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Abstract

Many matching, tracking, sorting, and rank-
ing problems require probabilistic reasoning
about possible permutations, a set that grows
factorially with dimension. Combinatorial
optimization algorithms may enable efficient
point estimation, but fully Bayesian infer-
ence poses a severe challenge in this high-
dimensional, discrete space. To surmount this
challenge, we start by relaxing the discrete set
of permutation matrices to its convex hull the
Birkhoff polytope, the set of doubly-stochastic
matrices. We then introduce two novel trans-
formations: an invertible and differentiable
stick-breaking procedure that maps uncon-
strained space to the Birkhoff polytope, and
a map that rounds points toward the vertices
of the polytope. Both transformations in-
clude a temperature parameter that, in the
limit, concentrates the densities on permu-
tation matrices. We exploit these transfor-
mations and reparameterization gradients to
introduce variational inference over permuta-
tion matrices, and we demonstrate its utility
in a series of experiments.

1 Introduction

Permutation inference is central to many modern
machine learning problems. Identity management
[Guibas, 2008] and multiple-object tracking [Shin et al.,
2005, Kondor et al., 2007] are fundamentally concerned
with finding a permutation that maps an observed set
of items to a set of canonical labels. Ranking problems,

Proceedings of the 21% International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2018, Lanzarote,
Spain. PMLR: Volume 84. Copyright 2018 by the author(s).

Gonzalo E. Mena*
Columbia University

Hal Cooper
Columbia University

John P. Cunningham
Columbia University

critical to search and recommender systems, require
inference over the space of item orderings [Meila et al.,
2007, Lebanon and Mao, 2008, Adams and Zemel, 2011].
Furthermore, many probabilistic models, like prefer-
ential attachment network models [Bloem-Reddy and
Orbanz, 2016] and repulsive point process models [Rao
et al., 2016], incorporate a latent permutation into their
generative processes; inference over model parameters
requires integrating over the set of permutations that
could have given rise to the observed data. In neu-
roscience, experimentalists now measure whole-brain
recordings in C. Elegans [Kato et al., 2015, Nguyen
et al., 2016], a model organism with a known synaptic
network [White et al., 1986]; a current challenge is
matching the observed neurons to corresponding nodes
in the reference network. In Section 5, we address
this problem from a Bayesian perspective in which per-
mutation inference is a central component of a larger
inference problem involving unknown model parame-
ters and hierarchical structure.

The task of computing optimal point estimates of per-
mutations under various loss functions has been well
studied in the combinatorial optimization literature
[Kuhn, 1955, Munkres, 1957, Lawler, 1963]. However,
many probabilistic tasks, like the neural identity infer-
ence problem, require reasoning about the posterior
distribution over permutation matrices. A variety of
Bayesian permutation inference algorithms have been
proposed, leveraging sampling methods [Diaconis, 1988,
Miller et al., 2013, Harrison and Miller, 2013], Fourier
representations [Kondor et al., 2007, Huang et al., 2009],
as well as convex [Lim and Wright, 2014] and continu-
ous [Plis et al., 2011] relaxations for approximating the
posterior distribution. We propose an alternative, lever-
aging stochastic variational inference [Hoffman et al.,
2013] and reparameterization gradients [Rezende et al.,
2014, Kingma and Welling, 2014] to derive a scalable
and efficient permutation inference algorithm.
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Section 2 lays the necessary groundwork, introducing
definitions, prior work on permutation inference, varia-
tional inference, and continuous relaxations. Section 3
presents our primary contribution: a pair of transfor-
mations that enable variational inference over doubly-
stochastic matrices, and, in the zero-temperature limit,
permutations, via stochastic variational inference. In
the process, we show how these transformations connect
to recent work on discrete variational inference [Mad-
dison et al., 2017, Jang et al., 2017]. Sections 4 and 5
present a variety of experiments that illustrate the
benefits of the proposed variational approach. Further
details are in the supplement.

