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Abstract

We unify two prominent lines of work on multi-
armed bandits: bandits with knapsacks and com-
binatorial semi-bandits. The former concerns
limited “resources” consumed by the algorithm,
e.g., limited supply in dynamic pricing. The lat-
ter allows a huge number of actions but assumes
combinatorial structure and additional feedback
to make the problem tractable. We define a com-
mon generalization, support it with several moti-
vating examples, and design an algorithm for it.
Our regret bounds are comparable with those for
BwK and combinatorial semi-bandits.

1 Introduction

Multi-armed bandits (MAB) is an elegant model for study-
ing the tradeoff between acquisition and usage of in-
formation, a.k.a. explore-exploit tradeoff [Robbins, 1952,
Thompson, 1933]. In each round an algorithm sequentially
chooses from a fixed set of alternatives (sometimes known
as actions or arms), and receives reward for the chosen ac-
tion. Crucially, the algorithm does not have enough infor-
mation to answer all “counterfactual” questions about what
would have happened if a different action was chosen in
this round. MAB problems have been studied steadily since
1930-ies, with a huge surge of interest in the last decade.

This paper combines two lines of work related to ban-
dits: on bandits with knapsacks (BwK) [Badanidiyuru et al.,
2013a] and on combinatorial semi-bandits [Gyorgy et al.,
2007]. BwK concern scenarios with limited “resources”
consumed by the algorithm, e.g., limited inventory in a
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dynamic pricing problem. In combinatorial semi-bandits,
actions correspond to subsets of some “ground set”, re-
wards are additive across the elements of this ground set
(atoms), and the reward for each chosen atom is revealed
(semi-bandit feedback). A paradigmatic example is an on-
line routing problem, where atoms are edges in a graph, and
actions are paths. Both lines of work have received much
recent attention and are supported by numerous examples.

Our contributions. We define a common generalization
of combinatorial semi-bandits and BwK, termed Combina-
torial Semi-Bandits with Knapsacks (SemiBwK). Following
all prior work on BwK, we focus on an i.i.d. environment:
in each round, the “outcome” is drawn independently from
a fixed distribution over the possible outcomes. Here the
“outcome” of a round is the matrix of reward and resource
consumption for all atoms.! We design an algorithm for
SemiBwK, achieving regret rates that are comparable with
those for BwK and combinatorial semi-bandits.

Specifics are as follows. As usual, we assume “bounded
outcomes”: for each atom and each round, rewards and
consumption of each resource is non-negative and at most
1. Regret is relative to the expected total reward of the
best all-knowing policy, denoted OPT. For BwK problems,
this is known to be a much stronger benchmark than the
traditional best-fixed-arm benchmark. We upper-bound the
regret in terms of the relevant parameters: time horizon 7',
(smallest) budget B, number of atoms n, and OPT itself
(which may be as large as n’1"). We obtain

Regret < O(v/n)(OPT /VB + VT + OPT). (1.1)
The “shape” of the regret bound is consistent with prior
work: the OPT /+/B additive term appears in the opti-
mal regret bound for BwK, and the \/T and v OPT additive
terms are very common in regret bounds for MAB. The per-
round running time is polynomial in n, and near-linear in n
for some important special cases.

!Our model allows arbitrary correlations within a given round,
both across rewards and consumption for the same atom and
across multiple atoms. Such correlations are essential in applica-
tions such as dynamic pricing and dynamic assortment. E.g., cus-
tomers’ valuations can be correlated across products, and algo-
rithm earns only if it sells; see Section 4 for details.
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Our regret bound is optimal up to polylog factors for
paradigmatic special cases. BwK is a special case when ac-
tions are atoms. For OPT > Q(T), the regret bound be-
comes O(T\/n/B + v/nT), where n is the number of ac-
tions, which coincides with the lower bound from [Badani-
diyuru et al., 2013a]. Combinatorial semi-bandits is a spe-
cial case with B = nT. If all feasible subsets contain at
most k£ atoms, we have OPT < kT, and the regret bound
becomes O(vEnT). This coincides with the Q(vknT)

lower bound from [Kveton et al., 2014].

Our main result assumes that the action set, i.e., the fam-
ily of feasible subsets of atoms, is described by a matroid
constraint.> This is a rather general scenario which in-
cludes many paradigmatic special cases of combinatorial
semi-bandits such as cardinality constraints, partition ma-
troid constraints, and spanning tree constraints. We also
assume that B > Q(n + v/nT).

