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Appendix

7 A supporting result

We first present an alternative characterisation of the projection operator ΠC which will be useful for the analysis
that follows. Throughout, for a probability measure ν ∈P(R), we write Fν for its CDF.

Proposition 6. For each i = 1, . . . ,K, define hzi : R → [0, 1] to be the (possibly asymmetric) hat function
centered in zi defined by

hzi(x) =





zi+1−x
zi+1−zi for x ∈ [zi, zi+1] and 1 ≤ i < K,
x−zi−1

zi−zi−1
for x ∈ [zi−1, zi] and 1 < i ≤ K,

1 for x ≤ z1 and i = 1,
1 for x ≥ zK and i = K,
0 otherwise.

Then defining ΠCν =
∑K
i=1 Ew∼ν [hzi(w)]δzi for all probability distributions ν ∈ P(R), is consistent with the

earlier definition in (7) for mixtures of Diracs. Further, FΠCν(zi) is equal to the average value of Fν in the
interval [zi, zi+1], for i = 1, . . . ,K − 1, and FΠCν(zK) = 1.

Proof. The consistency of the definition ΠCν =
∑K
i=1 Ew∼ν [hzi(w)]δzi with (7) follows immediately by observing

directly that the definitions agree when ν is a Dirac measure, and then observing that the definition of ΠC in
the statement of the proposition is also affine.

For the characterisation of FΠCν(zi) for i = 1, . . . ,K − 1, we note that

FΠCν(zi) =
i∑

j=1

Ew∼ν [hzj (w)]

= Ew∼ν




i∑

j=1

hzj (w)




= Ew∼ν
[
1w≤zi + 1w∈(zi,zi+1]

zi+1 − w
zi+1 − zi

]

=
1

zi+1 − zi

∫ zi+1

zi

Fν(w)dw ,

as required. Finally, since ΠCν is supported on {z1, . . . , zK}, it immediately follows that FΠCν(zK) = 1.

8 Mixture update version of categorical policy evaluation and categorical
Q-learning

Here we give a precise specification of the mixture update versions of categorical policy evaluation and categorical
Q-learning, as described in the main paper in Section 4.3. The difference from Algorithm 1 is highlighted in red.
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Algorithm 2 CDRL mixture update

Require: η
(x,a)
t =

∑K
k=1 p

(x,a)
t,k δzk for each (x, a)

1: Sample transition (xt, at, rt, xt+1)
2: # Compute distributional Bellman target
3: if Categorical policy evaluation then
4: a∗ ∼ π(·|xt+1)
5: else if Categorical Q-learning then
6: a∗ ← arg maxa ER∼η(xt+1,a)

t

[R]

7: end if
8: η̂

(xt,at)
∗ ← (frt,γ)#η

(xt+1,a
∗)

t

9: # Project target onto support

10: η̂
(xt,at)
t ← ΠC η̂

(xt,at)
∗

11: # Compute mixture update

12: Generate new estimates according to mixture rule: η
(xt,at)
t+1 = (1− αt(xt, at))η(xt,at)

t + αt(xt, at)η̂
(xt,at)
t

13: return ηt+1

9 Proof of results in Section 4

Lemma 2. The operator ΠCT π is in general not a contraction in dp, for p > 1.

Proof. We exhibit a simple counterexample; it is enough to demonstrate that ΠC can act as an expansion. Take
z1 = 0, z2 = 1, and consider two Dirac delta distributions, ν1 = δ1/4 and ν2 = δ3/4. We have dp(ν1, ν2) =

((1/2)p)1/p = 1/2. Now ΠCν1 = 3
4δ0 + 1

4δ1, and ΠCν2 = 1
4δ0 + 3

4δ1, and hence dp(ΠCν1,ΠCν2) = ((1/2)×1p)1/p =

2−1/p > 1/2.

Proposition 1. The Cramér metric `2 endows a particular subset of P(R) with a notion of orthogonal projection,
and the orthogonal projection onto the subset P is exactly the heuristic projection ΠC. Consequently, ΠC is a
non-expansion with respect to `2.

Proof. We begin by setting out a Hilbert space structure of a subset of P(R). LetM(R) be the vector space of
all finite signed measures on R. First, observe that the following subspace of signed measures:

M0(R) =

{
ν ∈M(R)

∣∣∣∣ν(R) = 0 ,

∫

R
Fν(x)2dx <∞

}
,

where Fν(x) = ν((−∞, x]) for each x ∈ R, is isometrically isomorphic to a subspace of the Hilbert space L2(R)
with inner product given by

〈ν1, ν2〉`2 =

∫

R
Fν1(x)Fν2(x)dx . (10)

Now consider the affine space δ0 +M0(R) (i.e. the translation of M0(R) in M(R) by the measure δ0). This
affine space consists of signed measures of total mass 1, with sufficiently quickly decaying tails. In particular, it
contains the set of probability measures ν ∈P(R) satisfying

∫ 0

−∞
Fν(x)2dx <∞ and

∫ ∞

0

(1− Fν(x))2dx <∞ .

