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Abstract

Recent work has shown that tight concentra-
tion of the entire spectrum of singular val-
ues of a deep network’s input-output Jaco-
bian around one at initialization can speed
up learning by orders of magnitude. There-
fore, to guide important design choices, it is
important to build a full theoretical under-
standing of the spectra of Jacobians at ini-
tialization. To this end, we leverage pow-
erful tools from free probability theory to
provide a detailed analytic understanding of
how a deep network’s Jacobian spectrum de-
pends on various hyperparameters including
the nonlinearity, the weight and bias distri-
butions, and the depth. For a variety of non-
linearities, our work reveals the emergence of
new universal limiting spectral distributions
that remain concentrated around one even as
the depth goes to infinity.

1 INTRODUCTION

A well-conditioned initialization is essential for suc-
cessfully training neural networks. Seminal initial
work focused on random weight initializations ensur-
ing that the second moment of the spectrum of sin-
gular values of the network Jacobian from input to
output remained one, thereby preventing exponential
explosion or vanishing of gradients [1]. However, re-
cent work has shown that even among di↵erent ran-
dom initializations sharing this property, those whose
entire spectrum tightly concentrates around one can
often yield faster learning by orders of magnitude. For
example, deep linear networks with orthogonal initial-
izations, for which the entire spectrum is exactly one,
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can achieve depth-independent learning speeds, while
the corresponding Gaussian initializations cannot [2].

Recently, it was shown [3] that a similarly well-
conditioned Jacobian could be constructed for deep
non-linear networks using a combination of orthogo-
nal weights and tanh nonlinearities. The result of this
improved conditioning was an orders-of-magnitude
speedup in learning for tanh networks. However, the
same study also proved that a well-conditioned Jaco-
bian could not be achieved with Rectified Linear units
(ReLUs). Together these results explained why, his-
torically, in some cases orthogonal weight initializa-
tion had been found to improve training e�ciency only
slightly [4].

These empirical results connecting the conditioning of
the Jacobian to a dramatic speedup in learning raise an
important theoretical question. Namely, how does the
entire shape of this spectrum depend on a network’s
nonlinearity, weight and bias distribution, and depth?
Here we provide a detailed analytic answer by using
powerful tools from free probability theory. Our an-
swer provides theoretical guidance on how to choose
these di↵erent network ingredients so as to achieve
tight concentration of deep Jacobian spectra even at
very large depths. Along the way, we find several sur-
prises, and we summarize our results in the discussion.

2 PRELIMINARIES

2.1 Problem Setup

Consider an L-layer feed-forward neural network
of width N with synaptic weight matrices W

l
2

RN⇥N , bias vectors b
l, pre-activations h

l, and post-
activations x

l, with l = 1, . . . , L. The forward-
propagation dynamics are given by,

x
l = �(hl) , h

l = W
l
x

l�1 + b
l , (1)

where � : R ! R is a pointwise nonlinearity and the
input is x

0
2 RN . Now consider the input-output
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Jacobian J 2 RN⇥N given by

J =
@xL

@x0
=

LY

l=1

D
l
W

l. (2)

Here D
l is a diagonal matrix with entries Dl

ij =

�0(hl
i) �ij , where �ij is the Kronecker delta function.

The input-output Jacobian J is closely related to the
backpropagation operator mapping output errors to
weight matrices at a given layer, in the sense that if
the former is well-conditioned, then the latter tends
to be well-conditioned for all weight layers. We are
therefore interested in understanding the entire singu-
lar value spectrum of J for deep networks with ran-
domly initialized weights and biases.

In particular, we will take the biases b
l
i to be drawn

i.i.d. from a zero-mean Gaussian with standard devi-
ation �b. For the weights, we will consider two ran-
dom matrix ensembles: (1) random Gaussian weights
in which each W l

ij is drawn i.i.d from a Gaussian with
variance �2

w/N , and (2) random orthogonal weights,
drawn from a uniform distribution over scaled orthog-
onal matrices obeying (Wl)T

W
l = �2

w I.

