
Competing with Automata-based Expert Sequences

A Intersection of WFAs

The intersection of two WFAs A1 and A2 is a WFA denoted by A1 ∩A2 that accepts the set of sequences accepted by both
A1 and A2 and is defined for all x by

(A1 ∩A2)(x) = A1(x)A2(x).

There exists a standard efficient algorithm for computing the intersection WFA [Mohri, 2009]. States of A1 ∩ A2 are
identified with pairs of states Q1 of A1 and Q2 of A2: Q ⊆ Q1 ×Q2, as are the set of initial and final states. Transitions are
obtained by matching pairs of transitions from each weighted automaton and multiplying their weights following the rule

�
q1

a/w1−→ q�1, q2
a/w2−→ q�2

�
⇒ (q1, q2)

a/(w1w2)−→ (q�1, q
�
2).

The worst-case space and time complexity of the intersection of two deterministic weighted finite automata (WFA) is linear
in the size of the automaton the algorithm returns. In the worst case, this can be as large as the product of the sizes of the
WFA intersected (i.e. O(|A1||A2|), where |A1| is the sum of the number of states and transitions of A1 and similarly with
|A2|. This corresponds to the case where every transition of A1 can be paired up with every transition of A2. In practice far
fewer transitions can be matched.

Notice that when both A1 and A2 are deterministic, then A1 ∩A2 is also deterministic since there is a unique initial state
(pair of initial states of each WFA) and since there is at most one transition leaving q1 ∈ Q1 or q2 ∈ Q2 labeled with a given
symbol a ∈ Σ.

In the case of C ∩ ST , the WFA returned is B, which has the same size as A. A has more transitions than states since each
state admits at least on outgoing transition, so its size is dominated by its number of transitions. Therefore, the complexity
of intersection here is in O(|EA|), where |EA| is at most |C|NT .

B WEIGHT-PUSHING algorithm

Here, we briefly describe the WEIGHT-PUSHING algorithm for a WFA A in the context of this paper [Mohri, 1997, 2009].
We denote by QA the set of states of A, by EA the set of transitions of A, by IA its initial state, by FA the set of its final
states, and by ρA(q) the final weight at a final state q – for the WFAs considered in this paper the final weights are all equal
to one.

For any state q ∈ QA, let d[q] denote the sum of the weights of all paths from q to final states:

d[q] =
�

π∈P (q,FA)

weight[π] ρ(dest[π]),

where P (q, FA) denotes the set of paths from q to a state in FA. For an acyclic WFA A, the weights d[q] can be computed
in linear time in the size of A, that is in O(|QA|+ |EA|), or O(|EA|) when every state of A admits at least one outgoing or
incoming transition. This can be done using a general shortest-distance algorithm [Mohri, 1997, 2009].

The weight-pushing algorithm then consists of the following steps. For any transition e ∈ EA such that d[src[e]] �= 0, we
update its weight as follows:

weight[e] ← d[src[e]]−1 weight[e] d[dest[e]].

For any state q ∈ FA with d[q] �= 0, we update its final weight as follows:

ρA[q] ← d[q]−1 ρA[q].

The resulting WFA is guaranteed to be stochastic (at any state q, the sum of the weights of all outgoing transitions, and the
final weight if q is final, is equal to one) [Mohri, 2009]. Furthermore, if d[IA] = 1, that is if the sum of the weights of all
paths is one, then path weights are preserved by this weight-pushing operation. Otherwise, the weights of all paths starting
at the initial state is divided by d[IA].

Mohri, Yang

C Proof of Theorem 1

Theorem 1. Let q denote the probability distribution defined by CT = C ∩ ST and let K denote the number of accepting
paths of CT . Then, the following upper bound holds for the weighted regret of AWM:

RegT (AWM,C) ≤ ηT

8
+

1

η
log

�
Kη

�

x∈ΣT

q[x]η
�
≤ ηT

8
+

1

η
logK.

Furthermore, when K ≥ 2, for any T > 0, there exists η∗ > 0, decreasing function of T , such that:

RegT (AWM,C) ≤
�

THη∗(q)

2
−Hη∗(q) + logK,

where Hη(q) =
1

1−η log
��

x∈ΣT q[x]
�

is the η-Rényi entropy of q. The unweighted regret of AWM can be upper-bounded
as follows:

Reg0T (AWM,C) ≤ ηT

8
+

1

η
logK.

Proof. We will use a standard potential-based argument. For any t ≥ 1 and sequence x ∈ ΣT , let wt[x] denote the sequence
weight defining qt via normalization, qt[x] =

wt[x]�
x wt[x]

, that is w1[x] = q[x]η and, for t ≥ 2, wt[x] = w1[x]e
−η

�t−1
s=1 ls[x[s]].

Let Φt be the potential defined by Φt = log (
�

x wt[x]) for t ≥ 1. Then, by Hoeffding’s inequality, we can write

Φt+1 − Φt = log

��
x wt[x] e

−ηlt[x[t]]

�
x wt[x]

�

= log

�
E

x∼qt

�
e−ηlt[x[t]]

��

≤ −η E
x∼qt

�
lt[x[t]]

�
+

η2

8
= −η E

a∼pt

�
lt[a]
�
+

η2

8
.