As δ0 +M0(R) is an affine translation of a Hilbert space, it inherits the inner product defined in (10) from
M0(R), which is now defined for differences of elements. Now consider the affine subspace consisting of measures
supported on {z1, . . . , zK}. It is clear that this is a closed affine subspace (since it is finite-dimensional), and
therefore there exists an orthogonal projection (with respect to the inner product defined above) onto this

subspace, which we denote by Π. Given a probability measure ν ∈ δ0 +M0(R), Πν =
∑K
i=1 piδzi , where the pi

satisfy
∑K
i=1 pi = 1, and subject to this constraint, minimise 〈Πν − ν,Πν − ν〉`2 . But note that

〈Πν − ν,Πν − ν〉`2 =

∫

R
(FΠν(x)− Fν(x))2dx . (11)
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By construction, FΠν is constant on the open intervals (zi, zi+1) for i = 1, . . . ,K − 1, and also on the intervals
(−∞, z1) and (zK ,+∞). Therefore FΠν , and hence Πν itself, is determined by the values of FΠν(zi) for i =
1, . . . ,K. The optimal values (i.e. those minimising (11)) are easily verified to be: FΠν(zK) = 1, and FΠν(zi)
is equal to the average of Fν on the interval (zi, zi+1), for i = 1, . . . ,K − 1. Note then that Πν is a probability
distribution (since FΠν is non-decreasing), and in fact matches the characterisation of ΠCν obtained in Proposition
6. Therefore we have established that ΠC is exactly orthogonal projection in the affine Hilbert space δ0 +M0(R).
Further, we have verified that the norm between elements in the space is exactly `2, and hence it follows that
ΠC is a non-expansion with respect to `2.

Lemma 3 (Pythagorean theorem). Let µ ∈P([z1, zK ]), and let ν ∈P({z1, . . . , zK}). Then

`22(µ, ν) = `22(µ,ΠCµ) + `22(ΠCµ, ν) .

Proof. Denote by Fµ, FΠCµ and Fν the CDFs of the measures µ, ΠCµ and ν respectively. Now note

`22(µ, ν) =

∫ zK

z1

(Fµ(x)− Fν(x))2dx

=

∫ zK

z1

(Fµ(x)− FΠCµ(x) + FΠCµ(x)− Fν(x))2dx

=

∫ zK

z1

(Fµ(x)− FΠCµ(x))2dx+

∫ zK

z1

(Fν(x)− FΠCµ(x))2dx

− 2

∫ zK

z1

(Fµ(x)− FΠCµ(x))(Fν(x)− FΠCµ(x))dx .

Finally, observe that
∫ zK

z1

(Fµ(x)− FΠCµ(x))(Fν(x)− FΠCµ(x))dx

=
K−1∑

k=1

(Fν(zk)− FΠCµ(zk))

∫ zk+1

zk

(Fµ(x)− FΠCµ(x))dx

=0 ,

since by Proposition 6, FΠCµ is constant on (zk, zk+1), and is equal to the average of Fµ on the same interval.

Proposition 2. The operator ΠCT π is a
√
γ-contraction in `2. Further, there is a unique distribution function

ηC ∈ PX×A such that given any initial distribution function η0 ∈P(R)X×A, we have

(ΠCT π)mη0 → ηC in `2 as m→∞ .

Proof. First, we show that the true distributional Bellman operator T π is a
√
γ-contraction in `2. Note that

through notions of scale sensitivity, as discussed by Bellemare et al. [2017b], the ideas here may be extended to
other distances over probability measures. Let η, µ ∈P(R)X×A. Then

`22((T πη)(x,a), (T πµ)(x,a)) =`22

(∫

R

∑

(x′,a′)∈X×A
π(a′|x′)p(dr, x′|x, a)(fr,γ)#η

(x′,a′),

∫

R

∑

(x′,a′)∈X×A
π(a′|x′)p(dr, x′|x, a)(fr,γ)#µ

(x′,a′)

)

≤
∫

R

∑

(x′,a′)∈X×A
π(a′|x′)p(dr, x′|x, a)`22((fr,γ)#η

(x′,a′), (fr,γ)#µ
(x′,a′))