2.2 Review of Signal Propagation

The random matrices D
l in (2) depend on the empir-

ical distribution of pre-activations hl
i for i = 1, . . . , N

entering the nonlinearity � in (1). The propagation
of this empirical distribution through di↵erent layers
l was studied in [5, 6]. In those works, it was shown
that in the large N limit this empirical distribution
converges to a Gaussian with zero mean and variance
ql, where ql obeys a recursion relation induced by the
dynamics in (1):

ql = �2
w

Z
Dh �

⇣p
ql�1h

⌘2
+ �2

b , (3)

with initial condition q1 = �2
w

N

PN
i=1(x

0
i )

2 + �2
b , and

Dh = dhp
2⇡

exp (�h2

2 ) denoting the standard normal

measure. This recursion has a fixed point obeying,

q⇤ = �2
w

Z
Dh �

�p
q⇤h

�2
+ �2

b . (4)

If the input x
0 is chosen so that q1 = q⇤, then the

dynamics start at the fixed point and the distribution
of Dl is independent of l. Moreover, even if q1 6= q⇤, a
few layers is often su�cient to approximately converge
to the fixed point (see [5, 6]). As such, when L is large,
it is often a good approximation to assume that ql = q⇤

for all depths l when computing the spectrum of J.

Another important quantity governing signal propaga-

tion through deep networks [5] is

� =
1

N

⌦
Tr (DW)T

DW
↵

= �2
w

Z
Dh

⇥
�0 �pq⇤h

�⇤2
,

(5)

where �0 is the derivative of �. Here � is second mo-
ment of the distribution of squared singular values of
the matrix DW, when the pre-activations are at their
fixed point distribution with variance q⇤. As shown
in [5, 6], �(�w, �b) separates the (�w, �b) plane into
two regions: (a) when � > 1, forward signal prop-
agation expands and folds space in a chaotic man-
ner and back-propagated gradients exponentially ex-
plode; and (b) when � < 1, forward signal propaga-
tion contracts space in an ordered manner and back-
propagated gradients exponentially vanish. Thus the
constraint �(�w, �b) = 1 determines a critical line in
the (�w, �b) plane separating the ordered and chaotic
regimes. Moreover, the second moment of the distribu-
tion of squared singular values of J was shown simply
to be �L in [5, 6]. Fig. 1 shows an example of an
order-chaos transition for the tanh nonlinearity.

Ordered

Chaotic

�(�w, �b) < 1

�(�w, �b) > 1

Vanishing Gradients

Exploding Gradients

q⇤ = 1.5

0.0

0.5

1.0

1.5

Figure 1: Order-chaos transition when �(h) =
tanh(h). The critical line � = 1 determines the bound-
ary between the two phases. In the chaotic regime
� > 1 and gradients explode while in the ordered
regime � < 1 and we expect gradients to vanish. The
value of q⇤ along this line is shown as a heatmap.

2.3 Review of Free Probability

The previous section revealed that the mean squared
singular value of J is �L. Indeed when � ⌧ 1 or
�� 1 the vanishing or explosion of gradients, respec-
tively, dominates the learning dynamics and provide
a compelling case for choosing an initialization that is
critical with � = 1. We would like to investigate the
question of whether or not all cases where � = 1 are
the same and, in particular, to obtain more detailed
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information about entire the singular value distribu-
tion of J when � = 1. Since (2) consists of a product
of random matrices, free probability becomes relevant
as a powerful tool to compute the spectrum of J, as
we now review. See [7] for a pedagogical introduction,
and [3, 8] for prior work applying free probability to
deep learning.