2 Background

2.1 Definitions and notation.

A permutation is a bijective mapping of a set onto itself.
When this set is finite, the mapping is conveniently
represented as a binary matrix X € {0, 1}V*" where
entry x,,, = 1 implies that element m is mapped to
element n. Since permutations are bijections, both
the rows and columns of X must sum to one. From
a geometric perspective, the Birkhoff-von Neumann
theorem states that the convex hull of the set of per-
mutation matrices is the set of doubly-stochastic matri-
ces; i.e. non-negative square matrices whose rows and
columns sum to one. The set is called the Birkhoff poly-
tope. Let By denote the Birkhoff polytope of N x N
doubly-stochastic matrices. The row- and column-
normalization constraints restrict By to a (N — 1)? di-
mensional subset of RV*N | Despite these constraints,
we have a number of efficient algorithms for work-
ing with these objects. The Sinkhorn-Knopp algo-
rithm [Sinkhorn and Knopp, 1967] maps the positive
orthant onto By by iteratively normalizing the rows
and columns, and the Hungarian algorithm [Kuhn,
1955, Munkres, 1957] solves the minimum cost bipartite
matching problem, optimizing a linear objective over
the set of permutation matrices in cubic time.

2.2 Related Work

A number of previous works have considered approx-
imate methods of posterior inference over the space
of permutations. When a point estimate will not suf-
fice, sampling methods like Markov chain Monte Carlo
(MCMC) algorithms may yield a reasonable approx-
imate posterior for simple problems [Diaconis, 1988].
Harrison and Miller [2013] developed an importance
sampling algorithm that fills in count matrices one
row at a time, showing promising results for matri-
ces with O(100) rows and columns. Li et al. [2013]
considered using the Hungarian algorithm within a

Perturb-and-MAP algorithm for approximate sampling.
Another line of work considers inference in the spectral
domain, approximating distributions over permutations
with the low frequency Fourier components [Kondor
et al., 2007, Huang et al., 2009]. Perhaps most relevant
to this work, Plis et al. [2011] propose a continuous
relaxation from permutation matrices to points on a
hypersphere, and then use the von Mises-Fisher (vMF)
distribution to model distributions on the sphere’s sur-
face. Finally, ranking problems are a special case of a
matching problems in which the labels are the ordered
set of integers {1,...,N}. The Placket-Luce model
is one model for rankings that is parameterized by a
“score” for each item, and it admits efficient Bayesian
inference algorithms [Guiver and Snelson, 2009]. In
general matching problems, however, the output is not
ordered, and we instead need scores for each item-label
mapping. The methods presented here address general
matching problems.

2.3 Variational inference and the
reparameterization trick

Given a model with data y, likelihood p(y|z), and
prior p(x), variational Bayesian inference algorithms
aim to approximate the posterior distribution p(z|y)
with a more tractable distribution ¢(z;6), where
“tractable” means that we can sample ¢ and evaluate it
pointwise (including its normalization constant) [Blei
et al., 2017]. We find this approximate distribution
by searching for the parameters # that minimize the
Kullback-Leibler (KL) divergence between ¢ and the
true posterior, or equivalently, maximize the evidence
lower bound (ELBO),

L(0) = Eq [log p(z,y) —log q(x;6)] .

Perhaps the simplest method of optimizing the ELBO is
stochastic gradient ascent. However, computing V¢ £L(0)
requires some care since the ELBO contains an expec-
tation with respect to a distribution that depends on
these parameters.

When z is a continuous random variable, we can some-
times leverage the reparameterization trick [Salimans
and Knowles, 2013, Kingma and Welling, 2014]. Specif-
ically, in some cases we can simulate from ¢ via the
following equivalence,

x ~ q(x;0) — z~r(z), x=g(z0),

where r is a distribution on the “noise” z and
where g(z;0) is a deterministic and differentiable func-
tion. The reparameterization trick effectively “factors
out” the randomness of q. With this transformation,

we can bring the gradient inside the expectation as
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(a) Gumbel-softmax

(b) Stick-breaking
(categorical)

(c) Stick-breaking (d)
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e

Figure 1: Reparameterizations of discrete polytopes. From left to right: (a) The Gumbel-softmax, or “Concrete”
transformation maps Gumbel r.v.’s 1) € RY (blue dots) to points in the simplex © € An by applying the softmax. Colored
dots are random variates that aid in visualizing the transformation. (b) Stick-breaking offers and alternative transformation
for categorical inference, here from points 8 € [0,1]V ! to Ax, but the ordering of the stick-breaking induces an asymmetry
in the transformation. (c) We extend this stick-breaking transformation to reparameterize the Birkhoff polytope, i.e. the
set of doubly-stochastic matrices. We show how B3 is reparameterized in terms of matrices B € [0, 1]2X2 These points are
mapped to doubly-stochastic matrices, which we have projected onto R? below (stencils show permutation matrices at the

vertices). (d) Finally, we derive a “rounding” transformation that moves points in

