqpn2 ´ 1qp2, Chernoff’s multiplicative bound (Proposition G.2) yields that

PrΩp
ÿ

v‰u

FvGv R rp1´ λqpn2 ´ 1qp2, p1` λqpn2 ´ 1qp2sq ď 2 expp´
λ2pn2 ´ 1qp2

3
q.

Since Npu, vq is binomial with parameters n1 and p2, by Chernoff’s multiplicative bound (Propo-
sition G.2),

PrΩpEv “ 0q “ PrΩpNpu, vq ď βq

ď PrΩpNpu, vq ď
n1p

2

2
q

ď expp´
n1p

2

8
q.

Then, by the union bound,

PrΩp
ÿ

v‰u

Ev ă n2 ´ 1q “ PrΩpDv P rn2sztuu : Ev “ 0q

ď pn2 ´ 1q expp´
n1p

2

8
q.

To convert the pairwise comparisons to a ranking, we use the Copeland ranking procedure
(Algorithm 3 in the main document). Lemma D.2 establishes that if the output of the Pairwise-
Rank algorithm is such that for all i, j P rn1s and u P rn2s, D

ε
u,i,j does not occur, then applying the

Copeland ranking procedure to A (as defined in Multi-Rank) yields a pσ such that dis2εppσ,Hq “ 0.

Lemma D.2. Let ε ą 0, u P rn2s, A as defined in Multi-Rank (Algorithm 1), and pσu “ CopelandpAu,:,:q.
If for all i ‰ j P rn1s fpxi, yuq ą fpxj , yuq ` ε implies that Au,i,j “ 1, then for all i ‰ j P rn1s
hupxi, yuq ą hupxj , yuq and fpxi, yuq ą fpxj , yuq ` 2ε implies that pσupiq ą pσupjq.

Proof. Let i ‰ j P rn1s such that hupxi, yuq ą hupxj , yuq and fpxi, yuq ą fpxj , yuq`2ε. Let l P rn1s
such that l ‰ i and l ‰ j. We claim that if Au,i,l “ 0, then Au,j,l “ 0. If Au,i,l “ 0, then by the
hypothesis fpxi, yuq ď fpxl, yuq ` ε. Then,

fpxj , yuq ` 2ε ă fpxi, yuq ď fpxl, yuq ` ε

9



so that fpxj , yuq ` ε ă fpxl, yuq. Then, by the hypothesis, Au,j,l “ 0, establishing the claim.
The contrapositive of the claim is that if Au,j,l “ 1, then Au,i,l “ 1. Then,

Ij “
n1
ÿ

l“1,l‰j

Au,j,l “
n1
ÿ

l“1,lRtj,iu

Au,j,l ď
n1
ÿ

l“1,lRtj,iu

Au,i,l “ Ii ´ 1 ă Ii

so that pσupiq ą pσupjq.

Recall the definition of our problem-specific constants: τpεq “ infy0PY PryupdYpy0,yuq ď εq,
κpεq “ infy0PY PryupdYpy0,yuq ą εq, and γpεq “ infzPr´N,Ns Ptau,lulPrL´1s

pDl P rL´ 1s : dRpz,au,lq ď
εq. Lemma D.3 establishes that under our assumptions, for all ε ą 0, τpεq ą 0, κpεq ă 1, and
γpεq ą 0.

Lemma D.3. If there exists ε ą 0 such that τpεq “ 0, or κpεq “ 1, then there exists a point z P Y
such that PYpBεpzqq “ 0. Similarly, if there exists ε ą 0 such that γpεq “ 0, then there exists
z P r´N,N s such that PlpBεpzqq “ 0 for all l P rL´ 1s.

Proof. Let ε ą 0 and suppose τpεq “ 0. Then, there exists a sequence of points z1, z2, . . . P Y such
that for every n, PYpBεpznqq ď

1
n . Since Y is compact by assumption, there exists a convergent

subsequence zi1 , zi2 , . . . to z.
We claim that for all z1 P Y, there exists a sufficiently large N such that z1 P BεpziN q if and only

if z1 P Bεpzq. Fix z1 P Bεpzq. Since Bεpzq is open, there exists δ ą 0 such that dYpz, z
1q ă δ ă ε.

Let N large enough such that dYpz, ziN q ď ε´ δ. Then, by the triangle inequality,

dpz1, ziN q ď dpz1, zq ` dpziN , zq ď δ ` ε´ δ “ ε

so that z1 P BεpziN q. A similar argument shows the other direction of the claim. Since a probability
space has finite measure, by the dominated convergence theorem,

PYpBεpzqq “ lim
nÝÑ8

PYpBεpzinqq ď lim
nÝÑ8

1

in
“ 0.

Next, suppose κpεq “ 1. Then, there exists a sequence of points z1, z2, . . . P Y such that for
every n, PYpBεpznq

cq ě 1 ´ 1
n . Then, for every n, PYpBεpznqq ď

1
n A similar argument from the

τp¨q case using the dominated convergence theorem shows that PYpBεpzqq “ 0.
Since r´N,N s is compact and γ has a similar definition to τ , the result for γp¨q follows by an

argument similar to the one used for the τp¨q case.

