
Semi-Supervised Learning with Competitive Infection Models:
Supplementary Material

Nir Rosenfeld Amir Globerson
Harvard University Tel Aviv University

1 Proof of Proposition 2 in Main Text

In this section we prove the correctness of our algo-
rithm 2. The proof considers the more general CTIC
infection dynamics and allows for node features or pri-
ors (via a penalty function).

In the infection dynamics presented in the paper, once
a node’s label is set, it remains fixed. In contrast,
during the course of the algorithm’s run, a node’s label
may change with each distance update. It therefore
remains to show that the algorithm outputs the desired
labels. For basing our claim it will be easier to assume
that instead of initially inserting all seed nodes into
Q, we add a dummy root node r to V , with edges of
length wrs = 0 to all s ∈ S, and initialize Q to include
only r. It is easy to see that after extracting r from
Q, we return to our original algorithm.

Recall that the standard single-source Dijkstra algo-
rithm offers three important guarantees: (1) the esti-
mated distances of extracted nodes is correct (and re-
mains unchanged), (2) nodes are extracted in increas-
ing order of their true distance, and (3) the distance
estimates always upper-bound the true distances.

Let v ∈ U be a node that has just been extracted, and
assume by induction that the labels of all previously
extracted nodes (which include all seed nodes) are cor-
rect.1 The above guarantees tell us that the distance
from r to v is correct, and all nodes on the shortest
path from r to v have already been extracted. This
is true even when a penalty is incurred, as it can only
increase the distance estimate. As these nodes are as-
sumed to be correctly labeled, v inherits the correct
label as well, as by construction its shortest path from
r goes through exactly one seed node. The correct-
ness of the labels of the seed nodes gives the induction
basis, which concludes the proof.

1Correct in the sense of the algorithm, not in the sense
of their true labels.

2 Extensions

In this section we give an in-depth description of sev-
eral useful extensions of our method that were briefly
discussed in the main text. These include applying out
method to the Linear Threshold model, incorporating
node features and priors into the infection dynamics,
and a framework for using our method in an active
SSL setting.

2.1 The Linear Threshold model

In this section we show how InfProp can be applied
with the Linear Threshold (LT) dynamics, rather than
the IC or CTIC dynamics discussed in the main text.
This includes adapting the algorithm for computing
expected labels to the LT model, as well as supporting
node features and priors.

The input to the LT model is a weighted graph G =
(V,E,W) and an initial set of infected seed nodes S.
We assume that weights are positive, and that for each
v ∈ V , the sum of incoming weights

∑
vWuv is at

most 1 (though it can be strictly less than 1). Before
the process begins, each node u is assigned a thresh-
old ηu sampled uniformly at random from the interval
[0, 1]. The dynamics then progress in discrete time
steps, where at time t, a susceptible node v becomes
infected if the weighted sum of its infected neighbors
exceeds its threshold. Denoting by Iu(t) an indicator
of whether u is infected at time t, v is infected at time
t if: ∑

u

WuvIv(t− 1) ≥ ηu (1)

Note that the randomness in this model comes from
the threshold η; given η, the dynamics are determinis-
tic.

The authors of [6] show that the LT model can also
be equivalently expressed via a graphical perspective
using active edge sets. Here, however, edges are no
longer sampled independently. Instead, for each node
v, only at most one incoming edge will become active
in each instance. Specifically, for each node v, each

Running heading title breaks the line

incoming edge (u, v) ∈ E is selected to be the (only)
edge with probability puv = Wuv, and with probability
W−u = 1−

∑
vWuv no incoming edges are activated.

Then, for a given instance, v is infected if and only if
there is an active path to v from some seed node in S.

An interesting interpretation of the above is that the
chosen active edge (u, v) can be thought of as cor-
responding to the node u whose infection triggered
the infection of v by crossing the threshold. Under
this view, a label-dependent specification of the above
model is one where v inherits its label from its trigger-
ing neighbor v, which we refer to as his infector. This
allows the model to be applied to the competitive set-
ting which we consider. In terms of implementation,
the only necessary modification to the algorithm is the
way in which active edges are sampled.

The competitive LT model can also incorporate node
priors using penalty terms. Specifically, the node-
label prior ρv` will induce a multiplicative penalty
qv(`) ∈ [0, 1] on the original weights Wuv when u tries
to infect v with label `. Thus, given that u has label `,
the penalty reduces the probability that it will be the
infector of v. To implement this, when u is expanded,
the edge (u, v) is sampled to be active with the penal-
ized probability, and all other incoming weights (in-
cluding the complementing W−u) are re-normalized.

2.2 Incorporating node features and priors

In addition to the graph, many network-based datasets
include node or edge features. These can be used to
generate node-specific class priors. In this section we
describe a novel generalization of the competitive in-
fection models introduced above which incorporates
class priors into the dynamics. In this setting, our ap-
proach is to first train a probabilistic classifier (e.g.,
logistic regression) on the labeled seed set, and then
use its predictions on the unlabeled nodes as a prior
for our model.