RY*¥ nearer to the closest permutation

matrix, which is found with the Hungarian algorithm. This is more symmetric, but does not map strictly onto By.

follows,

VoL(0) = E, (. [Ve logp(g(2;0) |y)
— Vologq(g(z;0); 9)]- (1)

This gradient can be estimated with Monte Carlo, and,
in practice, this leads to lower variance estimates of the
gradient than, for example, the score function estimator
[Williams, 1992, Glynn, 1990].

Critically, the gradients in (1) can only be com-
puted if x is continuous. Recently, Maddison et al.
[2017] and Jang et al. [2017] proposed the “Gumbel-
softmax” method for discrete variational inference.
It is based on the following observation: discrete
probability mass functions ¢(z;6) can be seen as
densities with atoms on the vertices of the sim-
plex; ie. on the set of one-hot vectors {e,})_;,
where e, = (0,0,...,1,...,0)T is a length-N binary
vector with a single 1 in the n-th position. This moti-
vates a natural relaxation: let ¢(x;6) be a density on
the interior of the simplex instead, and anneal this den-
sity such that it converges to an atomic density on the
vertices. Fig. la illustrates this idea. Gumbel random
variates, are mapped through a temperature-controlled
softmax function, g¢.(¢) = [e“/’l/T/Z, ce ewN/T/Z],

where Z = 25:1 e¥n/7 to obtain points in the simplex.
As 7 goes to zero, the density concentrates on one-hot
vectors.

3 Variational permutation inference
via reparameterization

The Gumbel-softmax method scales linearly with the
support of the discrete distribution, rendering it pro-
hibitively expensive for direct use on the set of N! per-
mutations. Instead, we develop two transformations to
map O(N?)-dimensional random variates to points in or
near the Birkhoff polytope.! Like the Gumbel-softmax
method, these transformations will be controlled by
a temperature that concentrates the resulting density
near permutation matrices. The first method is a novel
“stick-breaking” construction; the second rounds points
toward permutations with the Hungarian algorithm.
We present these in turn and then discuss their relative
merits. We provide implementation details for both
methods in the supplement.

"While Gumbel-softmax does not immediately extend
to permutation inference, the methods presented herein do
apply to categorical inference. We explored this direction
experimentally and show results in the supplement.
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3.1 Stick-breaking transformations to the
Birkhoff polytope

Stick-breaking is well-known as a construction for
the Dirichlet process [Sethuraman, 1994]; here we
show how the same intuition can be extended to
more complex discrete objects. Let B be a matrix
in [0, 1JV=DX(N=1): we will transform it into a doubly-
stochastic matrix X € [0,1]V*¥ by filling in entry by
entry, starting in the top left and raster scanning left to
right then top to bottom. Denote the (m,n)-th entries
of B and X by B, and x,,, respectively.

Each row and column has an associated unit-length
“stick” that we allot to its entries. The first entry in
the matrix is given by x11 = f11. As we work left
to right in the first row, the remaining stick length
decreases as we add new entries. This reflects the row
normalization constraints. The first row follows the
standard stick-breaking construction,

n—1
T1n = Bin (1— le’f) form=2,...,N—-1
k=1

N-1
1IN = 1-— E Tin-
n=1

This is illustrated in Fig. 1b, where points in the unit
square map to points in the simplex. Here, the blue
dots are two-dimensional N'(0,47) variates mapped
through a coordinate-wise logistic function.

