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Appendix
A Proofs

A.1 Proof of Theorem[T]

Theorem (Regret Bound for COCO (Restated)). For any § € (0,1], let the following hold wp. > 1 — § (over S ~
D™): for each iteration t € [T, the Frank-Wolfe algorithm satisfies £(C',\') < mingec, L£(C,A!) + 6(5,m), and
[CPRY] — C! s < £(8,m), where 0, & : (0,1] x NoR... Let parameter B be s.t. B > 2maxye(k] Af. Leth : X—A,
be the classifier obtained after T' = Tm iterations, for some T € N. Then w.p. > 1 — § (over S ~ D™):

- KB? + 2K R?
< * - T
L(h) < L(h*) + NG + 0(0,m) + G£(6,m)
and Vk € [K],
— 2 (KB? +2KR?
< i e —— .
gr(h) < e + B( N —|—9(5,m)> + G&(6,m)

For ease of presentation, we will work with constraints of the form ¢ (C') < 0, with the constant ¢}, absorbed into ¢. We
will find it useful to prove the following lemma:

Lemma 5. Foranyd € (0,1], wp. > 11—,

KB? + 2K R?
max  £(C,A) — min £(C,N) < 2 TR g )
A€[0,B]K C€ECp 2T
Proof. Following standard online gradient ascent analysis to the sequence of functions £(C*, DY ,/:(ét, A) linear in
A, we get after T iterations:
T T
1 ~ 1 N KB? + 2K R?
max — L(CEN) — = LCtN) < — " 3
xe[0,B]K T ; ( ) T ; ( ) < oN/T )

where we use the fact that || \||3 < K B? and £ is Lipschtiz in A w.r.t. £ norm with parameter v/ R. We then have

max L(C,\) — min £(C,\) = max L(C,\) — min £(C,)\)
A€[0,B]K CeCp A€[0,B]K Cecp
1 T T
< — t _ in — t
S T 2 HCN) — i, 7 3 LONY
1 & 1 &
< — t — i t
ST 2 ACN - 7 2 g £ON)
1 & 1 &
< _ t = Aty t
< Jmex Tz;z:(o ) T;L‘(C D+ 6(6,m)
KB? + 2K R?
4 0(5,m),
Wid (6,m)

where the last two statement holds w.p. > 1 — 4. Here the first step follows from £ being linear in A and being convex in
C. The fourth step follows from the Frank-Wolfe guarantee. The last step follows from (3). O
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We are now ready to prove Theorem T}

Proof of Theorem[I] Let (C*, A*) denote an optimal solution to (OP3). Recall that C* satisfies the constraints of the primal
problem, i.e. g(C*) < 0, and by our assumption about B, \* € [0, B]*. We get immediately from Lemmaw.p. >1-9,

L(C*\*) = max min £(C,\) > min £(C,)\)
A€[0,B]K CECp Cecp

- KB? + 2K R?
> max L(C,\) — RB™+2R R 0(5,m)
AE[0,B]K /T
2 2
L o L KPR W
2T
where the inequality in the last line holds for any value of \’ € [0, B]¥.
Setting A" = 0 in @), we have w.p. > 1 — 4
K
_ KB? +2KR?
) < C)Y4+ DY Nop(C*) + ———— + 6(6,m
UO) S WO EIINGC) + T o)
KB? +2KR?
< C*) + ——————— 4+ 0(5,m), 5
< P(C7) ST (6, m) (5)
where the last inequality uses the fact that ¢, (C*) < 0.
Since CP[h] = L 27, CP[h!], we have:
_ _ 1 ~
ICP[R] = Clly < FICPRT = C'ly < €(6,m) (6)

where the last inequality holds w.p. at least 1 — ¢ for all ¢ € [T'].
It follows from () and (6),

L(h) = ¢(CP[h]) < ¢(C) + GE@B,m)

KB? + 2K R?

c*) + ———
v(e) 2VT

KB? + 2K R?
2VT

For a given k € [K], setting X}, = X\; + B/2 and \; = X\ for each j # k in (@) (note X" € [0, B]¥), we have w.p. > 1—§

IN

+ 6(5,m) + G&(6,m)

= L() + + 0(5,m) + GE(S,m)

KB? + 2K R?