D.2 Lemmas for Continuous Rating Setting

Lemma D.4 uses the notion of r-discerning to relate the distance between points in Y and to a
lower bound on ρpyu, yvq.

Lemma D.4. Let r be a positive nondecreasing function. If yu P Y is r-discerning, then for any
ε ą 0, if yv P Bεpyuq, then ρpyu, yvq ą 1´ rpεq.

Proof. Suppose that dpyu, yvq ď ε. Suppose that xi “ xi and xj “ xj such that |fpxi, yuq ´
fpxj , yuq| ą 2ε and without loss of generality suppose that hupxi, yuq ě hupxj , yuq. Then, since f
is Lipschitz,

fpxi, yvq ě fpxi, yuq ´ ε ą fpxj , yuq ` ε ě fpxj , yvq.

10



Hence, hvpxi, yvq ě hvpxj , yvq. Thus,

ρpyu, yvq ě Prxi,xj p|fpxi, yuq ´ fpxj , yuq| ą 2εq ą 1´ rpεq,

where the last inequality follows from the hypothesis that yu is r-discerning. Thus, we conclude
the result.

Lemma D.5 establishes that if S Ă rn2sztuu is a large enough set, then with high probability
there is at least one element yv in S that tends to agree with yu.

Lemma D.5. Let r be a positive non-decreasing function and suppose that almost every y P Y is
r-discerning. Let S Ă rn2sztuu. Then, @ε ą 0,

Pryv,yupmax
vPrSs

ρpyv,yuq ď 1´ rpεqq ď r1´ τpεqs|S|.

Proof. Fix yu “ yu P Y that is r-discerning. By Lemma D.4, if yv “ yv is such that dpyu, yvq ď ε,
then ρpyu, yvq ą 1´ rpεq. Hence,

Pryv pdpyu,yvqq ď εq ď Pryv pρpyu,yvq ą 1´ rpεqq.

Then,

Pryv pρpyu,yvq ď 1´ rpεqq ď Pryv pdpyu,yvqq ą εq “ 1´ Pryv pdpyu,yvqq ď εq ď 1´ τpεq.

The RHS does not depend on yu, and yv,yu are independent and almost every y P Y is r-discerning,
so we can take the expectation with respect to yu to obtain

Pryv,yupρpyv,yuq ď 1´ rpεqq ď 1´ τpεq. (13)

Finally,

PrtyvuvPS ,yupmax
vPrSs

ρpyv,yuq ď 1´ rpεqq “ Pryv,yupρpyv,yuq ď 1´ rpεqq|S|

ď r1´ τpεqs|S|,

where the first equality follows from the independence of y1, . . . ,yn2
and the inequality follows from

line (13).

Lemma D.6 establishes that Ru,v concentrates around ρpyu,yvq.

Lemma D.6. Let u ‰ v P rn2s, i ‰ j P rn1s, η ą 0, β ě 2, and W i,j
u pβq be defined as in Lemma

D.1. Then,

Prp|Ru,v ´ ρpyu,yvq| ą
η

4
|v PW i,j

u pβqq ď 2 expp´
η2

4

Z

β

2

^

q.

Proof. Fix yu “ yu and yv “ yv. Recall that if Ipu, vq ‰ H, then

Ru,v “
1

|Ipu, vq|

ÿ

ps,tqPIpu,vq

1tphupxs, yuq ´ hupxt, yuqqphvpxs, yvq ´ hvpxt, yvqq ě 0u.

11



Since Ipu, vq consists of pairs of indices that do not overlap, conditioned on yu “ yu,yv “ yv, and
any nonempty Ipu, vq, t1tphupxs, yuq ´ hupxt, yuqqphvpxs, yvq ´ hvpxt, yvqq ě 0u : ps, tq P Ipu, vqu
is a set of independent random variables. Further, each has mean ρpyu, yvq. Thus, by Chernoff’s
bound (Proposition G.1),

Prp|Ru,v ´ ρpyu, yvq| ą
η

4
|yu “ yu,yv “ yv, Ipu, vqq ď expp´

η2

2
|Ipu, vq|q

When v P v PW i,j
u pβq, |Ipu, vq| ě

Y

β
2

]

. Since the above bound holds for all yu, yv, it follows that

Prp|Ru,v ´ ρpyu,yvq| ą
η

4
|v PW i,j

u pβqq ď 2 expp´
η2

4

Z

β

2

^

q.

Lemma D.7 establishes that conditional on A,B,C (defined in the proof of Theorem B.1), the
event Dε

u,i,j does not occur with probability 1.

Lemma D.7. Under the setting described in Theorem B.1, let u P rn2s and i ‰ j P rn1s. Then,
PrpDε

u,i,j |A,B,Cq “ 0.