Subsequent rows are more interesting, requiring a novel
advance on the typical uses of stick breaking. Here
we need to conform to row and column sums (which
introduce upper bounds), and a lower bound induced
by stick remainders that must allow completion of
subsequent sum constraints. Specifically, the remaining
rows must now conform to both row- and column-
constraints. That is,

n—1
Ton < 1 — E Tonk (row sum)
k=1

m—1
T < 1 — Z Thn (column sum).
k=1

Moreover, there is also a lower bound on x,,,. This
entry must claim enough of the stick such that what
remains fits within the confines imposed by subsequent
column sums. That is, each column sum places an
upper bound on the amount that may be attributed to
any subsequent entry. If the remaining stick exceeds
the sum of these upper bounds, the matrix will not be

doubly-stochastic. Thus,

1- zn:xmk <
k=1

remaining stick

m—1

> (-

j=n+1 k=1

l‘kj) .

remaining upper bounds

Rearranging terms, we have,

n—1 m—1 N
k=1

k=1 j=n+1

Of course, this bound is only relevant if the right
hand side is greater than zero. Taken together, we
have £, < Tyn < Umpn, Where,

n—1 m—1 N
Lon 2 max 0,1—N+n—g Tt + E Tk
k=1 k=1 j=nt1

n—1 m—1
A .
Umn = ming 1 — E Tk, 1 — g Tkn ¢ -
k=1 k=1

Accordingly, we define Zpmpn = lnn + Bmn (Umn — Cmn)-
The inverse transformation from X to B is analo-
gous. We start by computing z;; and then pro-
gressively compute upper and lower bounds and

To complete the reparameterization, we define a para-
metric, temperature-controlled density from a stan-
dard Gaussian matrix Z € RV-1DX(N=1) 5 the unit-
hypercube B. Let,

wmn = Umn + VmnZmn,

/an =0 (wmn/T) 5

where 0 = {ftmn, 2, } =1 are the mean and vari-
ance parameters of the intermediate Gaussian ma-
trix W, o(u) = (1+e )71 is the logistic function,
and 7 is a temperature parameter. As 7 — 0, the values
of By are pushed to either zero or one, depending on
whether the input to the logistic function is negative or
positive, respectively. As a result, the doubly-stochastic
output matrix X is pushed toward the extreme points
of the Birkhoff polytope, the permutation matrices.
This map is illustrated in Fig. lc for permutations
of N =3 elements. Here, the blue dots are samples
of B with pyn =0, vy =2, and 7 = 1.

We compute gradients of this transformation with au-
tomatic differentiation. Since this transformation is
“feed-forward,” its Jacobian is lower triangular. The de-
terminant of the Jacobian, necessary for evaluating the
density ¢,(X;0), is a simple function of the upper and
lower bounds and is derived in Appendix ??. While
this map is peculiar in its reliance on an ordering of
the elements, as discussed in Section 3.3, it is a novel
transformation to the Birkhoff polytope that supports
variational inference.
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3.2 Rounding toward permutation
matrices

While relaxing permutations to the Birkhoff polytope
is intuitively appealing, it is not strictly required. For
example, consider the following procedure for sampling
a point near the Birkhoff polytope:

(i) Input Z € RV*N M e RN and V e RV,

(i) Map M — ]T/[/, a point in the Birkhoff polytope,
using the Sinkhorn-Knopp algorithm;

(iii) Set ¥ = M +V ® Z where ® denotes elementwise
multiplication;

(iv) Find round(¥), the nearest permutation matrix
to W, using the Hungarian algorithm;

(v) Output X =79 + (1 — 7)round(T).

This procedure defines a mapping X = g.(Z;0)
with @ = {M, V'}. When the elements of Z are indepen-
dently sampled from a standard normal distribution,
it implicitly defines a distribution over matrices X
parameterized by 6. Furthermore, as 7 goes to zero,
the density concentrates on permutation matrices. A
simple example is shown in Fig. 1d, where M = %11T
with 1 a vector of all ones, V = 0.4?117, and 7 = 0.5.
We use this procedure to define a variational distribu-
tion with density ¢, (X;6).

To compute the ELBO and its gradient (1), we need
to evaluate ¢.(X;#). By construction, steps (i) and
(ii) involve differentiable transformations of parame-
ter M to set the mean close to the Birkhoff polytope,
but since these do not influence the distribution of Z,
the non-invertibility of the Sinkhorn-Knopp algorithm
poses no problems. Had we applied this algorithm
directly to Z, this would not be true. The challenge
in computing the density stems from the rounding in
steps (iv) and (v).