Summing up these inequalities over t ∈ [1, T] results in the following upper bound:

ΦT+1 − Φ1 ≤ −η

T�

t=1

E
a∼pt

[lt[a]] +
η2T

8
.

We can straightforwardly derive a lower bound for the same quantity for any sequence x0 ∈ ΣT :

ΦT+1 − Φ1 = log
��

x

wT+1[x]
�
− log

��

x

w1[x]
�

≥ log[wT+1[x0]]− log
��

x

w1[x]
�

= −η

T�

t=1

lt[x0[t]] + log[q[x0]
η]− log

��

x

q[x]η
�
.

Comparing the upper and lower bounds gives

−η

T�

t=1

lt[x0[t]] + log[q[x0]
η]− log

��

x

q[x]η
�
≤ −η

T�

t=1

E
a∼pt

[lt[a]] +
η2T

8
,

which can be rearranged as

T�

t=1

E
a∼pt

[lt[a]]−
T�

t=1

lt[x0[t]] ≤
ηT

8
− log[q[x0]] +

1

η
log
��

x

q[x]η
�

⇔
T�

t=1

E
a∼pt

[lt[a]]−
T�

t=1

lt[x0[t]] + log[Kq[x0]] ≤
ηT

8
+

1

η
log
�
Kη
�

x

q[x]η
�
.

Competing with Automata-based Expert Sequences

Since the inequality holds for any sequence x0 ∈ ΣT , it implies the following upper bound on the weighted regret:

RegT ≤ ηT

8
+

1

η
log
�
Kη
�

x

q[x]η
�
.

By Jensen’s inequality, the inequality 1
K

�
x q[x]

η ≤
�

1
K

�
x q[x]

�η
= 1

Kη holds for η ∈ (0, 1). This implies the following
general upper bounds on the weighted regret:

RegT ≤ ηT

8
+

1

η
logK.

The weighted regret can also be upper bounded in terms of the Rényi entropy. Observe that

ηT

8
+

1

η
log
�
Kη
�

x

q[x]η
�
=

ηT

8
+

1− η

η
Hη(q) + logK.

η �→ Hη(q) is known to be a non-increasing function (see e.g. [Van Erven and Harremos, 2014]). It follows that η �→ η√
Hη(q)

is an increasing function that increases at least linearly. If we assume that q is supported on more than a single sequence,

then, we have H0(q) > 0. Thus, for any T , there exists a unique η∗ such that η∗√
Hη∗ (q)

=
�

8
T . Furthermore, for η ≤ η∗,

the following inequality holds: η√
Hη(q)

≤
�

8
T . Thus, we can write

ηT

8
+

1

η
log
�
Kη
�

x

q[x]η
�
≤ inf

η≤η∗

ηT

8
+

1

η
Hη(q)−Hη(q) + logK

≤
�

THη∗(q)

2
−Hη∗(q) + logK.

The upper bound on the unweighted regret is obtained straightforwardly from the previous derivations using q[x] = 1
K .

Note that when the losses are mixing, we can also derive better constant-in-time regret guarantees by avoiding the use of
Hoeffding’s inequality.

D Proof of Theorem 2

Theorem 2. The weighted regret of the AWM algorithm with respect to the WFA C when run with �CT instead of CT can be
upper bounded as follows:

RegT (A,C) ≤ ηT

8
+

1

η
log
�
Kη
�

x

�q[x]η
�
+D∞(q��q) ≤ ηT

8
+

1

η
logK +D∞(q��q).

Its unweighted regret can be upper bounded as follows:

Reg0T (A,C) ≤ max
C(x)>0

ηT

8
+

1

η
log

�
1

q[x]

�
+

1

η
D∞(q��q).

Proof. By Theorem 1 (and its proof), for any sequence x0 ∈ ΣT , the following upper bound holds for the cumulative loss
of AWM run with �CT :

T�

t=1

pt · lt −
T�

t=1

lt[x0[t]] + log[�q[x0]] ≤
ηT

8
+

1

η
log
��

x

�q[x]η
�
.

Thus, for any sequence x0 ∈ ΣT accepted by CT , we can write

T�

t=1

pt · lt −
T�

t=1

lt[x0[t]] + log[q[x0]K] ≤ ηT

8
+

1

η
log
�
Kη
�

x

�q[x]η
�
+ log

�
q[x0]

�q[x0]

�
,

Mohri, Yang

which implies the following upper bound on the weighted regret:

RegT (A,C) ≤ ηT

8
+

1

η
log
�
Kη
�

x

�q[x]η
�
+ sup

CT (x0)>0

log

�
q[x0]

�q[x0]

�

≤ ηT

8
+

1

η
log
�
Kη
�

x

�q[x]η
�
+D∞(q��q)

As in the proof of Theorem 1, by Jensen’s inequality, log
�
Kη
�

x �q[x]η
�
≤ logK, which implies the second inequality.

Similarly, by the proof of Theorem 1, the unweighted regret of AWM run with �CT can be upper bounded as follows:

T�

t=1

pt · lt −
T�

t=1

lt[zt] ≤ max
C(x)>0

ηT

8
+

1

η
log
� 1

�q[x]
�
= max

C(x)>0

ηT

8
+

1

η
log

�
1

q[x]

�
+

1

η
log

�
q[x]

�q[x]

�
,

which completes the proof.