T — 0(6,m)

K
LEN) = H(0) + S A(O) + 2 ok(0)
k=1

_ KB*+2KR?
2T

— 0(6,m).

\Y

K B B
> min {w<c> + ZAWO)} + 5 n(C) ~ 6(5,m)
k=1

CeCp

B .. KB?+2KR?

= L(C"N) 4+ —¢p(C) = —————
(©X) + Fo€) - =2

This gives us that for each k € [K]
~ 2 (KB? + 2K R? >
C) < | ———=— +6(5,m 7
It follows from (7) and (6)), Vk € [K] :

g (h) oi(CP[h]) < ¢k(C) + GE(5,m)

2 (KB? + 2K R?

Setting 7' = 7m completes the proof. O

IN

IN
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A.2  Proof of Theorem

€Cpforb>0. Forany ¢ € (0,1], wp. > 1—0, in

b, vC
G') < mingecy f(C)—~f/(C) + 0(3,m), with cach
h be the classifier returned after T = Tm iterations. Then

Theorem (Regret Bound for FRACO (Restated)). Ler f'(C) >
each iteration t € [T'], the COCO step satisfies: F(Ct) = AL f

3r(C!) < e +0'(0,m), and | CP[h] — C!|| o < &(5,m). Le

Sforany § € (0,1], wp. > 1 — 6 (over S ~ D™),

t

L(h) < L(h*) 4+ 260(5,m)/b + 2G£(5,m)/b + 2™ R and gi(h) < e, + 0'(6,m), Vk € [K].

We will find the following lemma useful.

Lemma 6. Af each iteration t € [T'] of the FRACO, wp. > 1 —¢:

2G

1 1
L(h*) > o' = 20(6,;m) and L(h') < '+ 5 0(6,m) + =

Proof. We will use mathematical induction on the iteration number ¢. For ¢ = 0, the invariant holds trivially: L(h*) >
ag = 0 and L(ho) < Bp = R. Let us assume that the invariant holds at iteration t — 1. We shall show that the invariant
holds at iteration ¢.

For ease of presentation, henceforth, we will not explicitly qualify statements as holding with high probability. We consider
two cases in line 6 of FRACO: (a) ¢/(C") < ' and (b) ¥(C*) > A

Case (a): Here, ¢(C) < 1, leading to o = a!~1, Bt = 4t and h* = h. From our assumption that the invariant holds in
iteration ¢ — 1, we have
1 1
L(h*) > o' — 3 6(5,m) = o' — 3 0(0,m).
We also have:

F(CY = A f1(CY) + 2GE(8,m)
gnin {£(C) = '1'(C)} + 0(6,m) + 2G £(5,m)

F(C) =21 f1(C)

IAIA

< f(CY) = A F(CY + 6(6,m) + 2G £(5,m)
= f(CHW(CY) — ") + 0(8,m) + 2G (6, m)
0 + 6(5,m) + 2G &(0,m),

IN

where the first two steps uses the guarantee on COCO.

The above inequality then gives us:

F(ch P, 00m) 26 o
Foy < 7T 1) T Fen S0
2G

< 9+ *9(5 m) + == &(6,m),

1 2 1 2
which follows from f/(C?) > b. Thus 9(CP[h']) < ~' + 3 0(5, m) + ﬁ £(6,m) = B+~ 0(57 m) + TG
Case (b): Here ¢)(Ct) > ¢, leading to ot = ~%, 8¢ = 8¢~! and h! = h*~!. We then have from the guarantee on COCO:

&(0,m).

min f(C) — 7 7(©) > S0 (@) ~ 06m)
> f(CHW(CT) = Af) = 0(5,m)
> 0 — 6(5,m).

The above inequality then gives us for all C' € Cp,

£(C) D
& B (o)
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Z ’yt - %6(577”)

1 .1
EH((S,m) =a — 50(5,771).