Proof. Define the events

E1 “ tfpxi,yuq ` ε ă fpxj ,yuqu

E2 “ tfpxi,yuq ą fpxj ,yuq ` εu

By the union bound and law of total probability,

PrpDε
u,i,j |A,B,Cq ď PrpPRpu, i, j, β, kq “ 1X E1|A,B,Cq

` PrpPRpu, i, j, β, kq “ 0X E2|A,B,Cq

ď PrpPRpu, i, j, β, kq “ 1|A,B,C,E1q

` PrpPRpu, i, j, β, kq “ 0|A,B,C,E2q.

The argument for bounding each of these is similar and, thus, we bound the term PrpPRpu, i, j, β, kq “
1|A,B,C,E1q.

Fix tyv “ yvuvPrn2s r-discerning and p ε2 , δq-discriminative, txs “ xsusPrn1s, and Ω “ Ω such that
the event AXBXC XE1 occurs. We claim that Pairwise-Rank puts V “ tvu (see Algorithm 2 for
definition of V ) such that yv P B ε

2
pyuq. On the event B, there is v PW i,j

u pβq with ρpyu, yvq ě 1´ δ
2 .

Since yu is p ε2 , δq-discriminative, it follows that yv P B ε
2
pyuq. Suppose that w P W i,j

u pβq such that
yw P B ε

2
pyuq

c. Since yu is p ε2 , δq-discriminative, ρpyw, yuq ă 1´ δ. Then,

Rw,u ď ρpyw, yuq `
δ

4
(14)

ă 1´
3

4
δ

ď ρpyu, yvq ´
δ

4
ď Ru,v (15)

12



where lines (14) and (15) follow by event C and v, w PW i,j
u pβq. Thus, the claim follows. Conditional

on E1, we have that fpxi, yuq ` ε ă fpxj , yuq. Then, using the Lipschitzness of f ,

fpxi, yvq ď fpxi, yuq `
ε

2
ă fpxj , yuq ´

ε

2
ď fpxj , yvq.

Since gv is strictly increasing by hypothesis, hvpxi, yvq ă hvpxj , yvq. Thus, Pairwise-Rank with
k “ 1 outputs 0. Consequently,

PrpPRpu, i, j, β, kq “ 1|A,B,C,E1, tyv “ yvuvPrn2stxs “ xsusPrn1s,Ω “ Ωq “ 0

Since almost every y P Y is r-discerning and p ε2 , δq-discriminative, taking the expectation wrt
tyvuvPrn2s, txsusPrn1s, Ω on the set AXB X C X E1 of the last equality gives the result.

D.3 Lemmas for Discrete Rating Setting

Lemma D.8 is the analogoue of Lemma D.4 for the discrete case. The proof is very similar.

Lemma D.8. Let r be a positive non-decreasing function. If yu P Y is r-discerning, then for any
ε ą 0, if yv P Bεpyuq, then ρ1pyu, yvq ą 1´ rpεq.

Proof. Suppose yv is such that dpyu, yvq ď ε. We claim that under this assumption

ρ1pyu, yvq ě Prxi,xj p|fpxi, yuq ´ fpxj , yuq| ą 2εq. (16)

Fix gu “ gu and gv “ gv, and xi “ xi and xj “ xj such that |fpxi, yuq ´ fpxj , yuq| ą 2ε. Without
loss of generality, suppose that hupxi, yuq ě hupxj , yuq. Then, since f is Lipschitz,

fpxi, yvq ě fpxi, yuq ´ ε ą fpxj , yuq ` ε ě fpxj , yvq.

Hence, hvpxi, yvq ě hvpxj , yvq, establishing that

ρ1pyu, yv|gu “ gu, gv “ gvq

“ Prxi,xj prgupfpxi, yuqq ´ gupfpxj , yuqqsrgvpfpxi, yvqq ´ gupfpxj , yvqqs ě 0q

ě Prxi,xj p|fpxi, yuq ´ fpxj , yuq| ą 2εq. (17)

Since tgu, gv,xi,xju are independent, taking the expectation with respect to gu and gv in line (17)
establishes line (16). Thus,

ρ1pyu, yvq ě Prxi,xj p|fpxi, yuq ´ fpxj , yuq| ą 2εq ą 1´ rpεq,

where the last inequality follows from the hypothesis that yu is r-discerning.

Lemma D.9 is the analogoue of Lemma D.5 for the discrete case.

Lemma D.9. Let ε, δ ą 0. Let r be a positive nondecreasing function such that rpεq ě δ and
rpηq ă δ for some η ą 0. Suppose that almost every y P Y is pε, δq-discriminative and r-discerning.
Let R2 ě R1 ě 0 be constants. Then, for any S Ă rn2s depending on Ω and k ď R1,

Pryv,yupmax
pkq
vPrSsρ

1pyv,yuq ď 1´ rpηq |R1 ď |S| ď R2q

ď exppp1´ κpεq ` τpηq ` logpR2qqk ´ k logpkq ´ τpηqR1q|R1 ď |S| ď R2q.
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Proof. Let Cη “ Pryv,yupρ
1pyv,yuq ď 1´ rpηqq.