Competing with Automata-based Expert Sequences

�

�

� � �

�

� � �

�

� � �

�

� � �

�

�

φ

�

φ

�

φ

�

φ

�

� ��

(a) (b)

Figure 5: Example of the compression achieved by introducing a failure transition. (a) Standard automaton. (b) ϕ-automaton.

Algorithm 3: ϕ-CONVERT.
Algorithm: ϕ-CONVERT(C)
for each non-initial state q ∈ C do

S∗, Q∗ ← ϕ-SOURCESUBSET(C, q)
if |S∗|+ |Q∗| < |S∗||Q∗| then

q̃ ← NEWSTATE(C)
EC ← EC ∪ {(q,ϕ, 1, q̃)}
for each q� ∈ Q∗ do

for each e� ∈ EC[q
�] do

if (lab[e�],weight[e�]) ∈ S∗ then
EC ← EC ∪ {(q̃, lab[e�],weight[e�], q)}
DELETETRANSITION[EC, e

�]

E Failure transition algorithms

The computational complexity of the AWM algorithm presented in Section 3 is based on the size of the composed automaton
C ∩ ST , which itself is related to the original size of C. Similarly, if we were to apply AWM to an n-gram approximation,
the computational complexity of the algorithm depends on the size of the approximating automaton. In this section, we
introduce a technique to improve the computational cost of AWM by reducing the size of the automaton, using the notion of
failure transition (or ϕ-transition).

ϕ-transitions are special transitions characterized by the semantic of “other”. If, at a state q, there is no outgoing transition
labeled with a ∈ Σ and there is a ϕ-transition leaving q and reaching q�, then the failure transition is taken instead without
consuming the label, and the next state is determined using the transitions leaving q�. A ϕ-automaton is an automaton with
ϕ-transitions. We assume that there is no ϕ-cycle in any of our ϕ-automata, and that there is at most one failure transition
leaving any state. This implies that the number of consecutive failure transitions taken is bounded.

A failure transition can often replicate the role of multiple standard transitions when there is “symmetry” within an automaton,
that is when there are many transitions leading to the same state from different states that consume the same set of labels.
Figure 5 illustrates such a case.

E.1 Conversion

Notice that in Figure 5, the introduction of a failure transition removed |S| transitions from |Q| parent states while introducing
|Q| ϕ-transitions from each of the parent states to a new state q�, and |S| transitions from q� to q. Thus, the change in the
number of transitions is |S∗|+ |Q∗|− |S∗||Q∗|. This fact can be exploited to design an algorithm that iterates through the
states of an automaton, and for each state, determines whether it is beneficial to introduce a failure transition between that
state and (a subset of) its parents. We call this algorithm, ϕ-Convert, which uses another algorithm, ϕ-SOURCESUBSET as
a subroutine to greedily select a candidate set of parent states from which to introduce a ϕ-transition for each state. The
pseudocode for ϕ-CONVERT and ϕ-SOURCESUBSET are presented in Algorithm 3 and Algorithm 4 respectively.

Recall that the two main automata operations required for AWM are intersection and shortest-distance. While these two
operations are standard for weighted automata, it is not as clear how one can perform them over weighted ϕ-automata. We
now extend both to ϕ-automata.

Mohri, Yang

Algorithm 4: ϕ-SOURCESUBSET.
Algorithm: ϕ-SOURCESUBSET(C, q)
(S0, Q0) ← (∅, ∅)
k∗ ← 1
for k ← 1 to | Parents [q]| do

qk ← argmaxq�∈Parents[q]\Qk−1
|(a, w) ∈ Σ× R+ : ∀q̃ ∈ Parents[q] ∪ {q�}, (q̃, a, w, q) ∈ EC|

Sk ← |(a, w) ∈ Σ× R+ : ∀q̃ ∈ Parents[q] ∪ {qk}, (q̃, a, w, q) ∈ EC|
Qk ← Qk−1 ∪ {qk}
k∗ ← argmaxj∈{k,k∗}{|Sj ||Qj |− (|Sj |+ |Qj |)}

return (Sk∗ , Qk∗)

�

�����

φ₂�φ₁��
�φ₁�φ₁��

�

φ₂�φ₂��

�����

φ₁�φ₁��

�����

φ₂�φ₂��

Figure 6: Illustration of the ϕ-filter F.

E.2 Intersection using a ϕ-filter

One of the main automata operations required for AWM is intersection. The standard algorithm for intersection of automata
(Appendix A), which is based on matching transitions, can return an incorrect result in the presence of ϕ-transitions.
Specifically, the algorithm may produce multiple ϕ-paths between two states, which leads to redundancy and incorrect
weights.

Redundant ϕ-paths are generated by standard intersection algorithms because when the algorithm is in state q1 in WFA C1

and state q2 in C2, both of which contain outgoing ϕ-transitions, the algorithm may take any of the following steps: (1)
move forward on a ϕ-transition in C1 while staying at q2; (2) move forward on a ϕ-transition in C2 while staying in C1; or
(3) move forward in both C1 and C2.