In general, given a random matrix X, its limiting spec-
tral density is defined as

⇢X(�) ⌘

*
1

N

NX

i=1

�(�� �i)

+

X

, (6)

where h·iX denotes an average w.r.t to the distribution
over the random matrix X. The Stieltjes transform of
⇢X is defined as,

GX(z) ⌘

Z

R

⇢X(t)

z � t
dt , z 2 C \ R , (7)

which can be inverted using,

⇢X(�) = �
1

⇡
lim

✏!0+
Im GX(� + i✏) . (8)

GX is related to the moment generating function MX ,

MX(z) ⌘ zGX(z)� 1 =
1X

k=1

mk

zk
, (9)

where mk is the kth moment of the distribution ⇢X ,

mk =

Z
d� ⇢X(�)�k =

1

N
htrXk

iX . (10)

In turn, we denote the functional inverse of MX by
M�1

X , which by definition satisfies MX(M�1
X (z)) =

M�1
X (MX(z)) = z. Finally, the S-transform [9, 10]

is defined as,

SX(z) =
1 + z

zM�1
X (z)

. (11)

The utility of the S-transform arises from its behav-
ior under multiplication. Specifically, if A and B are
two freely independent random matrices, then the S-
transform of the product random matrix ensemble AB

is simply the product of their S-transforms,

SAB(z) = SA(z)SB(z) . (12)

3 MASTER EQUATION FOR
SPECTRAL DENSITY

3.1 S-transform for Jacobians

We can now write down an implicit expression of the
spectral density of JJT , which is also the distribution

of the square of the singular values of J. In particular,
in the supplementary material (SM) Sec. 1, we com-
bine (12) with the facts that the S-transform depends
only on traces of moments through (9), and that these
traces are invariant under cyclic permutations, to de-
rive a simple expression for the S-transform of JJT ,

SJJT =
LY

l=1

S(Dl)2S(W l)T W l = SL
D2SL

WT W . (13)

Here the lack of dependence on the layer index l on
the RHS is valid if the input x

0 is such that q1 = q⇤.

Thus, given expressions for the S-transforms asso-
ciated with the nonlinearity, SD2 , and the weights,
SL

WT W , one can compute the S-transform of the input-
output Jacobian SJJT at any network depth L through
(13). Then from SJJT , one can invert the sequence (7),
(9), and (11) to obtain ⇢JJT (�).

3.2 An E�cient Master Equation

The previous section provides a naive method for com-
puting the spectrum ⇢JJT (�), through a complex se-
quence of calculations. One must start from ⇢WT W (�)
and ⇢D2(�), compute their respective Stieltjes trans-
forms, moment generating functions, inverse moment
generating functions, and S-transforms, take the prod-
uct in (13), and then invert this sequence of steps to
finally arrive at ⇢JJT (�). Here we provide a much
simpler “master” equation for extracting information
about ⇢JJT (�) and its moments directly from knowl-
edge of the moment generating function of the non-
linearity, M2

D(z), and the S-transform of the weights,
SWT W (z). As we shall see, these latter two functions
are the simplest functions to work with for arbitrary
nonlinearities.

To derive the master equation, we insert (11), for
X = D

2, into (13), and perform some algebraic manip-
ulations (see SM Sec. 3 for details) to obtain implicit
functional equations for MJJT (z) and G(z),

MJJT (z) = MD2

⇣
z

1
L F

�
MJJT (z)

�⌘
, (14)

zG(z)� 1 = MD2

⇣
z

1
L F

�
zG(z)� 1

�⌘
, (15)

where,

F (x) = SWT W (x)

✓
1 + x

x

◆1� 1
L

. (16)

In principle, a solution to eq. (15) allows us to com-
pute the entire spectrum of JJT . In practice, when
an exact solution in terms of elementary functions is
lacking, it is still possible to extract robust numerical
solutions, as we describe in the next subsection.
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Table 1: Properties of Nonlinearities

�(h) MD2(z) µk �2
w �2

JJT

Linear h 1
z�1 1 1 L (�s1)

ReLu [h]+
1
2

1
z�1

1
2 2 L (1� s1)

Hard Tanh [h + 1]+ � [h� 1]+ � 1 erf( 1p
2q⇤ ) 1

z�1 erf( 1p
2q⇤ ) 1

erf( 1p
2q⇤

)
L ( 1

erf( 1p
2q⇤

)
� 1� s1)

