Solving /P-norm regularization with tensor kernels

A Experiments on a real data set

We considered the Breast Cancer Wisconsin (Diagnostic) Data Set”, that was considered in a similar analysis in
[12]. Tt consists in 194 examples (4 were removed since without labels) with 32 variables. We divided the dataset
into a training set of size 60, a validation set of size 60, and a test set of size 74. We experiment with polynomial
tensor kernels of different degree (1,2,3,4) and we compared the test MSE for L1, L4/3, and L2 regularized
least squares. See Tables 3 and 4 below. Note that the reported computing time is the total time for solving
the Lp-norm regularized problem along a sequence of 100 values of the regularization parameter (and does not
include the time required for computing either the kernel or the feature map, depending on the algorithm®).

We experimented also with nonparametric models. We indeed tested the performance of the exponential tensor
kernel (L4/3) described in the paper and we compare it with the Gaussian (standard matrix) kernel (L2). We
obtained a test MSE = 973.27 for the Exponential tensor kernel and a test MSE = 928.57 for the Gaussian
kernel.

Table 3: (L2)RLS and LASSO(L1). Polynomial models.

degree n. features RLS RLS TIME(sec) LASSO test MSE ~ LASSO TIME(sec)
test MSE (and selected feat.)

1 33 1240.99 < 0.1 1052.14(10) 0.4

2 561 2240.17 <0.1 1444.84(12) 0.6

3 6545 3264.07 < 0.1 2297.36(15) 5.8

4 58905 3304.96 < 0.1 3067.24(15) 49.8

Table 4: (L4/3)RLS. Polynomial models.

degree n. features test MSE TIME(sec)
(feat. above 2STD) Dual Algo with K Dual Algo without K FISTA primal
1 33 1078.57(1) 9.1 0.2 0.1
2 561 2105.40(24) 7.6 0.6 0.7
3 6545 2139.64(136) 19.9 15.3 16.8
4 58905 3011.86(932) 25.5 151.8 116.3

B Proofs and technical results
This section contains proofs and additional details on some of the topics discussed above.

B.1 Duality in /P-regularization

Proof of Theorem 3.1. Problem (22) can be written in the form

wgﬁﬁ«) f(w) + g(=P,w), (29)

where f(w) = (1/p)\|w||g, 9(B) =X i, L(y;, —Bi), and ®,, is defined as in (23). The Fenchel-Rockafellar dual
problem of (29) is [1]
min f*(®,a) + g (e) (30)

acR™

"Source UCI, http://archive.ics.uci.edu/ml/datasets/
Breast+Cancer+Wisconsin+%28Diagnostic%29

81In particular, FISTA on the primal and the dual algorithm without kernel require the computation of the feature
map on the training, validation, and test sets, which in the case of polynomial models of degree 4 takes about 180s.
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and the corresponding KKT optimality conditions are
w e Jf* (D)) and a € 9g(—P,w).

Now it is easy to see that
n * _ - * Qg q * _ 1 q
VaeR") g (a) —’yZL (yi,—?) and (Vu e 1(K)) f"(u)= 6||u||q
i=1

Therefore, the dual form (24) follows. Statement (i) comes from the fact that g is continuous. Statement (i7)
follows from the KKT conditions above by noting that f* is indeed differentiable and V f* = J,, and the fact
that g is separable. O

We now specialize Theorem 3.1 to distance-based and margin-based losses [3, Definitions 2.24 and 2.32].

Corollary B.1. Suppose that L is a convex distance-based loss of the form L(y,t) = ¥(y —t) with Y =R, for
some convex function p: R — Ry. Then the dual problem (24) becomnes

1 " Q;
in = [|allf —y " (%) 31
min —[[#al; -y a+v;w > (31)

Suppose that L is a convex margin-based loss of the form L(y,t) = ¥ (yt) with Y = {—1,1}, for some convex
function ¢: R — Ry. Then the dual problem (24) becomnes

) . (32)

1 " Y O
in = l|@* q *(7 a7
min - | nallq+’y;¢ >

The following example shows that all the losses commonly used in machine learning admit explicit Fenchel
conjugates.

Example B.2.

(i) The least squares loss is L(y,t) = 1(y — t) with ¢» = (1/2)|-]>. In that case (31) reduces to (8), which is is
strongly convex with modulus 1/+.

(it) The Vapnik-e-insensitive loss for regression is L(y,t) = v (y —t) with ¢ = |-[_. Then, ¢* = ¢|-| + ¢[—1,1] and
the last term in (31) turns out to be elle||; + tyj—1,1] ().

(#i1) The Huber loss is the distance-based loss defined by

r2/2 if |r] <p
P(r) = 2 :
plr| — p*/2 otherwise.

Then * = v_, ) + (1/2)|-]° [1, Example 13.7] and the last term in (31) is (1/(27))]|e||3 + Loy[—1,1]n ().

(iv) The logistic loss for classification is the margin-based loss with ¢ (r) = log(1 4+ e~"). Thus

(14 s)log(1l+ s) — slog(—s) if s €]-1,0]
P (s) =<0 if s € {0,—1}
+00 otherwise.