To avoid this situation, we introduce the concept of a ϕ-filter, which is a finite state transducer (FST) that can filter out all
but one ϕ-path between any two states.

Our ϕ-filter is designed to modify the two input automata in a way that will distinguish between the above cases. In C1, for
every ϕ-transition, we rename the label ϕ as ϕ2. Moreover, at the source and destination states of every ϕ-transition, we
introduce new self-loop transitions labeled with ϕ1 and with weight 1. Thus, a transition labeled with ϕ2 will indicate a
“move forward,” while a transition labeled with ϕ1 will indicate a “stay.” Similarly, in C2, we rename the ϕ labels as ϕ1, and
we introduce self-loops labeled with ϕ2 and weight 1 at the source and destination states of every ϕ-transition. With these
modifications, any ϕ-path resulting from the composition algorithm will include transitions of the form: (1) (ϕ2 : ϕ2); (2)
(ϕ1 : ϕ1); or (3) (ϕ2 : ϕ1).

Now consider the finite-state transducer F illustrated in Figure 6, which will serve as our ϕ-filter. The composition of
any two ϕ-automata and the ϕ-filter F, C1 ◦ F ◦ C2, will result in a finite-state transducer whose transitions have labels in
{(a : a)}a∈Σ∪{(ϕ2 : ϕ2), (ϕ1 : ϕ1), (ϕ2 : ϕ1)}.8 Moreover, we identify all label pairs in {(ϕ2 : ϕ2), (ϕ1 : ϕ1), (ϕ2 : ϕ1)}
using the same semantic of “other” as we did with ϕ. Thus, we can identify all label pairs in {(ϕ2 : ϕ2), (ϕ1 : ϕ1), (ϕ2 : ϕ1)}
with the single pair (ϕ : ϕ) and treat the result of composition as simply a weighted finite automaton.

8Composition is a standard algorithm for weighted finite-state transducers which coincides with the intersection operation in the
special case of WFA (see Mohri [2009]).

Competing with Automata-based Expert Sequences

Algorithm 5: ϕ-AUTOMATAWEIGHTEDMAJORITY(ϕ-AWM).
Algorithm: ϕ-AWM(C, η)
C ← ϕ-CONVERT(C)
B ← C ∩ F ∩ ST
A ← WEIGHT-PUSHING(Bη)
β ← BWDDIST(A)
α ← 0; α[IA] ← 1
for each e ∈ E0→1

A do
p1[lab[e]] ← weight[e].

for t ← 1 to T do
it ←SAMPLE(pt); PLAY(it); RECEIVE(lt)
Z ← 0; w ← 0
for each e ∈ Et→t+1

A do
weight[e] ← weight[e] e−ηlt[lab[e]]

w[lab[e]] ← w[lab[e]] +α[src[e]] weight[e]β[dest[e]]
Z ← Z +w[lab[e]]
α[dest[e]] ← α[dest[e]] +α[src[e]] weight[e]
if lab[e] �= ϕ then

q̃ = src[e]; wϕ ← 1
while ∃eϕ ∈ E[q̃] with lab[eϕ] = ϕ do

wϕ ← wϕ weight[eϕ]
if ∃e� ∈ E[dest[eϕ]] with lab[e�] = lab[e] then

α[dest[e�]] ← α[dest[e�]]− wϕweight[e
�]

BREAK
else

q̃ ← dest[eϕ]
pt+1 ← w

Z

E.3 Update of α using a modified shortest-distance algorithm

The other key ingredient of the AWM algorithm is the update of α using the shortest-distance algorithm for WFA. However,
updating α as we did in AWM may result in summing over ‘obsolete ϕ-transitions’. For example, if at a given state q, there
is a transition labeled with a to q� and a ϕ-transition whose destination state has a single outgoing transition also labeled
with a to q�, the second path should not be considered.

To account for these types of situations, we use the fact that the semiring (R+,+,×, 0, 1) admits a natural extension to a ring
structure under the standard additive inverse −1. Specifically, upon encountering a transition e labeled with a leaving state
q, we will check for ϕ-transitions with destination states that admit further transitions e� labeled with a. Any such transition
should not be considered under the semantic of the ϕ-transition and thus should not contribute any weight to the distance to
α[dest[e�]]. To correctly account for these paths, we will preemptively subtract the weight of e� from its destination state.
When the algorithm processes the ϕ-transition directly, it will add this weight back so that the total contribution of this path
is zero.

E.4 ϕ-AWM algorithm

With the addition of the ϕ-filter and the modified α update described above, we can present ϕ-AWM, an extension of
AWM that can handle ϕ-automata. Given an input automaton (not necessarily with ϕ-transitions), the algorithm first calls
ϕ-CONVERT to determine whether it is beneficial to introduce ϕ-transitions. The algorithm then composes the output with
ΣT (using the ϕ-filter) to compute the set of sequences of length T that are accepted by C. Then, the algorithm updates the
weights of the automaton in a similar manner as in AWM with the additional adjustment of preemptively accounting for
ϕ-transitions. Algorithm 5 presents the pseudocode for ϕ-AWM.