Erf erf(
p

⇡
2 h) 1p

⇡q⇤z
�
⇣

1
z , 1

2 , 1+⇡q⇤
⇡q⇤

⌘
1p

1+⇡kq⇤

p
1 + ⇡q⇤ L ( 1+⇡q⇤

p
1+2⇡q⇤ � 1� s1)

3.3 Numerical Extraction of Spectra

Here we describe how to solve (15) numerically. The
di�culty is that (15) implicitly defines G(z) through
an equation of the form F(G, z) = 0. Notice that, for
any given z, this equation may have multiple roots in
G. The correct branch can be chosen by requiring that
z ! 1, G(z) ⇠ 1/z [11]. Therefore, one point on the
correct branch can be found by taking |z| large, and
finding the solution to F(G, z) = 0 that is closest to
G = 1/z. Recall that to obtain the density ⇢JJT (�)
through the inversion formula ((8)), we need to ex-
tract the behavior of G(z) near the real axis at a point
z = � + i✏ where ⇢JJT (�) has support. So, practically
speaking, for each � we can walk along the imaginary
direction obeying Re(z) = � from large imaginary val-
ues to small, and repeatedly solve F(G, z) = 0, always
choosing the root that is closest to the previous root.

A potential pitfall arises if we approach a point z where
F(G, z) = 0 has a double root in G, which could cause
us to leave the correct branch of roots and then tra-
verse an incorrect branch. However, points in the com-
plex two dimensional plane (G, z) 2 C2 where F has a
double root in G are expected to be a set of measure
0, and in practice they do not seem to be a concern.
Algorithm 1 summarizes our heuristic for computing
⇢(�) for each � of interest.

Algorithm 1 Root finding procedure

1. Choose to take 2N steps of size b > 1
2. Initialize z0 = � + ibN and G0 = 1/z0
3. For k in 1 . . . 2N :

zk  � + ibN�k

Gk  Root of (15) nearest to Gk�1(zk)
4. Return � 1

⇡ Im G2N ⇡ ⇢(�)

In the following sections, we demonstrate through
many examples a precise numerical match between the
outcome of Algorithm 1 and direct simulations of var-
ious random neural networks, thereby justifying not
only (15), but also the e�cacy our algorithm.

3.4 Moments of Deep Spectra

In addition to numerically extracting the spectrum of
JJ

T , we can also calculate its moments mk encoded in
the function

MJJT (z) ⌘
1X

k=1

mk

zk
. (17)

These moments in turn can be computed in terms of
the series expansions of SWT W and MD2 , which we
define as

SWT W (z) ⌘ ��2
w

�
1 +

P1
k=1 skzk

�
(18)

MD2(z) ⌘
P1

k=1
µk

zk , (19)

where the moments µk of D2 are given by,

µk =

Z
Dh �0(

p
q⇤h)2k . (20)

Substituting these expansions into (14), we obtain
equations for the unknown moments mk in terms of the
known moments µk and sk. We can solve for the low-
order moments by expanding (14) in powers of z�1.
By equating the coe�cients of z�1 and z�2, we find
equations for m1 and m2 whose solution yields (see
SM Sec. 3),

m1 = (�2
wµ1)

L

m2 = (�2
wµ1)

2L L

✓
µ2

µ2
1

+
1

L
� 1� s1

◆
.

(21)

Note the combination �2
wµ1 is none other than � de-

fined in (5), and so (21) recovers the result that the
mean squared singular value m1 of J either exponen-
tially explodes or vanishes unless �(�w, �b) = 1 on a
critical boundary between order and chaos. However,
even on this critical boundary where the mean m1 of
the spectrum of JJT is one for any depth L, the vari-
ance

�2
JJT = m2 �m2

1 = L

✓
µ2

µ2
1

� 1� s1

◆
(22)

grows linearly with depth L for generic values of µ1,
µ2 and s1. Thus J can be highly ill-conditioned at
large depths L for generic choices of nonlinearities and
weights, even when �w and �b are tuned to criticality.
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4 SPECIAL CASES OF DEEP
SPECTRA

Exploiting the master equation (14) requires informa-
tion about MD2(z), and SWWT (z). We first provide
this information and then use it to look at special cases
of deep networks.