Further, by our assumption that the invariant holds at iteration ¢ — 1, we have

Th in ¢(C b
us min ¢(C) > 7y

LK) < B 3 06 m) + 2 e(6,m) = B+ 200, m) + 5 €5 m).

We are now ready to prove the theorem.

Proof of Theorem |3} 1t is easy to show that at each iteration ¢:

ﬁt _ Oét — %(ﬁt—l _ Oét_l) (8)
Then from Lemma[f] we have,
L(h) = L(h") = L(h") — L(h")

57— o + 26(6m) + 27 0m)

2T (B~ 0) + 20(5,m) + 2 €(5,m)

= 27TR + %0(5,171) + %ﬁ(&m).

IN

IN

From the guarantee for the COCO method, we have that g (k) < 0'(5,m), Yk € [K]. O

A.3 Regret Bound for Frank-Wolfe Algorithm under Fairness Constraints

We outline the variant of the COCO and FrankWolfe algorithm for a setting with fairness constraints in Algorithm ]
and Here for any u € [M], we use conf,,(h,S) € [0,1]"*" to denote the empirical confusion matrix for a classifier h
conditioned on A = wu, from sample S:

2k Lk = i, hxk) = j, a = u)

[conf, (h, S)]i; = Yo, Lag = u)

The following regret bound holds for the fair variant of the Frank-Wolfe algorithm.

Theorem 7 (Regret Bound for FairFrankWolfe). Let, ¢y, ..., ¢x([0,1]"*™")M =R, be G-Lipschitz and 3-smooth
in(CY,...,CM)wrt. the 1. Let ) : X x [M]|—A\,, be the conditional class probability model used to construct the plug-
in classifier for the cost-sensitive learner in line 6 of the FairFrankiWolfe. Given \ € [0, B]X, let (C*,...,CM h)

be returned by the algorithm after km iterations for some QQ = k € N. Let C* = CPa [ﬁ] Then for any 6 € (0, 1], w
>1—46(over S ~ D™)

L£(CY,...,CM )\ — min  L£(CY,...,CM )
(c1,...,cM)eCp
85(1 + KB)

< 4G(1+ KB)
- Kkm + 2

Tmin

Exa[[|7(X, 4) —n(X,A)||,] + 4V28(1 + KB)n ZHC“ Clloe +

)

and Ya € [M],

_ 2] 1 log(n2M
jc — G < V\/n og(n) log(m) + log(n”M/5)

m

)

where Ty, = minae[ M] Ta and v > 0 is a distribution-independent constant.
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Algorithm 4 COCO-fair: Algorithm for Convex Losses with Convex Fai rness Constraints

1: Input: ¥, ¢1, ..., ¢k : ([0, 1) MR,
S = (($1, Y1, a1)7 sy (I'HL) Ym, am))
. Initialize: \° = 0%, 7y > 0
: Fort=1toT =7mdo
(CHt, ..., CMt ht) < FairFrankWolfe(y, d,..., 05, A1, 9)
Mo =T (! + 25 (04(CH, ..., CM0) — 6 ), Vi
: End For ~
: Output: Classifier & : X x [M]—A,, that for any z € X and a € [M] outputs h'(z, a) with probability 7

Algorithm 5 FairFrankWolfe: Algorithm for convex objective for the setting with fairness constraints
1: Input: ¥, ¢1, ..., ¢k : ([0,1]"*") MR, N e RY
S - ((xla y17a1)7 ey (:E'mvymm am))

2: Split S into Sy and Sy with sizes [ 2] and | % |

3: T%0 = conf,(H?, S1),Va € [M] for some H : X—A,,

4: Forr =1to () do

50 W® = Veap(Thr=1 . TMr=1) 4 S\ Veagy (V1. T 1) Yo € [M]
6: H" =cost-sensitive(W!,... , WM S,)

7. T®" = (1 - 27)0%" 1+ Zconf,(H", S1), Va € [M]

8: End For

9:

Output: ol = vk oM — MR Classifier i : X x [M]—A,, that for z € X and a € [M] outputs H" (z, a)
with probability -2; [T, ., (1 . %)

It is clear from the above theorem that whens sample size m—o0, FairFrankWolfe method converges to the optimal
objective value, provided E x [||77(X) — n(X)||1]—0 as m—o0. The proof of the theorem follows the same progression as
Theorem 16 in [26], except for the following lemmas.