See [1, Example 13.2(vi)]. It is easy to see that ¢ has Lipschitz continuous derivative with constant 1/4 and
hence ¥* is strongly convex with modulus 4 [1]. Thus, referring to (31), we see that in this case dom A =
[T, (y:[0,~]) and A is differentiable on int(dom A) with locally Lipschitz continuous gradient. Moreover,
since lims_1 [(¢*)/(s)| = lims—o [(¥*)'(s)] = 400, we have that |[VA((«))|] = +oo on the boundary of
dom A. Finally, it follows from (25) that 0 < y;a; < v, for i = 1,...,n. Note that in this case we can still
apply Algorithm 3.3 with 2 = 0 (see [13, Section 4]).
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(v) The hinge loss is the margin-based loss with 9 (r) = (1 —r);. We have 9*(s) = s+ 1/_1,0)(5). So the second
term in (32) is — 7" | Yt + tyjo,1] (Vi)

We also note that in all cases, for every i € {1,...,n},inf L*(y;, ) > —oo, which was a condition considered in
Proposition 3.2.

Proof of Proposition 3.2. We use the same notation as in the proof of Theorem 3.1. It follows from the definitions

of w and w and the Young-Fenchel equalities [1] that f(w) + f*(®La) = (w,P:a) and f(w) + f*(Pra) =
(w, ®*ar), and hence

f*((b;kla) - f*((b:Ld) = f(

Since —Pw € dg*(a), we have

g
|
=
&
+
Cl
3%
L
g
|
]
3 %
\.Q‘
\8/\

9" () —g"(a) = (—Ppw, 00 — &) = (O
Summing the two inequalities above, we get

Ala) = AMa)

Y

() — f(w) = (V[f(w), w —w),

_ 1 _
= |l - EIIWHZ = (Jp(w), w — w).

f(w)
1

Now, since 1 < p < 2, it follows from [2, Corollary 2.6.1] that

1 1 Cp

_ — 2
Sl = S llwly = (p(w), @ —w) > ——
(lwll, + llwl,

)g_pl\@ —wlf,,

for some constant C, > 0 that depends only on p. Therefore, by the definition of the duality map,

* * 1/ 1/
lwll, = I1q(®5e0)ll, = (Iehelf) " < /7 (A(e) +7]€llL) ",
where §; = inf L*(y;, -); and similarly for ||w||,. Then the statement follows. O

Proof of Theorem 2.5. Since for the least squares loss we have & = —(1/2)y?, it follows from Proposition 3.2
that for every m € N,

||'w —u—;HQ < [(ZPQ)(A(am)+('y/2)||y‘|§)](2fp)/p

- (A(o,) — minA).
Now it remains to prove that, inf,, A,, > 0 and that
(Vm eN) A(ams1) —minA < (1= (2/7)An(1 = 6)) (A(am) — minA). (33)

First of all, since ¢ > 2, the gradient of A is Lipschitz continuous on bounded sets. Therefore, Proposition 3.15
in [13] yields that inf,, A, > 0. Now, because of the linesearch rule we have that

A1) < Aam) = An(1 = 0)||VA(awm)
and, since A is strongly convex with modulus 1/, we have
Ae) = A@) < [ VA (e
All together the two inequalities above gives
A@ms1) < Alam) = (2/1)An(1 = 8)(Ala) — Al@)).

Adding A(&) to both sides, (33) follows and hence the statement. O
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B.2 The function Banach space associated to a tensor kernel

In this section we make explicit the space associated to tensor kernels. We assume that span(®(R%)) is dense in
¢4(K) — which is equivalent to requiring that the functions (¢ )rex are £ point-wise independent. Then, we can
associate to the feature map ® the Banach function space [20]

B = {(w,®(-)) |w e (K}, [(w,®()lls= [wll, (34)
Note that if & € R™, &1,...,x, € R? and we set w = Jq(Z?:l aifIJ(a:i)), then, as in (14), we have
(w, ®(")) = Z K(@i,- - 1 Lig 15 oy Qig_15 (35)
i1,nyigo1=1

and

w2l = (3 Kl wan ) (36)

and the functions (35) are dense in B. Moreover, setting ®* = J, 0 ®: R? — (?(K), if span(®*(R%)) is also dense
in ¢P(K), then its associated function Banach space B* (defined similarly to (34)) is the topological dual of B
and the following reproducing property holds

Ke:ad! - K(x',...,2',x) € B and (f, Kg) = f(x).

For the case of infinite dimensional power series tensor kernels, which includes the exponential tensor kernels
considered here, the density assumptions on span(®(R%)) and span(®*(R?)) holds, hence the corresponding
Banach space can be described through the equations (35) and (37).

B.3 The dual algorithm for general loss function and any p € |1,2]

Proof of Theorem 3.6. Since 7 is smooth with a locally Lipschitz continuous gradient we can apply Theorem 3.2
and Proposition 3.5 in [13] and get inf,, A;, > 0, @, — @ and A(a,)—A(&) = o(1/m). Then, by Proposition 3.2,
we have [|wn, —w||, < o(1/y/m). Now suppose that A is p-strongly convex. We will rely on Proposition 2 in
[5]. Then, strong convexity of A yields

Ellen = all* < Aam) - A@)
for some constant x> 0. So equation (3.8) in Proposition 2 in [5] holds. Moreover, defining

—Dy,. (o) = a(tmi1)) — p2(m)) + (Ami1 — Am, Vi (am)),

by the definition of A,,, and Proposition 3.8 and Proposition 3.9 in [13], we have

2
Hamﬂ)\—am” < Dy, (an) and Alamy1) — Alay) < —(1—0)Dy, (o). (37)

Then, since inf,, A,, > 0 we can proceed as in the proof of Proposition 2 in [5] and prove that A(a.,) converge
linearly to A(a). Finally, using Proposition 3.2 the linear convergence of w,, follows. Note that Example B.2
shows that if L is the least square loss or the logistic loss, then A is strongly convex. O