4.1 Transforms of Nonlinearities

First, for any nonlinearity �(h), we have, through (7)
and (9),

MD2(z) =

Z
Dh

�0(
p

q⇤h)2

z � �0(
p

q⇤h)2
. (23)

The integral over the Gaussian measure Dh reflects a
sum over all the activations hl

i in a layer l, since in
the large N limit the empirical distribution of activa-
tions converges to a Gaussian with standard deviation
p

q⇤. Moreover, an activation hl
i feels a squared slope

�0(hl
i)

2, which appears as an eigenvalue of the diago-
nal matrix (Dl)2. Thus MD2(z) naturally involves an
integral over a function of �0(·)2 against a Gaussian.

Table 1 provides the moment generating function and
moments of D

2 for several nonlinearities. Detailed
derivations of the results in Table 1, which follow from
performing the integral in (23), can be found in the SM
Sec. 3. In the Erf case, � is a special function known
as the Lerch transcendent, which can be defined by its
moments µk.

4.2 Transforms of Weights

Table 2: Transforms of weights

Random Matrix W SWT W (z) s1
Scaled Orthogonal ��2

w 0
Scaled Gaussian ��2

w (1 + z)�1
�1

The S-transforms of the weights can be obtain through
the sequence of equations (7), (9), and (11), starting
with ⇢WT W (�) = �(� � 1) for an orthogonal random
matrix W, and ⇢WT W (�) = (2⇡)�1

p
4� � for � 2

[0, 4], for a Gaussian random matrix W with variance
1
N (see SM Sec. 5). Furthermore, by scaling W !

�wW, the S-transform scales as SWT W ! ��2
w SWT W ,

yielding the S-transforms and first moments in Table 2.

4.3 Exact Properties of Deep Spectra

Now for di↵erent randomly initialized deep networks,
we insert the appropriate expressions in Tables 1 and
2 into our master equations (14) and (15) to obtain
information about the spectrum of JJT , including its

entire shape, through Algorithm 1, and its variance
�2

JJT through (21) and (22). We always work at crit-
icality, so that in (5), � = �2

wµ1 = 1. The resulting
condition for �2

w at criticality and the value of �2
JJT are

shown in Table 1 for di↵erent nonlinearities, both for
orthogonal (s1 = 0) and Gaussian (s1 = �1) weights.

4.3.1 Linear Networks

For linear networks, the fixed point equation (4) re-
duces to q⇤ = �2

wq⇤ + �2
b , and (�w, �b) = (1, 0) is

the only critical point. Moreover, linear Gaussian net-
works behave very di↵erently from orthogonal ones.
The latter are well conditioned, with �2

JJT = 0 because
the product of orthogonal matrices is orthogonal and
so ⇢JJT (�) = �(� � 1) for all L. However, �2

JJT = L
for Gaussian weights. This radically di↵erent behavior
of the spectrum of JJT is shown in Fig. 2A.

4.3.2 ReLU Networks

For ReLU networks, the fixed point equation (4) re-
duces to q⇤ = 1

2�2
wq⇤ + �2

b , and (�w, �b) = (
p

2, 0) is
the only critical point. Unlike the linear case, �2

JJT be-
comes L for orthogonal and 2L for Gaussian weights.
In essence, the ReLU nonlinearity destroys the qualita-
tive scaling advantage that linear networks possess for
orthogonal weights versus Gaussian. The qualitative
similarity of spectra for ReLU Orthogonal and linear
Gaussian is shown in Fig. 2AB.

4.3.3 Hard Tanh and Erf Networks

For Hard Tanh and Erf Networks, the criticality con-
dition �2

w = µ�1
1 does not determine a unique value

of �2
w because µ1, the mean squared slope �0(h)2, now

depends on the variance q⇤ of the distribution of pre-
activations h. Since q⇤ itself is a function of �w and
�b through (4), these networks enjoy an entire critical
curve in the (�w, �b) plane, similar to that shown in
Fig. 1. As q⇤ decreases monotonically towards zero,
the corresponding point on this curve approaches the
point (�w, �b) = (1, 0).