Since the update of pt in ϕ-AWM is mathematically equivalent to the one in AWM we obtain the same regret guarantees as
in Theorem 1. Moreover, if we denote by Nϕ(QCT

) the maximum number of consecutive ϕ-transitions leaving states in

QCT
, the total computational cost of the algorithm is in O

��T
t=1 Nϕ(QCT ,t−1)|Et→t+1

A |
�

.

Mohri, Yang

�

��������

��

������ �φ

������φ��

��

����φ��

φ����φ�

�������

φ����φ�

�������

�φ

������φ��

��

����φ��

φ����φ�
�������

φ����φ�

�������

Figure 7: An illustration of a bigram model approximating the k-shifting automaton composed with S. ϕ-CONVERT has
been applied to the bigram model, making it smaller than a standard bigram model.

For the k-shifting automaton, the per-iteration computational complexity of ϕ-AWM is now O(Nk), since there is at
most one consecutive ϕ-transition in the output of ϕ-Convert, and we now aggregate transitions at each time using failure
transitions. This is a factor of N better than that of AWM, and only a factor of k worse than the FIXED-SHARE algorithm
of Herbster and Warmuth [1998]. If we intersect the k-shifting automaton with ΣT , approximate the result with a bigram
model, and then convert this model into a ϕ-automaton, we obtain an algorithm that runs in O(N), which is the same as that
of FIXED-SHARE. See Figure 7 for an illustration.

Competing with Automata-based Expert Sequences

Algorithm 6: PROD-EG.
Algorithm: PROD-EG(q1 ∈ (ΔN)m, η)
for s = 1, 2, . . . , τ do

PLAY(qs)
RECEIVE(∇f(qs))
for j = 1, 2, . . . ,m do

for i = 1, 2, . . . , N do

qs+1,j(i) = qs,je
−η ∂f

∂qj(i)
(qs,j)

F PROD-EG

The pseudocode of the PROD-EG algorithm, which is based on a simple multiplicative update, is given in Algorithm 6. The
following provides a general guarantee for the convergence of the algorithm.

Theorem 5 (PRODUCT-EXPONENTIATED GRADIENT (PROD-EG)).

Let (ΔN)m be the product of m (N − 1)-dimensional simplices, and let
f : (ΔN)m → R be a convex function whose partial subgradients have absolute values all bounded by L. Let q1,j(i) = 1

N
for i ∈ [N] and j ∈ [m]. Then, PROD-EG benefits from the following guarantee:

f

�
1

τ

τ�

s=1

qs

�
− f(q∗) ≤ 1

ητ
m log(N) + 2ηL.

Proof. Consider the mirror map ψ : (ΔN)m → R defined by ψ(q) =
�m

j=1

�N
i=1 qj(i) log qj(i). This induces the

Bregman divergence:

Bψ(q, q
�) =

m�

j=1

N�

i=1

qj(i) log

�
qj(i)

q�j(i)

�
.

Since each relative entropy is 1-strongly convex with respect to the l1 norm over a single simplex, the additivity of strong
convexity implies that Bψ is 1-strongly convex with respect to the l1 norm defined over(ΔN)m.

The update described in the theorem statement corresponds to the mirror descent update based on Bψ:

qs+1 = argmin
q∈(ΔN)m

�gs, q�+Bψ(q, qs).

where gs ∈ ∂(f(qs)) is an element of the subgradient of f at qs. Thus, the standard mirror descent regret bound (e.g.
[Bubeck et al., 2015]) implies that

1

τ

τ�

s=1

f(qs)− f(q∗) ≤ 1

ητ
Bψ(q

∗, q1) + η2L.

The result now follows from the fact the observation that Bψ(q
∗, q1) ≤ m log(N).

For the minimum Rényi divergence optimization problem (8), we can apply PROD-EG to the product of m =
�n

j=1 |Σ|n−j

simplices, each one corresponding to a conditional probability with a specific history. First, we remark that the subgradient
of the maximum of a family of convex functions at a point can always be chosen from the subgradient of the maximizing
function at that point. Specifically, let {fα}α∈A be a family of convex functions, and let α(x) = argmaxα fα(x). Then, it
follows that

max
α

fα(x)−max
α

fα(y) ≥ fα(y)(x)− fα(y)(y) ≥ �∇fα(y)(y), x− y�.

Mohri, Yang

Let x be the maximizing path of the minimum Rényi divergence objective. We can then write

log

�
q[x]

�qw[x]

�
= q[x]−

T�

t=1

logw
�
x[t]
��xt−1

max(t−n+1,1)

�

= q[x]−
n�

j=1

�

zj
1∈Σj

T�

t=1

1j=min(t,n)1xt
max(t−n+1,1)

=zj
1
logw

�
z[j]
���zj−1

1

�
.

Thus, its partial derivative with respect to w
�
z[j]
���zj−1

1

�
is:

∂

∂w
�
z[j]
���zj−1

1

� log
�
q[x]

�qw[x]

�
= −

T�

t=1

1j=min(t,n)1xt
max(t−n+1,1)

=zj
1

w
�
z[j]
���zj−1

1

� .

Thus, by tuning PROD-EG with an adaptive learning rate

ηt ∝
1�

�t
s=1

���∇ log
�

q[x(s)]
�qws [x(s)]

����
2

∞

,

where x(s) = argmaxx∈CT
log
�

q[x]
�qws [x]

�
, we can derive the following guarantee for PROD-EG applied to the n-gram

approximation problem.