=

∫

R

∑

(x′,a′)∈X×A
π(a′|x′)p(dr, x′|x, a)γ`22(η(x′,a′), µ(x′,a′))

≤ γ`22(η, µ) ,
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with the first inequality following from Jensen’s inequality, and the equality coming from the follow general fact
about the Cramér distance and probability measures ν1, ν2 ∈ P (R):

`22((fr,γ)#ν1, (fr,γ)#ν2) =

∫

R
(F(fr,γ)#ν1(t)− F(fr,γ)#ν2(t))2dt

=

∫

R
(Fν1(f−1

r,γ (t))− Fν2(f−1
r,γ (t)))2dt

=

∫

R

(
Fν1

(
t− r
γ

)
− Fν2

(
t− r
γ

))2

dt

= γ

∫

R
(Fν1 (t′)− Fν2 (t′))

2
dt′

= γ`22(ν1, ν2) .

Now by Proposition 1, ΠC is a non-expansion in `2. Therefore ΠCT π is the composition of a non-expansion in `2
with a

√
γ-contraction in `2, and is therefore itself a

√
γ-contraction in `2. The second claim of the proposition

then follows immediately from the Banach fixed point theorem.

Proposition 3. Let ηC be the limiting return distribution function of Proposition 2. If η
(x,a)
π is supported on

[z1, zK ] for all (x, a) ∈ X ×A, then we have:

`
2

2(ηC , ηπ) ≤ 1

1− γ max
1≤i<K

(zi+1 − zi) .

Proof. By Lemma 3, we have:

`
2

2(ηC , ηπ) = sup
(x,a)∈X×A

`22(η
(x,a)
C , η(x,a)

π )

= sup
(x,a)∈X×A

[
`22(η

(x,a)
C , (ΠCηπ)(x,a)) + `22((ΠCηπ)(x,a), η(x,a)

π )
]

≤ `
2

2(ηC ,ΠCηπ) + `
2

2(ΠCηπ, ηπ)

= `
2

2(ΠCT πηC ,ΠCT πηπ) + `
2

2(ΠCηπ, ηπ)

≤ γ`
2

2(ηC , ηπ) + `
2

2(ΠCηπ, ηπ) , (12)

where in the final line we have used the contractivity of ΠCT π under `2 from Proposition 2. Due to Proposition
6 (see Section 7) we have that F

ΠCη
(x,a)
π

is constant on the intervals (zi, zi+1) for i = 1, . . . ,K − 1, and moreover,

due to the formula for the mass placed at the locations z1:K , we also have

F
ΠCη

(x,a)
π

(zi) ∈ [F
η
(x,a)
π

(zi), Fη(x,a)π
(zi+1)] for i = 1, . . . ,K − 1 , F

ΠCη
(x,a)
π

(zK) = 1 .

Therefore,

`22(ΠCη
(x,a)
π , η(x,a)

π ) ≤
K−1∑

i=1

(zi+1 − zi)(Fη(x,a)π
(zi+1)− F

η
(x,a)
π

(zi))
2

≤
[

sup
1≤i<K

(zi+1 − zi)
]K−1∑

i=1

(F
η
(x,a)
π

(zi+1)− F
η
(x,a)
π

(zi))
2

≤
[

sup
1≤i<K

(zi+1 − zi)
] [K−1∑

i=1

(F
η
(x,a)
π

(zi+1)− F
η
(x,a)
π

(zi))

]2

≤ sup
1≤i<K

(zi+1 − zi) ,

for each (x, a) ∈ X ×A, yielding

`
2

2(ΠCηπ, ηπ) ≤ sup
1≤i<K

(zi+1 − zi) .
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Thus, taking (12), applying the upper bound on `
2

2(ΠCηπ, ηπ) and rearranging, we obtain

`
2

2(ηC , ηπ) ≤ 1

1− γ sup
1≤i<K

(zi+1 − zi) .

Proposition 4. Let ηC be the limiting return distribution function of Proposition 2. Suppose η
(x,a)
π is supported

on an interval [z1−δ, zK +δ] containing [z1, zK ] for each (x, a) ∈ X ×A, and η
(x,a)
π ([z1−δ, z1]∪ [zK , zK +δ]) ≤ q

for some q ∈ R and for all (x, a) ∈ X ×A – q bounds the excess mass lying outside the region [z1, zK ]. Then we
have

`
2

2(ηC , ηπ) ≤ 1

1− γ

(
max

1≤i<K
(zi+1 − zi) + 2q2δ

)
.