Moreover, Table 1 shows that �2
JJT = L(F(q⇤)�1�s1)

with limq⇤!0 F(q⇤) = 1. This implies that for Gaus-
sian weights (s1 = �1), no matter how small one
makes �w, �2

JJT / L. However, for orthogonal weights
(s1 = 0), for any fixed L, one can reduce �w and
therefore q⇤, so as to make �2

JJT arbitrarily small.
Thus Hard Tanh and Erf nonlinearities rescue the scal-
ing advantage that orthogonal weights possess over
Gaussian, which was present in linear networks, but
destroyed in ReLU networks. Examples of the well-
conditioned nature of orthogonal Hard Tanh and Erf
networks compared to orthogonal ReLu networks are
shown in Fig. 2.
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Linear Gaussian ReLU Orthogonal Hard-Tanh Orthogonal Erf Orthogonal
L
2
8
32
128

A B C D

Figure 2: Examples of deep spectra at criticality for di↵erent nonlinearities at di↵erent depths. Singular values
from empirical simulations of networks of width 1000 are shown with solid lines while theoretical predictions
from the master equation and algorithm are overlaid with dashed lines. For each panel, the weight variance �2

w

is held constant as the depth increases. Notice that linear Gaussian and orthogonal ReLU have similarly-shaped
distributions, especially for large depths, where poor conditioning and many large singular values are observed.
Erf and Hard Tanh are better conditioned, but at 128 layers we begin to observe some spread in the distributions.

5 UNIVERSALITY IN DEEP
SPECTRA

Table 1 shows that for orthogonal Erf and Hard Tanh
networks (but not ReLU networks), since �2

JJT =
L(F(q⇤)� 1) with limq⇤!0 F(q⇤) = 1, one can always
choose q⇤ to vary inversely with L so as to achieve a
desired L-independent constant variance �2

JJT ⌘ �2
0 .

To achieve this scaling, q⇤(L) should satisfy the equa-

tion F(q⇤(L)) = 1 + �2
0

L , which implies �w ! 1 and
q⇤
! 0 as L!1.

Remarkably, in this double scaling limit, not only does
the variance of the spectrum of JJT remain constant
at the fixed value �2

0 , but the entire shape of the dis-
tribution converges to a universal limiting distribution
as L ! 1. There is more than one possible limiting
distribution, but its form depends on � only through
the distribution of �0(h)2 as q⇤

! 0 via the expression
for MD2(z) in (23). Therefore, many qualitatively dif-
ferent activation functions may in fact be members of
the same universality class. We identify two univer-
sality classes that correspond to many common acti-
vation functions: the Bernoulli universality class and
the smooth universality class, named based on the dis-
tribution of �0(h)2 as q⇤

! 0.

The Bernoulli universality class contains many piece-
wise linear activation functions, such as Hard Tanh
(Fig. 3C) and a version of ReLU shifted so as to be
linear at the origin, which for concreteness we de-
fine as �(x) = [x + 1

2 ]+ �
1
2 (Fig. 3E). While these

functions look quite di↵erent, their derivatives are
both Bernoulli-distributed (Fig. 3DF) and the limit-
ing spectra of their corresponding Jacobians are the
same (Fig. 4AB).

The smooth universality class contains many smooth

activation functions, such as Erf (Fig. 3G) and a
smoothed version of ReLU that we take to be the
sigmoid-weighted linear unit (SiLU) [12, 13] (Fig. 3I).
In this case, not only do the activation functions them-
selves look di↵erent, but so too do their derivatives
(Fig. 3HJ). Nevertheless, in the double scaling limit,
the limiting spectra of their corresponding Jacobians
are the same (Fig. 4CD). The rate of convergence to
the limiting distribution is di↵erent, because the mo-
ments µk di↵er substantially for non-zero q⇤.