Our method utilizes node priors by transforming them
into penalties on incubation times. Consider a single
instance of an infection process. Assume node u has
just been infected with label ` ∈ Y, and succeeded in
its attempt to infect node v with an incubation time
of δuv. If δuv is small, then it is very likely that v will
get infected with ` as well. On the other hand, if δuv is
large, then other nodes might have a chance to infect
v with other labels. This motivates the idea of further
penalizing the infection time of a node according to its
prior. We do this by adding a label-dependent penalty
qv(`) to δuv, as a function of the prior ρv`. We use
the link function qv(`) = − log(ρv`), which maps low
priors into large penalties, and high priors into low
penalties, where ρv` = 1 entails no penalty. Hence,

setting ρv` = 1 for all v, ` recovers the original model.

Note that while the priors are deployed locally, their
effect is in fact global, as penalizing a node’s infection
time delays the potential propagation of its acquired
label throughout the graph. This increases the signif-
icance of nodes which are central to the infection pro-
cess, and reduces the significance of those which play
a small role in it, a property captured by our notion
of confidence. The strength of the above formulation
lies in its ability to introduce non-linear label depen-
dencies to the actual infection dynamics. To see this,
we can write the original predictions as:

f = Eδ∼D
[
AδS

]
= Eδ∼D

[
Aδ
]
S (2)

where Aδvs = 1{s=α(v)} indicates ancestors in Gδ, and
Ss` = 1{ys=`} indicates the seed nodes’ true labels.
This shows that predictions are non-linear in the prop-
agation of the seed nodes, but linear in the labels. In
the prior-dependent model, the above no longer holds,
as activation times are now label-dependent.

2.3 Confidence and Active Learning

Recall that a node v has a probability fv0 of not being
infected by any label. This suggests a very natural
measure of confidence in our prediction, namely:

σv(S) = 1− fv0 =

L∑
`=1

fv`, σ(S) =
∑
v

σv(S) (3)

The function σ quantifies the confidence in the label-
ing. This is conceptually different from confidence in
a label. Our model supports both concepts distinctly.
The former is controlled by the activations p, as they
determine reachability in the active graph and are ag-
nostic to labels. The latter is controlled by θ, as it
affects the speed of propagation of the labels.

The notion of confidence allows us to apply our method
to an active SSL setting. Instead of assuming the
seed is given as input, in this setting we are allowed
to choose the seed set, often under a cardinality con-
straint. The goal is then to choose the seed set which
leads to a good labeling. Various graph-based notions
have been suggested as objectives for active seed se-
lection, such as those based on graph cuts [5], graph
signals [2], and generalization error [4]. Such methods
however either optimize an adversarial objective, or
simply offer a heuristic solution. In contrast, using σ
as a seed-selection criterion offers an optimistic alter-
native, as summing over all classes makes it indifferent
to the actual (latent) labels.

The confidence term σ coincides with the well-studied
notion of influence, defined as the expected number of

Nir Rosenfeld, Amir Globerson

nodes a seed will infect. In [6] it is shown that for vari-
ous settings, influence is submodular, and therefore ad-
mits to a greedy (1−1/ε)-approximation scheme. Any
algorithm for maximizing influence efficiently (e.g.,
[1, 3]), can therefore be adopted for out setting.

3 Non-Homogeneous Laplacian

Here we prove that:

L(S)f = b(S)

where:

bu`(S) =
∑
v

b
(S)
vu`, b

(S)
vu` = cov [Tvu(S), Yu`]

For clarity we drop the notational dependence on S.
We begin by expanding fu` using Y and T :

fu` = E [Yu`] = E [Tu·Y·`]

= E

[∑
v

TuvYv`

]
=
∑
v

E [TuvYv`]

=
∑
v

(E [Tuv]E [Yv`] + cov [TuvYv`])

=
∑
v

(T uvfv` + buv`)

where the final step is true for the product of general
random variables. Rewriting in matrix form gives: f =
T f + b. Rearranging we get: (I − T)f = Lf = b, as
required.

The objective function can then be expressed as:

‖Lf ′ − b‖22 =
∑
u

∑
`

(Lu·f·` − bu`)2

=
∑
u

∑
`

(∑
v

Luvfv` − buv`

)2

=
∑
u

∑
`

(∑
v

(1{u=v} − T uv)fv` − buv`

)2

=
∑
u

∑
`

(
fu` −

∑
v

(wuvfv` + buv`)

)2

where wuv = T uv.

4 Details for the Illustrative Synthetic
Experiment

Our general hypothesis in this work is that infec-
tion dynamics are a good candidate for propagating

label information over real networks. To illustrate
this, we designed a synthetic experimental setup in
which our goal was to capture the structure of real
world networks. One well-known property of such net-
works is that they often have a community-like struc-
ture, with many intra-community edges, but few inter-
community edges. In many cases, only a few specific
nodes within a community are also connected to other
communities. Hence, we randomly created small net-
works with the above properties.

Specifically, each network was set to have 3 (possibly
overlapping) communities, each with 64 nodes. Nodes
were randomly assigned into one community, and in
each community, 8 nodes were randomly assigned to
an additional community. To account for some noise,
all other edges were added with probability 0.05. The
seed set included one randomly chosen node from each
community, giving |S| = 3. The figure in the main
text displays a random instance of the above setting,
providing both the instance specific accuracies, as well
as the average accuracy over 1,000 random instances.

Recall that InfProp can be interpreted both as the ex-
pected result of a dynamic infection process and as a
stochastic ensemble of shortest paths. We therefore
compared our method to two baselines. To compare
the dynamics, we used Label Propagation (LabelProp)
which is based on the more standard random-walk dy-
namics. As we argue in the text, these dynamics are
prone to getting stuck in dense clusters. As can be
seen, while InfProp provides almost exact predictions,
the predictive values of LabelProp are almost uniform
and hence extremely error-prone. This demonstrates
the inability of label information to propagate effi-
ciently over the network.

To demonstrate the power of using a stochastic en-
semble of paths, we compared to simply setting labels
according to the deterministic shortest paths given by
the original graph. While correctly classifying most
labels, shortest paths can be very sensitive to cross-
community or noisy edges. In contrast, InfProp mit-
igates this noise by considering a distribution over
shortest-paths.

5 Datasets

We evaluated our method on various learning tasks
over three collections of benchmark datasets, which
include network based datasets for multi-class learn-
ing with features2 [9], multi-class learning without fea-
tures3 [8], and multi-label learning4 [7]. The following

2
http://linqs.umiacs.umd.edu/projects//projects/lbc/

3
http://cs.gmu.edu/~tsaha/Homepage/Projects.html

4
http://github.com/sharadnandanwar/snbc

Running heading title breaks the line

table provides some statistics.

Dataset Nodes Edges Classes Features Avg. |y|

M
u
lt
ic
la
ss

3

CoRA 2,708 5,278 7 - 1

DBLP 5,329 21,880 6 - 1

Flickr 7,971 478,980 7 - 1

IMDb 2,411 12,255 22 - 1

Industry 2,189 11,666 12 - 1

F
e
a
tu

re
s2 CiteSeer 3,132 4,713 6 3,703 1

CoRA 2,708 5,278 7 1,433 1

PubMed 19,717 44,324 3 500 1

M
u
lt
il
a
b
e
l4

Amazon 83,742 190,097 30 - 1.546

CoRA 24,519 92,207 10 - 1.004

IMDb 19,359 362,079 21 - 2.300

PubMed 19,717 44,324 3 - 1

Wikipedia 35,633 49,538 16 - 1.312

YouTube 22,693 96,361 47 - 1.707

References

[1] Cohen, E., Delling, D., Pajor, T., and Wer-
neck, R. F. Sketch-based influence maximization
and computation: Scaling up with guarantees. In
Proceedings of the 23rd ACM International Confer-
ence on Conference on Information and Knowledge
Management (2014), ACM, pp. 629–638.

[2] Gadde, A., Anis, A., and Ortega, A. Active
semi-supervised learning using sampling theory for
graph signals. In Proceedings of the 20th ACM
SIGKDD international conference on Knowledge
discovery and data mining (2014), ACM, pp. 492–
501.

[3] Gomez-Rodriguez, M., Song, L., Du, N.,
Zha, H., and Schölkopf, B. Influence estima-
tion and maximization in continuous-time diffusion
networks. ACM Trans. Inf. Syst. 34, 2 (Feb. 2016),
9:1–9:33.

[4] Gu, Q., and Han, J. Towards active learning on
graphs: An error bound minimization approach.
In Data Mining (ICDM), 2012 IEEE 12th Interna-
tional Conference on (2012), IEEE, pp. 882–887.

[5] Guillory, A., and Bilmes, J. A. Active semi-
supervised learning using submodular functions.
In UAI 2011, Proceedings of the Twenty-Seventh
Conference on Uncertainty in Artificial Intelli-
gence (2011), pp. 274–282.

[6] Kempe, D., Kleinberg, J., and Tardos, É.
Maximizing the spread of influence through a so-
cial network. In Proceedings of the ninth ACM
SIGKDD international conference on Knowledge
discovery and data mining (2003), ACM, pp. 137–
146.

[7] Nandanwar, S., and Murty, M. N. Structural
neighborhood based classification of nodes in a net-
work. In Proceedings of the 22Nd ACM SIGKDD
International Conference on Knowledge Discovery
and Data Mining (2016), KDD ’16, pp. 1085–1094.

[8] Saha, T., Rangwala, H., and Domeniconi, C.
Flip: active learning for relational network classifi-
cation. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases
(2014), Springer, pp. 1–18.

[9] Sen, P., Namata, G. M., Bilgic, M., Getoor,
L., Gallagher, B., and Eliassi-Rad, T. Col-
lective classification in network data. AI Magazine
29, 3 (2008), 93–106.