Corollary 1 (n-gram approximation guarantee). There exists an optimization algorithm outputting a sequence of conditional
probabilities (qt)

∞
t=1 such that

�
1
T

�T
t=1 qt

�
approximates the ∞-Rényi optimal n-gram solution with the following

guarantee:

F

�
1

τ

τ�

s=1

qt

�
− F (q∗) ≤

������
2Nn log(N)

�τ
s=1 max j∈[n]

zj
1∈Σj

����
�T

t=1

1j=min(t,n)1xt
max(t−n+1,1)

=z
j
1

ws

�
z[j]
��zj−1

1

�
����

(N − 1)T 2
.

Each iteration of PROD-EG admits a computational complexity that is linear in the dimension of the feature space. Since
we have specified an n-gram model as the product of Nn−1

N−1 simplices, the total per-iteration cost of solving the convex

optimization problem is in O
�

N(Nn−1)
N−1

�
= O(Nn). Since the minimum Rényi divergence is not Lipschitz, the maximizing

ratio in the convergence guarantee may also become large when the choice of n is too small. In all cases, observe that this
approximation problem can be solved offline.

Competing with Automata-based Expert Sequences

G Minimum Rényi divergence unigram models

Theorem 3. Assume that CT admits uniform weights over all paths and Σ = {a1, a2}. For j ∈ {1, 2}, let n(aj) be the
smallest number of occurrences of aj in a path of CT . For any j ∈ {1, 2}, define

q[aj] =
max

�
1,

n(aj)
T−n(aj)

�

1 + max
�
1,

n(aj)
T−n(aj)

� .

Then, the unigram model w ∈ W1 solution of ∞-Rényi divergence optimization problem is defined by w[aj∗] = q[aj∗],
w[aj�] = 1− w[aj∗], with j∗ = argmaxj∈{1,2} n(aj) log q[aj] + [T − n(aj)] log

�
1− q[aj]

�
.

Proof. We seek a unigram distribution qw that is a solution of:

min
w∈W1

sup
x∈CT

log

�
q[x]

qw[x]

�
.

Since CT admits uniform weights, q[x] = 1
|CT | , and since qw is the distribution induced by a unigram model, log qw[x] can

be expressed as follows:
log qw[x] = nx(a1) log p(a1) + [T − nx(a1)] log (1− p(a1)) ,

where p(aj) is the automaton’s weight on transitions labeled with aj and nx(aj) is the count of aj in the sequence x. Thus,
the optimization problem is equivalent to the following problem:

− max
p(a1)∈[0,1]

min
x∈CT

nx(a1) log p(a1) + [T − nx(a1)] log (1− p(a1)) .

Denote the objective by F (p(a1), nx(a1)). Then, the partial derivatives with respect to the label counts are given by

∂F

∂nx(a1)
= log p(a1)− log

�
1− p(a1)

�
.

Thus, ∂F
∂nx(a1)

≥ 0 if and only if p(a1) ≥ 1 − p(a1). Furthermore, if p(a1) ≥ 1 − p(a1), then the sequence x chosen in
the optimization problem is the sequence with the minimal count of symbol a1. Similarly, if p(a2) ≥ 1− p(a2), then the
sequence x chosen in the optimization problem is the one with minimal count of a2.

Since we have either p(a1) ≥ p(a2) or vice versa (potentially both), we can write the optimization problem as:

− max
k∈{1,2}

max
p(aj)≥1−p(aj)

j �=k

min
{nx(aj)}j �=k : x∈CT

nx(aj) log p(aj) + [T − nx(aj)] log (1− p(aj)) .

Given k ∈ {1, 2}, let x(k) be the sequence that minimizes nx(aj) over all x for j �= k. Denote these counts nx(k)(aj) by
n(aj). Then we can rewrite the objective as:

− max
k=1,2,...,N

max
p(aj)≥1−p(aj)

j �=k

n(aj) log p(aj) + [T − n(aj)] log (1− p(aj)) .

Denote the objective for this new term by F̃k, which is a function of p(aj). The partial derivative of F̃k with respect to p(aj)
is:

∂F̃k

∂p(aj)
=

n(aj)

p(aj)
− T − n(aj)

1− p(aj)
,

which is equal to 0 if and only if

p(aj) =
n(aj)

T − n(aj)
(1− p(aj)) = max

�
1,

n(aj)

T − n(aj)

�
(1− p(aj)) .

The last equality follows from our assumption that p(aj) ≥ 1− p(aj). Now, let q(aj) denote the probabilities that we have
just computed. Then, we can write the optimization problem of F̃k as:

− max
k∈{1,2},j∈{1,2}\{k}

n(aj) log q(aj) + [T − n(aj)] log (1− q(aj)) .

Mohri, Yang

H Maximum likelihood n-gram models

Theorem 4. Let CT be the k-shifting automaton for some k. Then, the bigram model w2 obtained by minimizing relative
entropy is defined for all a1, a2 ∈ Σ by

qw2
[a1a2] =

1

N

�
1− k

(T − 1)

�
1a1=a2

+
1

N

� k

(T − 1)(N − 1)

�
1a1 �=a2

.