Lemma 8 (Uniform convergence of confusion matrices). Letn : X x [M]—=A,, and let H,, be the set of (deterministic)
classifiers h : X x [M]—[n] that satisfy h(z,a) = argmin,c,; > i, 7:(2, a)L{; for some L', ..., LM ¢ [0,1]"*"™. For
any 6 € (0,1], wp. <1 — 6 (over draw of S ~ D™), Va € [M],

! 1 1 M
sup [|CP=[h] — conf,(h, 5)||se < y\/” og(n) log(m) + log(n" M)
heH, m

)

where v > 0 is a distribution-independent constant.

The proof of the above lemma follows by applying the uniform convergence result in [26] (see Lemma 15) for each
a € [M], and taking a union bound over the M events. The next lemma bounds the regret of a plug-in classifier.

Lemma 9 (Regret of plug-in classifier). For fixed L',..., LM € [0,1]"*" define loss function L[h] =
Zi\il (L%, CPa[n)). Then the following classifier is optimal for L:

n
h*(z,a) = argminje, Zm(m,a)ij.
i=1

Moreover, given a class probability estimation model 7j : X x [M|—A,, define a classifier:

h(z,a)

argmin g, Z ni(x,a)Ly;.
i=1

Then the following is a bound on the regret of h:
1

L(h) — L(h")

IN

Exa[[I7(X, 4) = n(X, 4)|1],

Tmin

where Ty, = minae[M] Tq.
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Proof. Let £ = [L{,,..., L% ;]. We first show that h* optimizes L:

n,j

(L*,CPe(n)) = > P[Y =i,h(X,a)=j|A=a]L}
j=1
= E[Zm(x, a) L b x o A:a}
j=1
= E [77(X7 a)TKZ(X,a) A= a} .
We then have
M -
L(rh*) = ZE n(X,a)TEZ*(X,a) A:a]
a=1 -
M
= ZE min 7(X, a)TE? A= a}
o Ligld
M -
< B0 x| 4=a] = L0,
a=1 -

where the last statement holds for any classifier & : X' x [M]—A,,. Thus h* € argming,.y A L(h).

We next prove the regret bound for h

M M
L(h) — L(h*) = > E[n(X, a) € | A=a] - > E[n(X,a) £ x4 | A=d]
a=1 a=1

M
= Z E[ﬁ(X7 a)Tz%(X’a) + (U(Xa a) - ﬁ(Xv a)Te%(X’a) + n(Xr a)Tzz*(X,a) ’ A= (l]
a=1

M
< Z E[ﬁ(X7 a’)TE(flL* (X,a) + (W(X7 CL) - ﬁ(X? a’))TE%(X,a) - n(Xv a)T’e(}lL*(X,a) ‘ A= a}
a=1
M
= S E[(0(X.a) ~ (X, a)T (€ ) — e xm) | A=)
a=1
M
< D B[, @) =X, a)|l, - 16 x o) — b x| 4 = a]
a=1
M
< D E[nX,0) -7(X,0)]|, | A = d]
a=1
Mo
= S EE[p(Xa) —aX.a), [4=d
a=1"9
< —Exa[ln(X, 4) - 9(X, A)|1],
where the third step follows from the definition of 1 and the sixth step uses the fact that L; € [0,1]. O

The proof of Theorem [7] then follows from Lemma [9] Lemma [8] and standard convergence result for the Frank-Wolfe
optimization solver for optimizing a convex objective [13]. The proof uses the fact that £L(C?, ..., CM )\) is Lipschitz
w.r.t. the £1 norm with parameter G(1 + K B) and smooth w.r.t. the £; norm with parameter 5(1 + K B).
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