Proof. The proof proceeds as for that of Proposition 3, obtaining the inequality

`
2

2(ηC , ηπ) ≤ 1

1− γ `
2

2(ΠCηπ, ηπ) .

We now bound the right-hand side as follows:

`22(ΠCη
(x,a)
π , η(x,a)

π ) ≤ q2 × (z1 − (z1 − δ)) + q2((zK + δ)− zK) +

K−1∑

i=1

(zi+1 − zi)(Fη(x,a)π
(zi+1)− F

η
(x,a)
π

(zi))
2

≤ 2q2δ + sup
1≤i<K

(zi+1 − zi) ,

which yields the result as required.

Proposition 5. The distributional Bellman operator T π : P(R)X×A → P(R)X×A is a monotone map with
respect to the partial ordering on P(R)X×A given by element-wise stochastic dominance. Further, the Cramér
projection ΠC : P(R)X×A → P(R)X×A is a monotone map, from which it follows that the Cramér-Bellman
operator ΠCT π is also monotone.

Proof. Let η, µ ∈P(R)X×A, and suppose that η ≤ µ. This is equivalent to Fη(x,a) ≥ Fµ(x,a) pointwise, for each

(x, a) ∈ X ×A. We now compute the CDFs of (T πη)(x,a) and (T πµ)(x,a), for each (x, a) ∈P(R)X×A, and show
that stochastic dominance still holds. Indeed, by conditioning on the value of the tuple (r, x′, a′), we obtain, for
each

(T πη)(x,a)((−∞, y]) =
∑

(x′,a′)∈X×A

∫

R
p(dr, x′|x, a)π(a′|x′)(fr,γ)#η

(x′,a′)((−∞, y])

=
∑

(x′,a′)∈X×A

∫

R
p(dr, x′|x, a)π(a′|x′)η(x′,a′)((−∞, (y − r)/γ])

≥
∑

(x′,a′)∈X×A

∫

R
p(dr, x′|x, a)π(a′|x′)µ(x′,a′)((−∞, (y − r)/γ])

=
∑

(x′,a′)∈X×A

∫

R
p(dr, x′|x, a)π(a′|x′)(fr,γ)#µ

(x′,a′)((−∞, y])

= (T πµ)(x,a)((−∞, y]) ,

as required, with the inequality coming from the fact that µ(x′,a′) stochastically dominates η(x′,a′). This concludes
the proof that the distributional Bellman operator T π is monotone with respect to the partial order of element-
wise stochastic dominance.

The monotonocity of the Cramér projection ΠC may be established from the expression given for the projection
in Proposition 6. Suppose we have two distributions ν1, ν2 ∈ P(R), and suppose further that ν1 ≤ ν2. Then
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recall from Proposition 6 that we have FΠCν1(w) and FΠCν2(w) equal to 0 for w < z1 and equal to 1 for w ≥ zK .
For w ∈ [zi, zi+1) for some i ∈ {1, . . . ,K − 1}, recall again from Proposition 6 that we have

FΠCνj (w) =
1

zi+1 − zi

∫ zi+1

zi

Fνj (t)dt , for j = 1, 2 . (13)

Since by assumption we have Fν1 ≥ Fν2 pointwise, it follows from (13) that FΠCν1 ≥ FΠCν2 pointwise, and
therefore ΠCν1 ≤ ΠCν2, as required.

9.1 Proof of Theorem 1

Theorem 1. In the context of policy evaluation for some policy π, suppose that:

(i) the stepsizes (αt(x, a)|t ≥ 0, (x, a) ∈ X ×A) satisfy the Robbins-Monro conditions:

• ∑∞t=0 αt(x, a) =∞
• ∑∞t=0 α

2
t (x, a) < C <∞

almost surely, for all (x, a) ∈ X ×A;

(ii) we have initial estimates η
(x,a)
0 of the distribution of returns for each state-action pair (x, a) ∈ X ×A, each

with support contained in [z1, zK ].

Then, for the updates given by Algorithm 2, in the case of evaluation of the policy π, we have almost sure
convergence of ηt to ηC in `2, where ηC is the limiting return distribution function of Proposition 2. That is,

`2(ηt, ηC)→ 0 as t→∞ almost surely.

The proof structure is based on that of Theorem 2 of Tsitsiklis [1994]; our Lemmas 5 and 6 are variants of
Lemmas 5 and 6 of Tsitsiklis [1994]. The high-level argument of the proof proceeds as follows.