To compute ¢,(X;8), we need the inverse g;(X;0)
and its Jacobian. The inverse is straight-
forward: ~ when 7 €[0,1), round(¥) outputs a
point strictly closer to the nearest permutation,
implying round(¥) = round(X). Thus, the in-
verse is g7 (X;60) = (£ X — =Tround(X) — M) oV,
where @ denotes elementwise d1v151on A slight wrin-
kle arises from the fact that step (v) maps to a sub-
set X, C RV*N that excludes the center of the Birkhoff
polytope (note the “hole” in Fig. 1d), but this inverse
is valid for all X in that subset.

The Jacobian is more challenging due to the non-
differentiability of round. However, since the nearest
permutation output only changes at points that are
equidistant from two or more permutation matrices,
round is a piecewise constant function with discontinu-

ities only at a set of points with zero measure. Thus,
the change of variables theorem still applies.

With the inverse and its Jacobian, we have

0=l -

m=1n=1

N (Zn: 0,1) x I[X € X],

TVUmn

where 2y, = [971(X;0)]mn and vy, are the entries
of V. In the zero-temperature limit we recover a dis-
crete distribution on permutation matrices; otherwise
the density concentrates near the vertices as 7 — 0.
This transformation leverages computationally efficient
algorithms like Sinkhorn-Knopp and the Hungarian al-
gorithm to define a temperature-controlled variational
distribution near the Birkhoff polytope, and it enjoys
many theoretical and practical benefits.

3.3 Theoretical considerations

The stick-breaking and rounding transformations intro-
duced above each have their strengths and weaknesses.
Here we list some of their conceptual differences. While
these considerations aid in understanding the differ-
ences between the two transformations, the ultimate
test is in their empirical performance, which we study
in Section 4.

e Stick-breaking relaxes to the Birkhoff polytope
whereas rounding relaxes to RV*Y . The Birkhoff
polytope is intuitively appealing, but as long as the
likelihood, p(y | X), accepts real-valued matrices,
either may suffice.

e Rounding uses the O(N?3) Hungarian algorithm
in its sampling process, whereas stick-breaking
has O(N?) complexity. In practice, the stick-
breaking computations are slightly more efficient.

e Rounding can easily incorporate constraints. If
certain mappings are invalid, i.e. T,,, = 0, they are
given an infinite cost in the Hungarian algorithm.
This is hard to do this with stick breaking as it
would change the computation of the upper and
lower bounds.

e Stick-breaking introduces a dependence on order-
ing. While the mapping is bijective, a desired
distribution on the Birkhoff polytope may require
a complex distribution for B. Rounding, by con-
trast, is more “symmetric” in this regard.

In summary, stick-breaking offers an intuitive
advantage—an exact relaxation to the Birkhoff
polytope—but it suffers from its sensitivity to ordering
and its inability to easily incorporate constraints. As
we show next, these concerns ultimately lead us to
favor the rounding based methods in practice.
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Figure 2: Synthetic matching experiment results. The goal is to infer the lines that match squares to circles. (a)
Examples of center locations (circles) and noisy samples (squares), at different noise variances. (b) For illustration, we
show the true and inferred probability mass functions for different method (rows) along with the Battacharya distance
(BD) between them for a selected case of each o (columns). Permutations (indices) are sorted from the highest to lowest
actual posterior probability. Only the 10 most likely configurations are shown, and the 11st bar represents the mass of
all remaining configurations. (¢) KDE plots of Battacharya distances for each parameter configuration (based on 200
experiment repetitions) for each method and parameter configuration. For comparison, stick-breaking, rounding, and

Permutation X (sorted index)

Mallows (6 = 1.0) have BD’s of .36, .35, and .66, respectively, in the o = 0.5 row of (b).

4 Synthetic Experiments

We are interested in two principal questions: (i)
how well can the stick-breaking and rounding re-
parameterizations of the Birkhoff polytope approximate
the true posterior distribution over permutations in
tractable, low-dimensional cases; and (ii) when do our
continuous relaxations offer advantages over alternative
Bayesian permutation inference algorithms?