Our model captures several application scenarios, incl. dy-
namic pricing, dynamic assortment, repeated auctions, and
repeated bidding. We work out these applications, and ex-
plain how our regret bounds improve over prior work.

Challenges and techniques. BwK problems are challeng-
ing compared to traditional MAB problems with i.i.d. re-
wards because it no longer suffices to look for the best ac-
tion and/or optimize expected per-round rewards; instead,
one essentially needs to look for a distribution over ac-
tions with optimal expected tofal reward across all rounds.
Generic challenges in combinatorial semi-bandits concern
handling exponentially many actions (both in terms of re-
gret and in terms of the running time), and taking advantage
of the additional feedback. And in SemiBwK, one needs to
deal with distributions over subsets of atoms, rather than
“just” with distributions over actions.

Our algorithm connects a technique from BwK and a ran-
domized rounding technique from combinatorial optimiza-
tion. (With five existing BwK algorithms and a wealth of
approaches for combinatorial optimization, choosing the
techniques is a part of the challenge.)

We build on a BwK algorithm from Agrawal and Devanur
[2014a], which combines linear relaxations and a well-
known “optimism-under-uncertainty” paradigm. A gener-
alization of this algorithm to SemiBwK results in a fractional
solution x, a vector over atoms. Randomized rounding
converts x into a distribution over feasible subsets of atoms
that equals « in expectation. It is crucial (and challenging)
to ensure that this distribution contains enough randomness
S0 as to admit concentration bounds not only across rounds,
but also across atoms. Our analysis “opens up” a fairly
technical proof from prior work and intertwines it with a
new argument based on negative correlation.

*Matroid is a standard notion in combinatorial optimization
which abstracts and generalizes linear independence.

We present our algorithm and analysis so as to ’plug in”
any suitable randomized rounding technique. This makes
our presentation more lucid, and also leads to faster running
times for some important special cases.

Solving SemiBwK using prior work. Solving SemiBwK us-
ing an algorithm for BwK would result in a regret bound like
(1.1) with n replaced with the number of actions. The latter
could be on the order of n* if each action can consist of at
most k atoms, or perhaps even exponential in n.

SemiBwK can be solved as a special case of a much more
general linear-contextual extension of BwK from Agrawal
and Devanur [2014a, 2016]. In their model, an algorithm
takes advantage of the combinatorial structure of actions,
yet it ignores the additional feedback from the atoms. Their
regret bounds have a worse dependence on the parameters,
and apply for a much more limited range of parameters.
Further, their per-round running time is linear in the num-
ber of actions, which is often prohibitively large.

To compare the regret bounds, let us focus on instances of
SemiBwK in which at most one unit of each resource is con-
sumed in each round. (This is the case in all our motivating
applications, except repeated bidding.) Then Agrawal and
Devanur [2014a, 2016] assume B > /n T3/4 and achieve
regret O(nﬁ% + nZﬁ) 3 It is easy to see that we
improve upon the range and upon both summands. In par-
ticular, we improve both summands by the factor of ny/n in
a lucid special case when B > Q(T') and OPT < O(T).*

We run simulations to compare our algorithm against prior
work on BwK and combinatorial semi-bandits.

Related work. Multi-armed bandits have been stud-
ied since Thompson [1933] in Operations Research, Eco-
nomics, and several branches of Computer Science, see
[Gittins et al., 2011, Bubeck and Cesa-Bianchi, 2012] for
background. Among broad directions in MAB, most rel-
evant is MAB with i.i.d. rewards, starting from [Lai and
Robbins, 1985, Auer et al., 2002].

Bandits with Knapsacks (BwK) were first introduced by
Badanidiyuru et al. [2013a] as a common generalization of
several models from prior work and many other motivating
examples. Subsequent papers extended BwK to “smoother”
resource constraints and introduced several new algorithms
[Agrawal and Devanur, 2014a], and generalized BwK to

3Agrawal and Devanur [2014a, 2016] state regret bound with
term +n+/T rather than +n2+/T, but they assume that per-round
rewards lie in [0, 1]. Since per-round rewards can be as large as n
in our setting, we need to scale down all rewards by a factor of n,
apply their regret bound, and then scale back, which results in the
regret bound with +n2v/T. When per-round consumption can be
as large as n, regret bound from Agrawal and Devanur [2014a,
2016] becomes O(n? OPT /T /B + n?V/T) due to rescaling.