Unlike the smoothed and shifted versions of ReLU, the
vanilla ReLU activation (Fig. 3AB) behaves entirely
di↵erently and has no limiting distribution because the
µk are independent of q⇤ and therefore it is impossible
to attain an L-independent constant variance �2

JJT ⌘

�2
0 in this case.

To understand the mechanism behind the emergence of
spectral universality, we now examine orthogonal net-
works whose activation functions have squared deriva-
tives obeying a Bernoulli distribution and show that
they all share a universal limiting distribution as L!
1. To this end, we suppose that,

MD2 = p(q⇤)
1

z � 1
, (24)

for some function p(q⇤) that measures the probability
of the nonlinearity having slope one as a function of
q⇤. We will assume that p(q⇤) ! 1 as q⇤

! 0. The
relevant ratio of moments and the weight variance �2

w

are given as,

µ2

µ2
1

=
1

µ1
= �2

w =
1

p(q⇤)
. (25)

From (22), we have,

�2
JJT = �2

0 = L

✓
1

p(q⇤)
� 1

◆
) p(q⇤) = 1+

�2
0

L
. (26)
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q⇤ = 0.2
q⇤ = 0.5
q⇤ = 1.0
q⇤ = 2.0

q⇤

A

B

C

D

E

F

G

H

I

J

ReLU Hard Tanh Shifted ReLU Erf Smoothed ReLU

Figure 3: Distribution of �0(h) for di↵erent nonlinearities. The top row shows the nonlinearity, �(h), along with
the Gaussian distribution of pre-activations h for four di↵erent choices of the variance, q⇤. The bottom row gives
the induced distribution of �0(h). We see that for ReLU the distribution is independent of q⇤. This implies that
there is no stable limiting distribution for the spectrum of JJ

T . By contrast for the other nonlinearities the
distribution is a relatively strong function of q⇤.

Notice that a solution q⇤(L) to (22) will exist for large
L since we are assuming p(q⇤) ! 1 as q⇤

! 0. Sub-
stituting this solution in (24) and (25) gives for large
L,

MD2 =
L

L + �2
0

1

z � 1
and µ1 =

L

L + �2
0

. (27)

Using these expressions and (11), we find that the S-
transform obeys,

SBernoulli
JJT = (µ1

1 + z

zM�1
D2

)L =

✓
1 +

z�2
0

L(1 + z)

◆�L

.

(28)
The large depth limit gives,

SBernoulli
JJT = e� z�2

0
(1+z) . (29)

Using (9) and (11) to solve for G(z) gives,

G(z) =
1

z

�2
0

�2
0 + W (��2

0
z )

, (30)

where W denotes the principal branch of the Lambert-
W function [14] and solves the transcendental equa-
tion,

W (x)eW (x) = x . (31)

The spectral density can be extracted from (30) eas-
ily using (8). The results are shown in black lines in
Fig. 4AB. Both Hard Tanh and Shifted ReLU have
Bernoulli-distributed �0(h)2 and, despite being quali-
tatively di↵erent activation functions, have the same

limiting spectral distributions. It is evident that the
empirical spectral densities converge to this universal
limiting distribution as the depth increases.

Next we build some additional understanding of the
spectral density implied by (30). Because the spectral
density is proportional to the imaginary part of G(z),
we expect the locations of the spectral edges to be
related to branch points of G(z), or more generally to
poles in its derivative. Using the relation,

W 0(x) =
1

x + eW (x)
, (32)

we can inspect the derivative of G(z). It may be ex-
pressed as,

G0(z) = �
�2
0

�
�2
0 + W (��2

0
z )(�2

0 + W (��2
0

z )
�

z2
�
1 + W (��2

0
z )

��
�2
0 + W (��2

0
z )

�2 . (33)

By inspection, we find that G0(z) has double poles at,

z = �0 = 0, z = �2 = e�2
0 , (34)

which are locations where the spectral density di-
verges, i.e. there are delta function peaks at �0 and
�2. Note that there is only a pole at �2 if �0  1.
There is also a single pole at,