Claim: Cη ď 1´ τpηq.
Fix yu “ yu P Y r-discerning. By Lemma D.8, if yv “ yv is such that dpyu, yvq ď ε, then

ρ1pyu, yvq ą 1´ rpεq. Hence,

Pryv pdpyu,yvqq ď εq ď Pryv pρ
1pyu,yvq ą 1´ rpεqq.

Then,

Pryv pρ
1pyu,yvq ď 1´ rpεqq ď Pryv pdpyu,yvqq ą εq “ 1´ Pryv pdpyu,yvqq ď εq ď 1´ τpεq,

where the last inequality follows by the definition of τp¨q. The RHS does not depend on yu, and
yv,yu are independent, so we can take the expectation with respect to yu to establish the claim.

Claim: 1´ Cη ď 1´ κpεq.
Since almost every y P Y is pε, δq-discriminative and rpηq ă δ, Y is almost-everywhere pε, rpηqq-

discriminative. Fix yu “ yu such that yu is pε, rpηqq-discriminative. Then, @yv P Y, ρ1pyu, yvq ą
1´ rpηq implies that dYpyu, yvq ď ε. Thus,

Pryv pρ
1pyu,yvq ą 1´ rpηqq ď Pryv pdYpyu,yv ď εq

“ 1´ Pryv pdYpyu,yvq ą εq

ď 1´ κpεq.

Since the RHS does not depend on yu, and yu and yv are independent, we can take the expectation
with respect to yu to establish the claim.

Main Probability Bound: Fix Ω “ Ω such that R1 ď |S| ď R2.

Pryv,yupmax
pkq
vPrSsρ

1pyv,yuq ď1´ rpηq|Ω “ Ωq

“

k´1
ÿ

l“0

ˆ

|S|

l

˙

C |S|´lη p1´ Cηq
l

ďk max
lPt0,...,k´1u

ˆ

|S|

l

˙

C |S|´lη p1´ Cηq
l

ďk max
lPrk´1sYt0u

ˆ

|S|

l

˙

p1´ τpηqq|S|´lp1´ κpεqql

ďk max
lPt0,...,k´1u

p
|S|e

l
qlp1´ τpηqq|S|´lp1´ κpεqql (18)

ďk max
lPt0,...,k´1u

exppl ` l logp
|S|

l
q ´ τpηqr|S| ´ ls ´ κpεqlq (19)

“k max
lPt0,...,k´1u

exppr1´ κpεq ` τpηqsl ` l logp
|S|

l
q ´ τpηq|S|qq

ďk exppr1´ κpεq ` τpηqsk ` k logp
|S|

k
q ´ τpηq|S|qq (20)

“ exppr1´ κpεq ` τpηq ` logp|S|qsk ´ k logpkq ´ τpηq|S|qq

ď exppr1´ κpεq ` τpηq ` logpR1qsk ´ k logpkq ´ τpηqR2qq
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where line (18) follows from the the inequality
`

n
k

˘

ď pnek q
k, line (19) follows from the inequality

p1 ´ xq ď expp´xq, and line (20) follows since |S| ě k and 1 ´ κpεq ą 0 by Lemma D.3. Finally,
we can take the expectation with respect to Ω “ Ω over the set R1 ď |S| ď R2 to conclude the
result.

Lemma D.10 is the analogoue of Lemma D.6 for the discrete case.

Lemma D.10. Consider the discrete ratings setting. Let u ‰ v P rn2s, i ‰ j P rn1s, η ą 0, β ě 2,
and W i,j

u pβq be defined as in Lemma D.1. Then,

Prp|Ru,v ´ ρ
1pyu,yvq| ą

η

4
|v PW i,j

u pβqq ď 2 expp´
η2

4

Z

β

2

^

q.

Proof. Fix yu “ yu, yv “ yv, and gu “ gu, gv “ gv. Recall that if Ipu, vq ‰ H, then

Ru,v “
1

|Ipu, vq|

ÿ

ps,tqPIpu,vq

1trhupxs, yuq ´ hupxt, yuqsrhvpxs, yvq ´ hvpxt, yvqs ě 0u.

Since Ipu, vq consists of pairs of indices that do not overlap, conditioned on yv “ yv, yu “ yu,
gu “ gu, gv “ gv and any nonempty Ipu, vq,

t1tpgupfpxs, yuqq ´ gupfpxt, yuqqqpgvpfpxs, yvqq ´ gvpfpxt, yvqqq ě 0u : ps, tq P Ipu, vqu

is a set of independent random variables. Further, each has mean ρ1pyu, yv|gu “ gu, gv “ gvq. Thus,
by Chernoff’s bound (Proposition G.1),

Prp|Ru,v ´ ρ
1pyu, yv|gu “ gu, gv “ gvq| ą

η

4
|yu “ yu,yv “ yv, gu “ gu, gv “ gv, Ipu, vqq

ď expp´
η2

2
|Ipu, vq|q

When v P v P W i,j
u pβq, |Ipu, vq| ě

Y

β
2

]

. Since the above bound holds for all yu,yv, gugv, it follows

that

Prp|Ru,v ´ ρ
1pyu,yvq| ą

η

4
|v PW i,j

u pβqq ď 2 expp´
η2

4

Z

β

2

^

q.

Lemma D.11. Let ε, δ ą 0, 1
2 ą α ą α1 ą 0, and r be a positive nondecreasing function such

that rp ε4 q ě δ and rpηq ă δ
2 for some η ą 0. Suppose that almost every y P Y is r-discerning and

p ε4 , δq-discriminative. Fix u P rn2s, i ‰ j P rn1s, and k ď pn2´1qp2

2 . As in the proof of Theorem C.1,
define

A “ t|W i,j
u pβq| P r

pn2 ´ 1qp2

2
,

3pn2 ´ 1qp2

2
su,

B “ tmax
pkq

vPW i,j
u pβq

ρ1pyu,yvq ě 1´
δ

2
u,

E “ t|fpxi,yuq ´ fpxj ,yuq| ą εu

M “ tDv PW i,j
u pβq s.t. ρ1pyu,yvq ě 1´

δ

2
and Dl P rL´ 1s s.t. av,l P pfpxj ,yvq, fpxi,yvqqu.
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Then,

PrpM c|A,B,Eq ď expp´γp
ε

4
qkq.

Proof. Fix tyv “ yvuvPrn2s r-discerning and p ε4 , δq-discriminative, Ω “ Ω, and txs “ xsusPrn1s such

that AXB X E holds. Let R “ tv P rn2sztuu : v P W i,j
u pβq and ρ1pyu, yvq ě 1´ δ

2u. Events A and

B imply that |R| ě k. Since yu is p ε4 , δq-discriminative and for all v P R, ρ1pyu, yvq ě 1 ´ δ
2 , it

follows that for all v P R, yv P B ε
4
pyuq.

By E, |fpxi, yuq ´ fpxj , yuq| ą ε. Suppose that fpxi, yuq ą fpxj , yuq ` ε (the other case is
similar). Then, by Lipschitzness of f , for all v P R

fpxj , yvq ď fpxj , yuq `
ε

4
ă fpxi, yuq ´

3

4
ε ď fpxi, yvq ´

ε

2
.

Thus, for all v P R, pfpxj , yvq, fpxi, yvqq is an open interval of length at least ε
2 . Fix v1 P rn2sztuu.

Since R is a finite set, the following is well-defined:

I – arg min
JPtpfpxj ,yvq,fpxi,yvqq:vPRu

Prtav1,lulPrL´1s
pDl P rL´ 1s s.t. av1,l P Jq. (21)

Then,

Prtav,lup@v P R,@l P rL´ 1s, av,l R pfpxj , yvq, fpxi, yvqq|tyv “ yvuvPrn2s,Ω “ Ω, txs “ xsusPrn2sq

“ Prtav,lup@v P R,@l P rL´ 1s, av,l R pfpxj , yvq, fpxi, yvqqq (22)

ď Prtav,lup@v P R,@l P rL´ 1s, av,l R Iq (23)

“ Prtav1,lulPrL´1s
p@l P rL´ 1s, av1,l R Iq

k (24)

“ r1´ Prtav1,lulPrL´1s
pDl P rL´ 1s s.t. av1,l P Iqs

k

ď p1´ γp
ε

4
qqk (25)

ď expp´γp
ε

4
qkq. (26)

Line (22) follows from the independence of tyvuvPrn2s, Ω, and txsusPrn1s from tav,luvPrn2s,lPrL´1s.
Line (23) follows from the definition of I in line (21) and because the monotonic functions tgvuvPrn2s

are identically distributed. Line (24) follows since tgvuvPR are i.i.d., line (25) follows from the
definition of γ, and line (26) follows from the inequality 1 ´ x ď expp´xq. Note that since PG is
diverse by hypothesis, by Lemma D.3, γp ε4 q ą 0.

Since tyvuvPrn2s, ΩYtxsusPrn1s, and tav,luvPrn2s,lPrL´1s are independent and almost every y P Y is
r-discerning and p ε4 , δq-discriminative, taking the expectation of line (26) with respect to tyvuvPrn2s,
Ω, and txsusPrn1s over AXB X E finishes the proof.

Lemma D.12 gives a bound on the probability of Dε
u,i,j conditional on A X B X C X E XM

(defined in the proof of Theorem C.1).

Lemma D.12. Under the setting described in Theorem C.1, let u P rn2s and i ‰ j P rn1s. Then,

PrpDε
u,i,j |A,B,C,E,Mq “ 0.
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Proof. Define the sets

E1 “ tfpxi,yuq ` ε ă fpxj ,yuqu

E2 “ tfpxi,yuq ą fpxj ,yuq ` εu.

Then, by the union bound and the law of total probability,

PrpDε
u,i,j |A,B,C,E,Mq ď PrpPRpu, i, j, β, kq “ 1X E1|A,B,C,E,Mq

` PrpPRpu, i, j, β, kq “ 0X E2|A,B,C,E,Mq

ď PrpPRpu, i, j, β, kq “ 1|A,B,C,E1,Mq

` PrpPRpu, i, j, β, kq “ 0|A,B,C,E2,Mq.

The argument for bounding each of these terms is similar, so we only bound PrpPRpu, i, j, β, kq “
1|A,B,C,E1,Mq.

Fix tyv “ yvuvPrn2s r-discerning and p ε4 , δq-discriminative, txs “ xsusPrn1s, Ω “ Ω, and tav,l “
av,luvPrn2s,lPrL´1s such that AXBXCXE1XM occurs . We claim that the set V in Pairwise-Rank
consists of v1, . . . , vk PW

i,j
u pβq such that for all l P rks, yvl P B ε

4
pyuq. The event B implies that there

are v1, . . . , vk such that for all l P rks, ρ1pyu, yvlq ě 1´ δ
2 . Then, since yu is p ε4 , δq-discriminative, it

follows that yv1 , . . . , yvk P B ε
4
pyuq. Suppose that w PW i,j

u pβq such that yw P B ε
4
pyuq

c. Then, since
yu is p ε4 , δq-discriminative, it follows that that ρ1pyu, ywq ă 1´ δ. Then, for all l P rks,

Rw,u ď ρ1pyw, yuq `
δ

4
(27)

ă 1´
3

4
δ

ď ρ1pyu, yvlq ´
δ

4
ď Ru,vl (28)

where lines (27) and (28) follow by event C and vl, w P W i,j
u pβq. Thus, Pairwise-Rank selects

v1, . . . , vk PW
i,j
u pβq such that for all l P rks, yvl P B ε

4
pyuq. Thus, the claim follows.

Event E1 implies that fpxi, yuq ` ε ă fpxj , yuq. Fix l P rks. Then, by the Lipschitzness of f ,

fpxi, yvlq ď fpxi, yuq `
ε

4
ă fpxj , yuq ´

3ε

4
ď fpxj , yvlq ´

ε

2
.

Hence, @l P rks, fpxi, yvlq `
ε
2 ă fpxj , yvlq and hvlpxi, yvlq ď hvlpxj , yvlq. Then, event M implies

that there is some l P rks such that hvlpxi, yvlq ă hvlpxj , yvlq. Thus, the majority vote outputs the
correct result. Thus,

PrpPRpu, i, j, β, kq “ 1|A,B,C,E1,M,

tyv “ yvuvPrn2s, txs “ xsusPrn1s,

Ω “ Ω, tav,l “ av,luvPrn2s,lPrL´1sq “ 0. (29)

Since line (29) holds for all tyvuvPrn2s r-discerning and p ε4 , δq-discriminative, tav,luvPrn2s,lPrL´1s,
txsusPrn1s, Ω conditioned on the set the set A X B X C X E1 X M and almost every y P Y is
r-discerning and p ε4 , δq-discriminative, the result follows.
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E Proofs for Section 6

Proof of Theorem 3. By compactness of Y, there exists a finite subcover tC1, . . . , Cnu of Y where
each open ball Ci has diameter ε

2 . Since by assumption, for all r ą 0 and y P Y, PYpBrpyqq ą 0,
we have that PYpCiq ą 0 for all i “ 1, . . . , n. Let Qn2

denote the event that for every l P rns and
i, j P rn1s, there exists u P rn2s such that yu P Cl and we observe pi, uq P Ω and pj, uq P Ω. Since
p ą 0, as n2 ÝÑ 8, PrpQn2

q ÝÑ 1.
Let txi “ xiuiPrn1s, tyu “ yuuuPrn2s, and Ω “ Ω such that Qn2

occurs. Let σ P Sn1ˆn2 be an
ε
2 -consistent minimizer of xdisp¨, Hq over the sample. Towards a contradiction, suppose there exists
yu and i ‰ j P rn1s such that σpi, uq ă σpj, uq, hupxi, yuq ą hupxj , yuq, and fpxi, yuq ą fpxj , yvq`ε.
Without loss of generality, suppose that yu P C1.

Since Qn2
occurs by assumption, there exists v P rn2s such that yv P C1 and pi, vq, pj, vq P Ω.

Since σ is an ε
2 -consistent collection of rankings and the diameter of C1 is ε

2 , σ gives the same
ranking to yu and yv. Then, since σpi, uq ă σpj, uq, it follows that σpi, vq ă σpj, vq. By Lipschitzness
of f ,

fpxi, yvq ě fpxi, yuq ´
ε

2
ą fpxj , yuq `

ε

2
ě fpxj , yvq. (30)

Since gv is strictly increasing, line (30) implies that hvpxi, yvq ą hvpxj , yvq. Thus, σ is not a

minimizer of xdisp¨, Hq–a contradiction. Thus, @u P rn2s and i ‰ j P rn1s if σpi, uq ă σpj, uq and
hupxi, yuq ą hupxj , yuq, then fpxi, yuq ď fpxj , yuq ` ε, implying that disεpσ,Hq “ 0.

Proof of Theorem 4. Fix txi “ xiuiPrn1s. By compactness of Y, there exists a finite subcover
tC1, . . . , Cnu of Y where each open ball Ci has diameter ε

8 . For every l P rns, fix zl P Cl and define
Pl “ tpi, jq : fpxi, zlq ą fpxj , zlq `

ε
2u.

Fix l P rns and pi, jq P Pl. Let Ql,i,jn2
denote the event that there exists yu P Cl with pi, uq, pj, uq P

Ω and au,q P pfpxj ,yuq, fpxi,yuqq for some q P rL´ 1s. Further, define

Qn2 “ XlPrns,pi,jqPPlQ
l,i,j
n2

.

Observe that by the Lipschitzness of f , for every z P Cl, if pi, jq P Pl, then fpxi, zq ą fpxj , zq `
ε
4 .

Since n is fixed and finite, |Pl| is fixed and finite, and the probability of observing a rating, p, is
fixed, there exists a positive constant C ą 0 such that Pryu,ΩpQ

l,i,j
n2

| txs “ xsusPrn1sq ě C. Thus,

PrpQl,i,jn2
| txs “ xsusPrn1sq ÝÑ 1 as n2 ÝÑ 8. Then, by the union bound,

lim
n2ÝÑ8

Pryu,ΩprQn2
sc | txs “ xsusPrn1sq ď lim

n2ÝÑ8
n

ˆ

n1
2

˙

Pryu,ΩprQ
l,i,j
n2
sc | txs “ xsusPrn1sq

“ 0.

Since Er1tQn2
u|txiuiPrn1ss ď 1, by the dominated convergence theorem,

lim
n2ÝÑ8

PrpQn2
q “ lim

n2ÝÑ8
EtxiuEr1tQn2

u|txiuiPrn1ss

“ Etxiu lim
n2ÝÑ8

Er1tQn2
u|txiuiPrn1ss

“ 1
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Now, condition on txi “ xiuiPrn1s, tyu “ yuuuPrn2s,Ω “ Ω, tau,l “ au,luuPrn2s,lPrL´1s such that

Qn2
happens. Let σ P Sn1ˆn2 be an ε

8 -consistent minimizer of xdisp¨, Hq. Towards a contradiction,
suppose there exists yu and i ‰ j P rn1s such that σpi, uq ă σpj, uq, hupxi, yuq ą hupxj , yuq, and
fpxi, yuq ą fpxj , yvq` ε. Without loss of generality, suppose that yu P C1. We have that pi, jq P P1

since

fpxi, z1q ě fpxi, yuq ´
ε

8

ě fpxj , yuq `
7

8
ε

ě fpxj , z1q `
3

4
ε.

Therefore, the event Qn2 implies that there exists yv P C1 such that pi, vq, pj, vq P Ω and
there exists av,q P pfpxj , yvq, fpxi, yvqq. By the Lipschitzness of f , fpxj , yvq ă fpxi, yvq, so that
hpxj , yvq ă hpxi, yvq. Since σ is ε

8 -consistent, σpi, vq ă σpj, vq. But, then σ is not a minimizer of
xdisp¨, Hq over the sample–a contradiction. Thus, @u P rn2s and i ‰ j P rn1s if σpi, uq ă σpj, uq and
hupxi, yuq ą hupxj , yuq, then fpxi, yuq ď fpxj , yuq ` ε, implying that disεpσ,Hq “ 0.

Proof of Theorem 5. Let x1 “ x1, . . . ,xn1
“ xn1

,y1 “ y1, . . . ,yn2
“ yn2

. Towards a contradiction,
suppose that σ is not an ε-consistent collection of rankings over T . Then, there exists i, j P rn1s
and u, v P rn2s such that pi, j, uq, pi, j, vq P T and

dYpyu, yvq ď ε, (31)

σpj, uq ă σpi, uq, (32)

σpj, vq ą σpi, vq. (33)

Further, by definition of T ,

|fpxj , yuq ´ fpxi, yuq| ą ε (34)

|fpxi, yvq ´ fpxj , yvq| ą ε. (35)

hpxi, yuq ‰ hpxj , yuq (36)

hpxi, yvq ‰ hpxj , yvq (37)

Since disεpσ,Hq “ 0 by hypothesis, and by inequalities (32), (33), (34), (35), (36), and (37) it
follows that hpxj , yuq ă hpxi, yuq and hpxi, yvq ă hpxj , yvq. Thus, by monotonicity of gu, gv,

ε` fpxj , yuq ă fpxi, yuq,

ε` fpxi, yvq ă fpxj , yvq.

Then,

fpxi, yuq ´ fpxi, yvq “ fpxi, yuq ´ fpxj , yuq ` fpxj , yuq ´ fpxj , yvq ` fpxj , yvq ´ fpxi, yvq

ą 2ε` fpxj , yuq ´ fpxj , yvq.

Then, rearranging the above equation and applying the Lipschitzness of f , we have that

2ε ă fpxj , yvq ´ fpxj , yuq ` fpxi, yuq ´ fpxi, yvq ď 2dYpyv, yuq,

which contradicts inequality (31).
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F Proof of Proposition 2 and other Results

In the following proposition, we give a simple illustrative example of a 1-Lipschitz function that is
pε, δq-discriminative and r-discerning.

Proposition F.1. Let X “ r0, 1s, Y “ r0, 1s, PX be the Lebesgue measure over X , and PY be
the Lebesgue measure over Y. Suppose that for all u P rn2s, gu is strictly increasing. Consider the
function

fpx, yq “

"

x : x P r0, ys
y ´ x : x P py, 1s

Then, for all 1 ą ε ą 0, every y P Y is pε, ε2q-discriminative. Further, there exists a positive
nondecreasing r such that limrÝÑ0 rpzq “ 0 and every y P Y is r-discerning.

Proof. Let ε P p0, 1q and suppose that |y1 ´ y2| “ ε. Without loss of generality, suppose that
y1 ă y2. Then, when x1 ă x2 P py1, y1 ` εq, fpx1, y1q ą fpx2, y1q and fpx1, y2q ă fpx2, y2q. Since
gu is strictly increasing, h1px1, y1q ą h1px2, y1q and h2px1, y2q ă h2px2, y2q. Since PXˆPX ppy1, y1`
εq ˆ py1, y1 ` εqq “ ε2, it follows that ρpy1, y2q ă 1´ ε2.

Clearly, there exists a positive nondecreasing r such that limrÝÑ0 rpzq “ 0 and every y P Y is
r-discerning.

This example can easily be generalized to fpx, yq “ }x´ y}2. The following proposition shows
that by adding a dimension, the model fpx,yq “ xty with x,y P Rd is a special case of the model
fpx̃, ỹq “ }x̃´ ỹ}2 with x̃, ỹ P Rd`1. A similar construction in the other direction exists.

Proposition F.2. Let x1, . . . ,xn1 P Rd and y1, . . . ,yn2 P Rd. There exist x̃1, . . . , x̃n1 P Rd`1

and ỹ1, . . . , ỹn2 P Rd`1 such that @u P rn2s and @i ‰ j P rn1s, xtiyu ą xtjyu if and only if
}x̃i ´ ỹu}2 ą }x̃j ´ ỹu}2.

Proof. Let B “ maxiPrn1s }xi}2. For all i P rn1s, there exists γi ě 0 such that x̃i – pxti, γiq
t and

}x̃i}2 “ B (by continuity and monotonicity of }¨}2). For all u P rn2s, define ỹu “ p´y
t
u, 0q

t.
Fix u P rn2s and i ‰ j P rn1s. Then,

}x̃i ´ ỹu}
2
2 ´ }x̃j ´ ỹu}

2
2 “ }x̃i}

2
2 ` }ỹu}

2
2 ´ 2x̃tiỹu ´ p}x̃j}

2
2 ` }ỹu}

2
2 ´ 2x̃tj ỹuq

“ ´2x̃tiỹu ` 2x̃tj ỹu

“ xtiyu ´ xtjyu.

The result follows.

Proof of Proposition 2. 1. Consider a fixed y P Y. Fix x2 “ x2 P X . Then,

Prx1
p| }x1 ´ y}2 ´ }x2 ´ y}2 | ď 2εq ď Prx1

px1 P B}x2´y}`2εpyqzB}x2´y}´2εpyqq

ď sup
zPr0,2s

PX pBzpyqzBz´4εpyqq

“ rpεq

Taking the expectation with respect to x2 establishes the first part of this result.
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Fix yu P Y and ε ą 0 and set δ “ 2PX pB ε
2
pyuqq

2. Fix yv P Bεpyuq
c X Y. If x1 “ x1 P B ε

2
pyuq

and x2 “ x2 P B ε
2
pyvq, then

rfpx1, yuq ´ fpx2, yuqsrfpx1, yvq ´ fpx2, yvqs ă 0.

A similar argument applies to the case x1 “ x1 P B ε
2
pyvq and x2 “ x2 P B ε

2
pyuq. Thus, since

by hypothesis, gu is strictly increasing for all u P rn2s,

ρpyu, yvq ă 1´ δ.

2. Both results follow immediately.

G Useful Bounds

Proposition G.1 (Chernoff-Hoeffding’s Bound). Let X1, . . . , Xn be independent random variables
with Xi P rai, bis. Let X̄ “ 1

n

řn
i“1Xi. Then,

Prp|X̄ ´ ErX̄s| ě tq ď 2 expp´
2n2t2

řn
i“1pbi ´ aiq

2
q.

Proposition G.2 (Chernoff’s multiplicative bound). Let X1, . . . , Xn be independent random vari-
ables with values in r0, 1s. Let X “

řn
i“1Xi. Then, for any ε ą 0,

PrpX ą p1` εqErXsq ă expp´
ε2ErXs

3
q,

PrpX ă p1´ εqErXsq ă expp´
ε2ErXs

2
q.
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