Moreover, its approximation error can be bounded by a constant (independent of T):

D∞(q�qw2) ≤ − log
�
1− 2e−

1
12k

�
.

Proof. Let a1, a2 ∈ Σ. Then, we can write

qw2
[a2|a1] = qw2

[a2|a1, a2 = a1] qw2
[a2 = a1] + qw2

[a2|a1, a2 �= a1] qw2
[a2 �= a1].

Consider first the case where a2 = a1. Then, qw2
[a2|a1, a2 = a1] = 1, and qw2

[a2 = a1] is the expected number of times
that we see label a2 agreeing with label a1. Since q is uniform for the k-shifting automaton, the expected counts are pure
counts, and the probability that we see two consecutive labels agreeing is 1− k

T−1 . Now, consider the case where a2 �= a1.
By symmetry, qw2

[a2|a1, a2 �= a1] =
1

N−1 , since a2 is equally likely to be any of the other N − 1 labels. Moreover,
qw2 [a2 �= a1] =

k
T−1 . Thus, the following holds:

qw2 [a2|a1] =
1

N − 1

k

T − 1
1a1 �=a2 +

�
1− k

T − 1

�
1a1=a2 .

By symmetry, we can write qw2 [a1] =
1
N , therefore,

qw2 [a1a2] = qw2 [a2|a1]qw2 [a1] =
k

N(N − 1)(T − 1)
1a1 �=a2 +

�
T − 1− k

N(T − 1)

�
1a1=a2 .

Since the k-shifting automaton has uniform weights and qw2 is uniform on CT , we can write for any string x accepted by
CT :

log

�
q[x]

qw2 [x]

�
= log

�
1

qw2 [x]

�
− log(|CT |)

= log

�
1

qw2
[z = x|z ∈ CT]qw2

[z ∈ CT] + qw2
[z = x|z /∈ CT]qw2

[z /∈ CT]

�
− log(|CT |)

= log

�
1

1
|CT |qw2 [z ∈ CT] + qw2 [z = x|z /∈ CT]qw2 [z /∈ CT]

�
− log(|CT |)

≤ log

� |CT |
qw2

[z ∈ CT]

�
− log(|CT |) = log

�
1

qw2
[z ∈ CT]

�
.

The probability that a string z is accepted by CT (under the distribution qA2) is equal to the probability that it admits exactly
k shifts. Let ξt = 1{z shifts from t − 1 to t} be a random variable indicating whether there is a shift at the t-th symbol in sequence
z. This is a Bernoulli random variable bounded by 1 with mean k

T−1 and variance k
T−1 (1− k

T−1). Since each shift occurs
with probability k

T−1 , we can use Sanov’s theorem to write the following bound:

qw2 [z /∈ CT] = qw2

������
T�

t=2

ξt − k

����� >
1

2

�
≤ 2e−(T−1)u,

where u = (T − 1)min

�
D

�
k + 1

2

T − 1

����
k

T − 1

�
, D

�
k − 1

2

T − 1

����
k

T − 1

��
. We now give lower bounds on the relative entropy

terms arguments of the minimum operator. For the first term, using the inequalities log(1 + x) ≥ x
1+ x

2
and log(1 + x) < x,

Competing with Automata-based Expert Sequences

we can write

−D

�
k + 1

2

T − 1

����
k

T − 1

�

=

�
1 +

1

2k

�
k

T − 1
log

1

1 + 1
2k

+

�
1− k

T − 1
− 1

2k

k

T − 1

�
log

�
1 +

1
2k

k
T−1

1− k
T−1 − 1

2k
k

T−1

�

≤
�
1 +

1

2k

�
k

T − 1

− 1
2k

1 + 1
4k

+

�
1− k

T − 1
− 1

2k

k

T − 1

� 1
2k

k
T−1

1− k
T−1 − 1

2k
k

T−1

=
1

2k

k

T − 1

�
1− 1 + 1

2k

1 + 1
4k

�
=

− 1
8k2

k
T−1

1 + 1
4k

=
− 1

4k2
k

T−1

2 + 1
4k

≤ − 1

12k(T − 1)
.

Similarly, we can write:

−D

��
1− 1

2k

�
k

T − 1

����
k

T − 1

�

=

�
1− 1

2k

�
k

T − 1
log

1

1− 1
2k

+

�
1− k

T − 1
+

1

2k

k

T − 1

�
log

�
1−

1
2k

k
T−1

1− k
T−1 + 1

2k
k

T−1

�

≤
�
1

2k
− 1

8k2

�
k

T − 1
+

�
1− k

T − 1
+

1

2k

k

T − 1

� − 1
2k

k
T−1

1− k
T−1 + 1

2k
k

T−1

= −
1

4k2
k

T−1

2
= − 1

8k(T − 1)
.

Using these inequalities, we can further bound the approximation error in the regret bound by:

log

�
1

qw2
[z ∈ CT]

�
≤ log

�
1

1− 2e−
1

12k

�
= − log

�
1− 2e−

1
12k

�
,

which completes the proof.