To assess the quality of our approximations for distribu-
tions over permutations, we considered a toy matching
problem in which we are given the locations of N
cluster centers and a corresponding set of N observa-
tions, one for each cluster, corrupted by Gaussian noise.
Moreover, the observations are permuted so there is
no correspondence between the order of observations
and the order of the cluster centers. The goal is to
recover the posterior distribution over permutations.
For N = 6, we can explicitly enumerate the N! = 720
permutations and compute the posterior exactly.

As a baseline, we consider the Mallows distribution
Mallows [1957] with density over a permutations ¢
given by pg g, (¢) x exp(—0d(¢, do)), where ¢¢ is a
central permutation, d(¢, o) = S, |(i) — ¢o(i)| is
a distance between permutations, and 6 controls the
spread around ¢g. This is the most popular expo-
nential family model for permutations, but since it is
necessarily unimodal, it can fail to capture complex
permutation distributions.

Table 1: Mean BDs in the synthetic matching experiment

for various methods and observation variances.

Variance o2

Method 122527 52 752
Stick-breaking .09 23 41 .55
Rounding .06 .21 .32 .38
Mallows (6 =0.1) .93 .92 .89 .85
Mallows (§ =0.5) 51 .53 .61 .71
Mallows (6 = 2) 23 .33 B3 .69
Mallows (6 = 5) .08 27 54 .72
Mallows (¢ =10) .08 .27 .54 .72

We measured the discrepancy between true posterior
and an empirical estimate of the inferred posteriors
using using the Battacharya distance (BD). We fit
¢-(X;0) with a fixed 7 (a hyperparameter) for both
stick-breaking and rounding transformations, sampled
the variational posterior, and rounded the samples to
the nearest permutation matrix with the Hungarian
algorithm. For the Mallows distribution, we set ¢q
to the MAP estimate (also found with the Hungarian

algorithm) and sampled using MCMC.

Both methods outperform the simple Mallows distri-
bution and reasonably approximate non-trivial distri-
butions over permutations. Fig. 2 shows (a) sample
experiment configurations; (b) examples of inferred
discrete posteriors for stick breaking, rounding, and
Mallows at increasing levels of noise; and (c) histogram
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Figure 3: Inferring labels and weights in C. elegans. (a) Neural activity is optically recorded in genetically modified C.
elegans. (b) The output is a multivariate time series of neural activity of N neurons for each worm. (c) The first challenge
is to infer a latent permutation that matches observed neuron indices to the known set of neuron names, or labels. (d)
The second challenge is to infer the weights with which each neuron influences its synaptic neighbors. The connectome (i.e.

adjacency matrix) is known, but the weights are not.

of Battacharya distance. The latter are summarized in
Table 1.

5 Brain dynamics of C. elegans

Finally, we consider an application motivated by the
study of the neural dynamics in C. elegans. This worm
presents many advantages for scientific study. Each
hermaphrodite worm has the same N = 302 neurons,
and each neuron has a label, like AIBL, AVAL, etc.
Moreover, the worm’s connectome—the adjacency ma-
trix that specifies how neurons are connected—is well-
characterized [White et al., 1986, Varshney et al., 2011].
Yet while the adjacency matrix is known, the weights
associated with these connections are not.

Modern recording technologies enable whole-brain
recordings in C. elegans [Nguyen et al., 2016], pre-
senting an opportunity to learn these weights. Fig. 3a
and 3b provide a cartoon illustration: worms are ge-
netically altered so that their neurons fluoresce when
active; in each frame of the movie neurons appear as
dots in the image, and over time the intensity of these
dots provides an optical read-out of the neural activ-
ity. However, labeling neurons—i.e. finding the latent
permutation that matches observed neurons to known
labels, as in Fig. 3c—is still a manual task. Experi-
menters consider the location of the neuron along with
its pattern of activity to perform this matching, but
the process is laborious and the results are prone to
error. We prototype an alternative solution, leveraging
the location of neurons and their activity in a prob-
abilistic model. We infer neural labels by combining
information from the connectome, covariates like po-
sition, and neural dynamics. Moreover, we combine
information from many individual worms to aid in
this labeling. The hierarchical nature of this problem
and the plethora of prior constraints and observations
motivate our Bayesian approach.