�1 = �2
0e , (35)

which defines the right spectral edge, i.e. the maxi-
mum value of the bulk of the density.
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Figure 4: Two limiting universality classes of Jacobian spectra. Hard Tanh and Shifted ReLU fall into one class,
characterized by Bernoulli-distributed �0(h)2, while Erf and Smoothed ReLU fall into a second class, characterized
by a smooth distribution for �0(h)2. The black curves are theoretical predictions for the limiting distributions
with variance �2

0 = 1/4. The colored lines are emprical spectra of finite-depth width-1000 orthogonal neural
networks. The empirical spectra converge to the limiting distributions in all cases. The rate of convergence is
similar for Hard-Tanh and Shifted ReLU, whereas it is significantly di↵erent for Erf and Smoothed Relu, which
converge to the same limiting distribution along distinct trajectories. In all cases, the solid colored lines go from
shallow L = 2 networks (red) to deep networks (purple). In all cases but Erf the deepest networks have L = 128.
For Erf, the dashed lines show solutions to (15) for very large depth up to L = 8192.

The above observations regarding �0, �1, and �2 are
evident in Fig. 4AB. Noting that in the figure, �0 =
1/2, we predict that the bulk of the density to have its
right edge located at s =

p
�1 =

p
e/2 ⇡ 0.82 and that

there should be a delta function peak at s =
p

�2 =
e1/8

⇡ 1.13, both of which are reflected in the figure.

A similar analysis can be carried out for activation
functions for which the distribution of �0(h)2 is smooth
and concentrates around one as q⇤

! 0. The analysis
for Erf is presented in the SM. We find that,

SSmooth
JJT = e�z�2

0 , (36)

and that G(z) can be expressed in terms of a gener-
alized Lambert-W function [15]. The locations of the

spectral edges are given by s± = e� 1
4�2

±

q
1 + 1

2�2
⌥,

where,

�2
± = �0

⇣
�0 ±

q
�2
0 + 4

⌘
. (37)

For �0 = 1/2, these results give s� ⇡ 0.57 and
s+ = 1.56, which is in excellent agreement with the be-
havior observed in Fig. 4CD. Overall, Fig. 4 provides
strong evidence supporting our predictions that or-
thogonal Hard Tanh and shifted ReLU networks have
the Bernoulli limit distribution, while orthogonal Erf
and smoothed Relu networks have the smooth limit
distribution.

Finally, we derived these universal limits assuming or-
thogonal weights. In the SM we show that orthogo-
nality is in fact necessary for the existence of a sta-
ble limiting distribution for the spectrum of JJT . No
other random matrix ensemble can yield a stable dis-
tribution for any choice of nonlinearity with �0(0) = 1.

Essentially, any spread in the singular values of W

grows in an unbounded way with depth and cannot be
nonlinearly damped.

6 DISCUSSION

In summary, motivated by a lack of theoretical clarity
on when and why di↵erent weight initializations and
nonlinearities combine to yield well-conditioned spec-
tra that speed up deep learning, we developed a cal-
culational framework based on free probability to pro-
vide, with unprecedented detail, analytic information
about the entire Jacobian spectrum of deep networks
with arbitrary nonlinearities. Our results provide a
principled framework for the initialization of weights
and the choice of nonlinearities in order to produce
well-conditioned Jacobians and fast learning. Intrigu-
ingly, we find novel universality classes of deep spec-
tra that remain well-conditioned as the depth goes to
infinity, as well as theoretical conditions for their exis-
tence. Our results lend additional support to the sur-
prising conclusions revealed in [3], namely that using
either Gaussian initializations or ReLU nonlinearities
precludes the possibility of obtaining stable spectral
distributions for very deep networks. Beyond the sig-
moidal units advocated in [3], our results suggest that
a wide variety of nonlinearities, including shifted and
smoothed variants of ReLU, can achieve dynamical
isometry, provided the weights are orthogonal. Inter-
esting future work could involve the discovery of new
universality classes of well-conditioned deep spectra for
more diverse nonlinearities than considered here.
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