Mohri, Yang

I Extension to sleeping experts

In this section, we present AWAKEAWM, a path-based weighted majority algorithm that generalizes the algorithms in
[Freund et al., 1997] to arbitrary families of expert sequences. Like AWM, AWAKEAWM maintains a set of weights over
all the paths in the input automaton. At each round t, the algorithm performs a weighted majority-type update. However,
it normalizes the weights so that the total weight of the awake set remains unchanged. This prevents the algorithm from
“overfitting” to experts that have been asleep for many rounds. The pseudocode of AWAKEAWM is provided as Algorithm 7,
and it is accompanied by the following theoretical guarantee.
Theorem 6 (Regret Bound for AWAKEAWM). Let K denote the number of accepting paths of CT = C ∩ ST , and for each
t ∈ [T], let At ⊆ Σ denote the set of experts that are awake at time t. Then for any distribution u ∈ ΔK , AWAKEAWM
admits the following unweighted regret guarantee:

T�

t=1

�

x∈CT∩At

u[x] E
a∼p

At
t

[lt[a]]−
T�

t=1

�

x∈CT∩At

u[x]lt[x[t]]

≤ η

8

T�

t=1

u(At) +
1

η
log(K).

Proof. As in the proof of Theorem 1, for every t ∈ [T] and x ∈ ΣT , let wt[x] denote the sequence weight defining qt via
normalization, qt[x] =

wt[x]�
x wt[x]

. Moreover, let qAt
t be the distribution induced over sequences in with labels that awake at

time t, so that for every sequence x ∈ CT with x[t] ∈ At, qAt
t [x] = qt[x]�

x∈CT : x[t]∈At
qt[x]

, and for every sequence x ∈ CT

with x[t] /∈ At, qAt
t [x] = 0.

Notice that by design, if a sequence x ∈ CT has a label that isn’t awake at time t, x[t] /∈ At, then qt+1[x] = qt[x], since we
do not update that edge.

Moreover, by the normalization scheme,
�

x∈CT : x[t]/∈At
qt+1[x] =

�
x∈CT : x[t]/∈At

qt[x].

Now let u ∈ ΔK . Then we can write

D(u�qt)−D(u�qt+1)

=
�

x∈CT

u[x] log
qt+1[x]

qt[x]

=
�

x∈CT : x[t]∈At

u[x] log
qt+1[x]

qt[x]

=
�

x∈CT∩At

u[x] log
qAt
t+1[x]

qAt
t [x]

=
�

x∈CT∩At

u[x] log
qAt
t [x]e−ηlt[x[t]]

qAt
t [x]

�
y∈CT : y[t]∈At

qAt
t [y]e−ηlt[y[t]]

=
�

x∈CT∩At

u[x](−ηlt[x[t]])−
�

x∈CT : x[t]∈At

u[x] log


 �

y∈CT : y[t]∈At

qAt
t [y]e−ηlt[y[t]]




≤ −η
�

x∈CT∩At

u[x]lt[x[t]]−
�

x∈CT : x[t]∈At

u[x]

�
E

y∼q
At
t

[−ηlt[y[t]]] +
η2

8

�

= −η
�

x∈CT∩At

u[x]lt[x[t]] + η
�

x∈CT : x[t]∈At

u[x] E
a∼p

At
t

[lt[a]]− u(At)
η2

8
.

Thus, by rearranging terms and summing over t, it follows that

T�

t=1

�

x∈CT∩At

u[x] E
a∈p

At
t

[ηlt[a]]−
T�

t=1

�

x∈CT∩At

u[x]lt[x[t]] ≤
T�

t=1

u(At)
η

8
+D(u�q1),

Competing with Automata-based Expert Sequences

Algorithm 7: AWAKEAUTOMATAWEIGHTEDMAJORITY(AwakeAWM).
Algorithm: AWAKEAWM(C, η)
B ← C ∩ ST
A ← WEIGHT-PUSHING(Bη)
β ← BWDDIST(A)
α ← 0; α[IA] ← 1
for each e ∈ E0→1

A do
p1[lab[e]] ← weight[e].

for t ← 1 to T do
RECEIVE(At)
for each a ∈ At do

pAt [a] ← pt[a]/pt(At)
it ←SAMPLE(pAt); PLAY(it); RECEIVE(lt)
Z ← 0; w ← 0; ZA ← 0
for each e ∈ Et→t+1

A do
if lab[e] ∈ At then

weight[e] ← weight[e] e−ηlt[lab[e]]

w[lab[e]] ← w[lab[e]] +α[src[e]] weight[e]β[dest[e]]
α[dest[e]] ← α[dest[e]] +α[src[e]] weight[e]
if lab[e] ∈ At then

ZA ← ZA +w[lab[e]]

pt+1 ← w pt(At)
ZA

and since for the unweighted regret, q1 = 1
K , D(u�q1) ≤ log(K), which completes the proof.

As with AWM, AWAKEAWM is an efficient algorithm with a total computational cost that is linear in the number of
transitions of A (or equivalently, CT). Moreover, as in the non-sleeping expert setting, we can further improve the
computational complexity by applying ϕ-conversion to arrive at a or n-gram approximation and then ϕ-conversion. All
other improvements in the sleeping expert setting will similarly mirror those for the non-sleeping expert algorithms.