Define:

U
(x,a)
0 = δzK , L

(x,a)
0 = δz1

U
(x,a)
k+1 =

1

2
U

(x,a)
k +

1

2
(ΠCT πUk)(x,a) , L

(x,a)
k+1 =

1

2
L

(x,a)
k +

1

2
(ΠCT πLk)(x,a) ,

iteratively for each (x, a) ∈ X ×A.

Lemma 5. We have Uk+1 ≤ Uk, for each k ∈ N0, and Lk+1 ≥ Lk, for each k ∈ N0. Further, we have Uk → ηC
in `2 , and also Lk → ηC in `2.

Finally, we argue that, for each k ∈ N0, the return distribution functions Uk and Lk sandwich all but finitely
many of the return distribution estimators ηt, in a sense made precise by the following lemma.

Lemma 6. Given k ∈ N0, there exists a random time Tk taking values in N0 such that

Lk ≤ ηt ≤ Uk for all t > Tk, almost surely.

Now, from Lemma 6 the conclusion of Theorem 1 is reached as follows. Let ε > 0, and pick k ∈ N0 sufficiently
large so that `2(Lk, ηC), `2(Uk, ηC) < ε, which can be done by Lemma 5. Note then by the triangle inequality
that `2(Uk, Lk) < 2ε, and further, we have:

`2(ηt, ηC) ≤ `2(ηt, Lk) + `2(Lk, Uk) + `2(Uk, ηC) .

Since, by Lemma 6, we have that Lk ≤ ηt ≤ Uk for all t > Tk almost surely, it follows that `2(ηt, Lk) ≤ `2(Lk, Uk)
for all t > Tk almost surely, and so we obtain

`2(ηt, ηC) ≤ 2`2(Lk, Uk) + `2(Uk, ηC) < 5ε for all t > Tk almost surely ,

which yields the statement of Theorem 1. It now remains to establish Lemmas 5 and 6.
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9.2 Proof of Lemma 5

We firstly show that Uk+1 ≤ Uk for each k ∈ N0. The proof that Lk+1 ≥ Lk for each k ∈ N0 is entirely analogous.

First, observe that U1 ≤ U0, since each distribution U
(x,a)
1 is supported on [z1, zK ], and U

(x,a)
0 was chosen to

stochastically dominate all distributions supported on [z1, zK ]. For the inductive step, suppose Uk+1 ≤ Uk for
some k ∈ N0. Then by monotonicity of ΠCT π, we have ΠCT πUk+1 ≤ ΠCT πUk. Hence,

U
(x,a)
k+2 =

1

2
U

(x,a)
k+1 +

1

2
(ΠCT πUk+1)(x,a) ≤ 1

2
U

(x,a)
k +

1

2
(ΠCT πUk)(x,a) = U

(x,a)
k+1 ,

which completes the inductive proof. To establish convergence of Uk to ηC , we make use of the following general
result.

Lemma 7. Let (νk)∞k=0 be a sequence of probability measures over {z1, . . . , zK}, with the property that νk+1 ≤ νk
for each k ∈ N0. Then there exists a probability measure ν∗ over {z1, . . . , zK} such that νk → ν∗ in `2.

Proof. We work with CDFs. Denote the CDF of νk by Fk, for k ∈ N0. Recall that the stochastic dominance
condition νk+1 ≤ νk implies that Fk+1 ≥ Fk pointwise. Therefore for each x ∈ R, we have that (Fk(x))k∈N0

is an
increasing sequence, trivially upper-bounded by 1. Therefore the sequence converges, and so there exists a limit
function F : R→ R, defined by F ∗(x) = limk→∞ Fk(x). It is straightforward to see that this limit function takes
values in [0, 1], is non-decreasing, right-continuous and is constant away from the set {z1, . . . , zK}. It is therefore

the CDF of a probability distribution ν∗ supported on {z1, . . . , zK}. Since F̃ ∗ is constant away from {z1, . . . , zK},
ν∗ is supported on {z1, . . . , zK}. To show that νk → ν∗ in `2, we must establish that

∫
R(Fk(x)−F ∗(x))2dx→ 0.

Since ν∗ ≤ νk+1 ≤ νk for each k ∈ N0, it follows that
∫
R(Fk(x)−F ∗(x))2dx is a non-increasing sequence, and so

it suffices to show that it is not lower-bounded by a positive number to establish the sequence’s convergence to
0. To that end, let ε > 0. Pick k ∈ N0 such that |Fk(zi)− F ∗(zi)| < ε, for each i = 1, . . . ,K − 1. Then observe
that ∫

R
(Fk(x)− F ∗(x))2dx ≤

K−1∑

i=1

(zi+1 − zi)ε2 ,

which demonstrates that no positive lower bounded exists, as required.