“In prior work on combinatorial bandits (without constraints),
semi-bandit feedback improves regret bound by a factor of /n,
see the discussion in Kveton et al. [2015b].
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contextual bandits [Badanidiyuru et al., 2014, Agrawal
et al., 2016, Agrawal and Devanur, 2016]. All prior work
on BwK and special cases thereof assumed i.i.d. outcomes.

Special cases of BwK include dynamic pricing with lim-
ited supply [Babaioff et al., 2015, Besbes and Zeevi, 2009,
2012, Wang et al., 2014], dynamic procurement on a bud-
get [Badanidiyuru et al., 2012, Singla and Krause, 2013,
Slivkins and Vaughan, 2013], dynamic ad allocation with
advertiser budgets [Slivkins, 2013], and bandits with a
single deterministic resource [Guha and Munagala, 2007,
Gupta et al., 2011, Tran-Thanh et al., 2010, 2012]. Some
special cases admit instance-dependent logarithmic regret
bounds [Xia et al., 2016b,a, Combes et al., 2015a, Slivkins,
2013] when there is only one bounded resource and un-
bounded time, or when resource constraints do not bind
across arms.

Combinatorial semi-bandits were studied by Gyorgy et al.
[2007], in the adversarial setting. In the i.i.d. setting,
in a series of works by [Anantharam et al., 1987, Gai
et al., 2010, 2012, Chen et al., 2013, Kveton et al., 2015b,
Combes et al., 2015b], an optimal algorithm was achieved.
This result was then extended to atoms with linear rewards
by Wen et al. [2015]. Kveton et al. [2014] obtained im-
proved results for the special case when action set is de-
scribed by a matroid. Some other works studied a closely
related “cascade model”, where the ordering of atoms mat-
ters [Kveton et al., 2015a, Katariya et al., 2016, Zong et al.,
2016]. Contextual semi-bandits have been studied in [Wen
et al., 2015, Krishnamurthy et al., 2016].

Randomized rounding schemes (RRS) come from the lit-
erature on approximation algorithms in combinatorial op-
timization (see Williamson and Shmoys [2011], Papadim-
itriou and Steiglitz [1982] for background). RRS were in-
troduced in Raghavan and Tompson [1987]. Subsequent
work [Gandhi et al., 2006, Asadpour et al., 2010, Chekuri
et al.,, 2010, 2011] developed RRS which correlate the
rounded random variables so as to guarantee sharp concen-
tration bounds.

Discussion. The basic model of multi-armed bandits can
be extended in many distinct directions: what auxiliary
information, if any, is revealed to the algorithm before it
needs to make a decision, which feedback is revealed after-
wards, which “process” are the rewards coming from, do
they have some known structure that can be leveraged, are
there global constraints on the algorithm, etc. While many
real-life scenarios combine several directions, most exist-
ing work proceeds along only one or two. We believe it is
important (and often quite challenging) to unify these lines
of work. For example, an important recent result of Syrgka-
nis et al. [2016], Rakhlin and Sridharan [2016] combined
“contextual” and “adversarial” bandits.

Organization of the paper. We formally define the model,
describe the algorithm and the regret bounds, overview the

analysis, discuss applications and examples, and overview
the simulations. Due to the page limit, many details are
deferred to the full version.

2 Our model and preliminaries

Our model, called Semi-Bandits with Knapsacks
(SemiBwK) is a generalization of multi-armed bandits
(henceforth, MAB) with i.i.d. rewards. As such, in each
round t = 1, ... ,T, an algorithm chooses an action S;
from a fixed set of actions F, and receives a reward j1;(.S;)
for this action which is drawn independently from a fixed
distribution that depends only on the chosen action. The
number of rounds 7, a.k.a. the time horizon, is known.

There are d resources being consumed by the algorithm.
The algorithm starts out with budget B; > 0 of each re-
source j. All budgets are known to the algorithm. If
in round t action S € F is chosen, the outcome of this
round is not only the reward ;(S) but the consumption
C4(S, j) of each resource j € [d]. We refer to Cy(S) =
(C(S,7) = j €[d]) as the consumption vector.> Follow-
ing prior work on BwK, we assume that all budgets are the
same: B; = B for all resources j.° Algorithm stops as
soon as any one of the resources goes strictly below O.
The round in which this happens is called the stopping
time and denoted Tstop. The reward collected in this last
round does not count; so the total reward of the algorithm

isrew = Zt<rmp 1t(St).

Actions correspond to subsets of a finite ground set A, with
n = | A|; we refer to elements of .4 as atoms. