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1 Plots

1.1 Signal Transduction Cascade

Figure 1 presents the data from the signal transduc-
tion cascade simulated over time interval 0 to 100. The
systems enters equilibrium and this causes problems in
the inference problem as the lack of information pro-
vided by the data leads to a flattening of the likelihood
surface.

Figure 1: Data from the signal transduction cascade
simulated from times 0 to 100. The system enters equi-
librium and this then causes difficulties in the inference
procedure as the likelihood surface flattens.

1.2 Periodicity Leads to Multimodality

Intuition would tell us that given a greater quantity of
data, we would be able to better infer the parameters
of ODEs since we have more data from which we gain
more information for the parameter learning problem.
With this in mind, we consider the Lotka-Volterra
model with different amounts of data. In the first case,
we will observe 16 data points and in the second, 100.
Figure 2 allows consideration of a single period of data
from the Lotka-Volterra model and the correspond-
ing unimodal likelihood surface. In this case, MCMC
methods would have no problem converging as there

are no loca1 optima on the likelihood surface. Figure 5

Figure 2: One period of data from the Lotka-Volterra
model and the corresponding unimodal log-likelihood
surface. It appears that without periodicity in the
data, the learning problem becomes fairly easy.

presents the corresponding data and likelihood surface
for the same model over time points that include mul-
tiple oscillations. It appears that the presence of these
periods in the data introduces the problem of local op-
tima to the inference problem. In Figure 5 we sample
from the region of parameter space at which a local op-
timum is observed and plot the corresponding signal
along with the true signal. This provides an under-
standing of the formation of these modes which result
from a sort of signal aliasing where peaks of the es-
timated signal align with equally spaced peaks of the
true signal. Considering the way in which the MCMC
methods move through the parameter space, where we
accept or reject proposal moves by assessment of their
fit in function space to the observed data, it becomes
apparent that our sampler will be vulnerable to these
local optima. In the main paper, we observed the ten-
dency for a DRAM sampler to be attracted into the
local optima and fails to converge. Given the com-
putational complexity involved in numerically solving
the ODEs, we are not able to take a sufficient number
of steps to enable the sampler to escape these local
optima. Considering the Goodwin Oscillator, we ob-
serve a similar property of multimodality in Figure 3.
The signal transduction cascade has non-periodic sig-
nal and so the resultant likelihood surface is smoother
than in the other ODE systems. We plot this in two di-
mensions in Figure 4, but for this model the dimension
of the parameter space is far greater than 2 dimensions.
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Figure 3: Negative log likelihood surface of the Good-
win Oscillator model. The red point is at the true pa-
rameter value. The different modes of the likelihood
surface make this a difficult learning problem.

Figure 4: Signal transduction cascade likelihood sur-
face in two dimensions. The true space is 6 dimen-
sional and so it cannot be visualised.

1.3 Accuracy

Figure 6 considers the bias in the posterior samples ob-
tained using each of the four alternative MCMC sam-
pling techniques across each of the four models. The
three phase proposed scheme and population MCMC
perform similarly across each of the four different mod-
els with the two phase DAMH approach performing
slightly worse. DRAM struggles in the first three mod-
els since these ODEs produce periodic signals. We
must also consider performance of the methods in func-
tion space. This is provided in Figure 7 where we plot
functional RMS for each of the posterior samples. The
conclusions drawn are similar to the parameter space
performance as the three phase method and popula-
tion MCMC perform similarly while DRAM struggles

due to convergence to local optima.

1.4 Efficiency

Figure 8 provides a more detailed exploration of the
computational cost of each of the methods across the
different benchmark data. Given the unsubstantial
computational cost of the surrogate burnin phase, this
is measured by summing the number of numerical in-
tegrations of the ODEs. We wish to compare compu-
tational cost reduction when adopting the three phase
proposed scheme and so we plot the difference in num-
ber of numerical integration steps.

2 DAMH β = 0

In the original version of the paper, we presented
DAMH inference results having used the parameter
value β = 0. These are presented in Figures 9 and
10, where we observe the slight deterioration of per-
formance compared with the updated results in the
final paper draft.



Figure 5: Top row: Multiple periods of data from the Lotka-Volterra system and the multimodal likelihood
surface resulting from the data. Bottom Row: Signals obtained at a parameter sampled at a local optimum on
the likelihood surface of the Lotka-Volterra system where the solid line is the true signal and the dashed line is
the estimated signal.
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Figure 6: Bias plots for parameter posterior samples from each of the four different ODEs. The layout is as follows:
topleft=Lotka-Volterra, topright=FitzHugh-Nagumo, bottomleft=Goodwin Oscillator and bottomright=signal
transduction cascade. A=PropDRAM, B=PopMCMC, C=DRAM, D=DAMH.



Figure 7: Difference between function space performance of the three phase proposed method and each of the
other 3 benchmark algorithms. The layout is as follows: topleft=Lotka-Volterra, topright=FitzHugh-Nagumo,
bottomleft=Goodwin Oscillator and bottomright=signal transduction cascade. In each case, we notice very
similar performance of the three phase proposed scheme and population MCMC.
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Figure 8: Number of numerical integration steps required to achieve convergence in the parameter inference in
each of the different models. Values below the dashed line correspond to a lower number of numerical integrations
required in the three phase proposed scheme.



Figure 9: The figure shows the RMS scores obtained by combining the posterior distributions from 10 indepen-
dent data instantiations versus number of numerical integration steps. This allows consideration of accuracy
(horizontal axis) relative to computational complexity (vertical axis) for each of the four methods. Good perfor-
mance is signified by a method appearing in the bottom left corner (with the exception of the STC model since
RMS differences are so small). The three phase proposed scheme is the only method consistently appearing in
the bottom left corner
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Figure 10: The figure shows the Functional RMS scores obtained by combining the posterior distributions from
10 independent data instantiations versus number of numerical integration steps. This allows consideration of
accuracy (horizontal axis) relative to computational complexity (vertical axis) for each of the four methods.
Good performance is signified by a method appearing in the bottom left corner. The three phase proposed
scheme is the only method consistently appearing in the bottom left corner