Probabilistic Model. Let J denote the number
of worms and Y € RT*N denote a recording of
worm j with T} time steps and N neurons. We model
the neural activity as a linear autoregressive process
YW = x@Ow x0) Y(J) 169 where e is Gaussian.
Here, XU) is a latent permutation that must be in-
ferred for each worm in order to align the per-worm
observations with the shared dynamics matrix W. The
hierarchical component of the model is that the un-
known weight matrix W is shared by all worms, and it
encodes the influence of one neuron on another. The
rows and columns of W are ordered in the same way
as the known connectome A € {0,1}¥*¥. The connec-
tome specifies which entries of W may be non-zero:
without a connection (A4,,, =0) the corresponding
weight must be zero; if a connection exists (A, = 1),
we must infer its weight. A cartoon example is shown
in Fig. 3d.

Our goal is to infer W and {X@} given {Y )} and
A using variational permutation inference. We place
a standard Gaussian prior on W and a uniform prior
on XU and we use the rounding transformation to
approximate the posterior, p(W, { X1 | {Y )}, A)
p(W AL p(Y D | W, X0), A) p(X ).

Finally, we use neural position along the worm’s
body [Lints et al., 2005] to constrain the possible neural
identities for a given neuron. Given the positions of
the neurons, we construct a binary constraint matrix
CU) so that C’r(izl = 1 if observed neuron m is close
to where label n is typically found. We enforce this
constraint by zeroing corresponding entries in the pa-
rameter matrix M described in Section 3.2. These
constraints greatly reduce the number parameters of
the model and facilitate inference.

Results. We compared against three methods: (i)
naive variational inference, where we do not enforce the
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Figure 4: Results on the C.elegans inference example. (a) An example of convergence of the algorithm, and the baselines.
(b) Accuracy of identity inference as a function of mean number of candidates (correlated with v), for M = 1 worm (square)
and combining information of M = 5 worms (circles). (¢) Accuracy as a function of the proportion of known networks
beforehand, with v = 0.1 (circles) and v = 0.05 (squares). (d)Variance of distribution over permutations (vectorized)
as a function of the number of iterations. (e) Two samples of permutation matrices round(¥) (right) and their noisy,
non-rounded versions ¥ (left) at the twentieth algorithm iteration. The average of many samples is also shown. These
averages take values in (0, 1), indicating uncertainty in the variational posterior.

constraint that X @) be a permutation and instead treat
each row of X9) as a Dirichlet distributed vector; (ii)
MCMC, where we alternate between sampling from the
conditionals of W (Gaussian) and X ), from which one
can sample by proposing local swaps, as described in
Diaconis [2009], and (iii) maximum a posteriori estima-
tion (MAP). Our MAP algorithm alternates between
the optimizing estimate of W given {X (™) Y (™)} us-
ing linear regression and finding the optimal X ). The
second step requires solving a quadratic assignment
problem (QAP) in X); that is, it can be expressed
as Tr(AXBXT) for matrices A, B. We used the QAP
solver proposed by Vogelstein et al. [2015].

We find that our method outperforms each baseline.
Fig. 4a illustrates convergence to a better solution for a
certain parameter configuration. Moreover, Fig. 4b and
Fig. 4c show that our method outperforms alternatives
when there are many possible candidates and when only
a small proportion of neurons are known with certainty.
Fig. 4c also shows that these Bayesian methods benefit
from combining information across many worms.

Altogether, these results indicate our method enables
a more efficient use of information than its alterna-
tives. This is consistent with other results showing
faster convergence of variational inference over MCMC
[Blei et al., 2017], especially with simple Metropolis-
Hastings proposals. We conjecture that MCMC would
eventually obtain similar if not better results, but the

local proposals—swapping pairs of labels—leads to slow
convergence. On the other hand, Fig. 4a shows that
our method converges much more quickly while still
capturing a distribution over permutations, as shown
by the overall variance of the samples in Fig. 4d and
the individual samples in Fig. 4e.

6 Conclusion

Our results provide evidence that variational permuta-
tion inference is a valuable tool, especially in complex
problems like neural identity inference where informa-
tion must be aggregated from disparate sources in a
hierarchical model. As we apply this to real neural
recordings, we must consider more realistic, nonlinear
models of neural dynamics. Here, again, we expect
variational methods to shine, leveraging automatic gra-
dients of the relaxed ELBO to efficiently explore the
space of variational posterior distributions.
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