Applying Lemma 7 to each of the sequences (U
(x,a)
k )∞k=0, for each state-action pair (x, a) ∈ X × A, we obtain

the convergence of (Uk)∞k=0 to some set of return distributions η∗ in `2. Finally, due to the continuity of ΠCT π
with respect to `2, this limiting set of return distributions η∗ must satisfy η∗ = 1

2η
∗ + 1

2ΠCT πη∗, implying that
η∗ = ΠCT πη∗, so the limiting set of return distributions is indeed the fixed point ηC of ΠCT π. Analogously, we
may show that Lk → ηC in `2.

9.3 Proof of Lemma 6

We prove this lemma by induction. The result is clear for k = 0, as in this case U
(x,a)
0 stochastically dominates

all distributions supported on [z1, zK ], and L
(x,a)
0 is stochastically dominated by all distributions supported on

[z1, zK ]. Now assume the result holds for some k ≥ 0; that is, there exists some random time Tk such that
Lk ≤ ηt ≤ Uk for all t ≥ Tk almost surely. Here, we follow the structure of the proof of Lemma 6 of [Tsitsiklis,
1994] closely. We will show there exists a random time Tk+1 such that ηt ≤ Uk+1 for all t ≥ Tk+1 almost surely;
the claim that Lk+1 ≤ ηt for all t ≥ Tk+1 may be proven analogously.

Now define

H
(x,a)
Tk

= U
(x,a)
k , H

(x,a)
t+1 = (1− αt(x, a))H

(x,a)
t + αt(x, a)(ΠCT πUk)(x,a) , for t ≥ Tk (14)

W
(x,a)
Tk

= 0 ∈M(R) , W
(x,a)
t+1 = (1− αt(x, a))W

(x,a)
t + αt(x, a)

[
(ΠC(fr,γ)#ηt)

(x′,a′) − (ΠCT πηt)(x,a)
]
, for t ≥ Tk ,

where M(R) is the space of signed measures on R, and 0 ∈ M(R) represents the zero measure; that is, the
signed measure that assigns measure 0 to every Borel subset of R. Note that the process (Wt)t≥Tk takes values
in the space of collections of finite signed measures indexed by state-action pairs, each with overall mass 0; that

is, W
(x,a)
t (R) = 0 for all (x, a) ∈ X ×A, for all t ≥ Tk.
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We now argue that η
(x,a)
t ≤ H

(x,a)
t +W

(x,a)
t for all t ≥ Tk and for all (x, a) ∈ X ×A almost surely. For t = Tk,

this following from the definitions in (14) and the dominance relation ηTk ≤ Uk. To complete the proof, we

proceed inductively. Suppose that η
(x,a)
t ≤ H

(x,a)
t + W

(x,a)
t for all (x, a) ∈ X × A, for some t ≥ Tk. Then note,

assuming αt(x, a) = 0 if the distribution corresponding to the state-action pair (x, a) is not updated at time t,
we have

η
(x,a)
t+1 =(1− αt(x, a))η

(x,a)
t + αt(x, a)ΠC(fr,γ)#η

(x′,a′)
t

=(1− αt(x, a))η
(x,a)
t + αt(x, a)(ΠCT πηt)(x,a) + αt(x, a)(ΠC(fr,γ)#η

(x′,a′)
t − (ΠCT πηt)(x,a))

(i)

≤(1− αt(x, a))(H
(x,a)
t +W

(x,a)
t ) + αt(x, a)(ΠCT πUk)(x,a) + αt(x, a)(ΠC(fr,γ)#η

(x′,a′)
t − (ΠCT πηt)(x,a))

=(1− αt(x, a))H
(x,a)
t + αt(x, a)(ΠCT πUk)(x,a) + (1− αt(x, a))W

(x,a)
t

+ αt(x, a)(ΠC(fr,γ)#η
(x′,a′)
t − (ΠCT πηt)(x,a))

=H
(x,a)
t+1 +W

(x,a)
t+1 ,

as required. In the above derivation, (i) comes from the stochastic dominance relations ηt ≤ Ht + Wt (by
induction hypothesis) and ηt ≤ Uk and the monotonicity of ΠCT π. Note that we have the following expression

for H
(x,a)
t :

H
(x,a)
t =

(
t−1∏

τ=Tk

(1− ατ (x, a))

)
Uk +

(
1−

t−1∏

τ=Tk

(1− ατ (x, a))

)
(ΠCT πUk)(x,a)

Since by assumption we have
∑∞
k=0 αk(x, a) =∞ for all (x, a) ∈ X ×A almost surely, we have that there exists

a random time T̃k+1 such that
∏t−1
τ=Tk

(1 − ατ (x, a)) ≤ 1/4 for all (x, a) ∈ X × A, and for all t ≥ T̃k+1 almost

surely. Since ΠCT πUk ≤ Uk, for all t ≥ T̃k, we have:

ηt ≤ Ht +Wt

≤ 1

4
Uk +

3

4
ΠCT πUk +Wt

=
1

2
Uk +

1

2
ΠCT πUk +Wt −

1

4
(Uk −ΠCT πUk)

= Uk+1 +Wt −
1

4
(Uk −ΠCT πUk) . (15)

Now note that if U
(x,a)
k ((∞, zi]) = ΠCT πU (x,a)

k ((∞, zi]), then we have U
(x,a)
k+1 ((−∞, zi]) = U

(x,a)
k ((−∞, zi]). Let

δ, then, be the smallest non-zero value of |(ΠCT πUk)(x,a)((−∞, zi]) − U (x,a)
k ((−∞, zi])| across all state-action

pairs (x, a) ∈ X × A and all support points zi ∈ {z1, . . . , zK}. Crucially, we observe that the additive “noise”

term appearing in the definition of W
(x,a)
t+1 in Equation (14) is mean-zero, in the following sense: as a random

measure, the expectation of the noise term is the 0 measure. More concretely for our purposes, we have, as
stated in Lemma 4 in the main paper, for all zi ∈ {z1, . . . , zK}:

Er,x′,a′
[
((ΠC(fr,γ)#ηt)

(x′,a′) − (ΠCT πηt)(x,a))
]

((−∞, zi]) = 0 .

Standard stochastic approximation theory (e.g. [Tsitsiklis, 1994]), via Assumption (i), then yields that

W
(x,a)
t ((−∞, zi]) → 0 almost surely, for all (x, a) ∈ X × A, and for all zi ∈ {z1, . . . , zK}. We can now take

Tk+1 > T̃k+1 sufficiently large so that |W (x,a)
t ((−∞, zi]))| < δ/4 for all t ≥ Tk+1 and all (x, a) ∈ X × A. Then

(15) yields that ηt ≤ Uk+1 for all t ≥ Tk+1, completing the inductive step, and therefore completing the proof of
Lemma 6.

9.4 Proof of Theorem 2

Theorem 2. Suppose that Assumptions (i)–(ii) of Theorem 1 hold, and that all unprojected target distributions

η̂
(xt,at)
∗ arising in Algorithm 2 are supported within [z1, zK ] almost surely. Assume further that there is a unique

optimal policy π∗ for the MDP. Then, for the updates given in Algorithm 2, in the case of control, we have almost

sure convergence of (η
(x,a)
t )(x,a)∈X×A in `2 to some limit η∗C, and furthermore the greedy policy with respect to

η∗C is the optimal policy π∗.
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Proof. We first note that the updates induced by the algorithm on the expected returns are exactly those of
standard (non-distributional) Q-learning. More precisely, denoting the expected returns E

R∼η(x,a)t
[R] at state-

action pair (x, a) ∈ X × A at time t by Qt(x, a), we have that these Q-values follow the standard dynamics of
Q-learning. This holds because the maximum and minimum possible estimated rewards lie within the support of
the parametrised distributions, by the assumptions of the theorem. We may therefore apply the non-distributional
theory [Tsitsiklis, 1994] to argue that the expectations (Qt(x, a)|(x, a) ∈ X × A) converge almost-surely to the
true optimal expected returns (Qπ

∗
(x, a)|(x, a) ∈ X ×A). Since the state space and action space are finite, this

convergence is almost-surely uniform across all state-action pairs. Therefore, given ε > 0, there exists a random
variable N such that for t > N , we have

sup
(x,a)∈X×A

|Qt(x, a)−Qπ∗(x, a)| < ε almost surely .

Now take ε to be equal to half the minimum action gap across all states for the optimal action-value function Qπ
∗
;

that is, take ε = 1
2 minx∈X [Qπ

∗
(x, π∗(x))−maxa6=π∗(x)Q

π∗(x, a)] (which is greater than zero by the assumption
of a unique optimal policy and finite state and action spaces). Then for t > N , the Q-learning updates are exactly
the same as policy evaluation updates for the optimal policy π∗. Under these updates, we proved in Theorem 1
that the return distributions converge to the approximate return distribution function ηC . Note however, that
N is not a stopping time; we must be particularly careful with the analysis that follows.

We therefore proceed according to a coupling argument. We define the following set of independent stochastic
distributional Bellman operators: (T̂ πt ) across all deterministic policies π, and timesteps t ∈ N. The idea is
to define a π∗ categorical policy evaluation algorithm with these operators, and also a categorical Q-learning
algorithm, and couple these processes together with probability tending to 1 as the number of steps of each
algorithm increases. Since the return distribution ensemble computed by the policy evaluation algorithm will
converge to the approximate return distribution function ηC associated with π∗ almost surely, we will then be
able to argue that the same is true of the distributions computed by the Q-learning algorithm.

More precisely, we first construct the π∗ categorical policy evaluation algorithm by taking an initial return

distribution function (η
(x,a)
0 |(x, a) ∈ X ×A), and defining:

ηk+1 = ΠC T̂ π
∗

k ηk ,

for each k ≥ 0. We construct the Q-learning algorithm by taking the same initial return distribution function

(η
(x,a)
0 |(x, a) ∈ X ×A), and defining the following updates, letting η̃0 = η0:

Let πk be greedy wrt η̃k ,

η̃k+1 = ΠC T̂ πkk η̃k ,

for each k ≥ 0.

By the remarks above, we have πk = π∗ for all k sufficiently large almost surely. Let Ak = {πl = π∗ for all l ≥ k},
for each k ∈ N. Then Ak ⊆ Ak+1, and P(Ak) ↑ 1. Let B be the event of probability 1 for which the policy
evaluation algorithm converges. Now, on the event B ∩Ak, we have

`
2

2(ηl, ηC)→ 0 ,

where ηC is the limiting distribution function for the policy π∗, as in Theorem 1. Note then that if `
2

2(η̃l, ηl)→ 0
on this event too, then by the triangle inequality, we have `2(η̃l, ηC) → 0, and hence Q-learning converges on
Ak ∩ B, and since P(Ak ∩ B) ↑ 1, the statement of the theorem immediately follows. We first observe that
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`
2

2(η̃l, ηl), for l ≥ k, is eventually a non-increasing positive sequence on the event Ak:

`22(η̃
(x,a)
l+1 , η

(x,a)
l+1 )

=
∥∥∥
(

(1− αl(x, a))η̃
(x,a)
l + αl(x, a)(ΠC T̂ π

∗
l η̃l)

(x,a)
)
−
(

(1− αl(x, a))η
(x,a)
l + αl(x, a)(ΠC T̂ π

∗
l ηl)

(x,a)
)∥∥∥

2

`2

=(1− αl(x, a))2
∥∥∥η̃(x,a)
l − η(x,a)

l

∥∥∥
2

`2
+ αl(x, a)2

∥∥∥(ΠC T̂ π
∗

l η̃l)
(x,a) − (ΠC T̂ π

∗
l ηl)

(x,a)
∥∥∥

2

`2

+ 2αl(x, a)(1− αl(x, a))〈η̃(x,a)
l − η(x,a)

l , (ΠC T̂ π
∗

l η̃l)
(x,a) − (ΠC T̂ π

∗
l ηl)

(x,a)〉`2
≤(1− αl(x, a))2`

2

2(η̃l, ηl) + αl(x, a)2γ`
2

2(η̃l, ηl) + 2αl(x, a)(1− αl(x, a))
√
γ`

2

2(η̃l, ηl)

=(1− αl(x, a)(1−√γ))2`
2

2(η̃l, ηl) . (16)

Therefore, on this event, `2(η̃l, ηl) has a limit almost surely. Denote Z as the limit of the sequence, and on the
event that Z > 0, pick δ > 0 such that

√
γ(Z + δ) < Z. Letting τ > 0 such that `2(η̃l, ηl) < Z + δ for all l ≥ τ ,

we observe that for l ≥ τ , following the calculations in Equation (16), we obtain the inequality

`22(η̃
(x,a)
l+1 , η

(x,a)
l+1 ) ≤ (1− αl(x, a))2`22(η̃

(x,a)
l , η

(x,a)
l ) + αl(x, a)2γ(Z + δ) + 2αl(x, a)(1− αl(x, a))

√
γ(Z + δ)

≤ (1− 2αl(x, a) + αl(x, a)2)`22(η̃
(x,a)
l , η

(x,a)
l ) + (2αl(x, a)− αl(x, a)2)

√
γ(Z + δ) .

By Assumption (i) of the theorem, we have lim supl `2(η̃
(x,a)
l , η

(x,a)
l ) ≤ √γ(Z + δ) < Z for all (x, a) ∈ X × A, a

contradiction. Therefore `
2

2(η̃l, ηl)→ 0 holds on Ak ∩B almost surely, as required.


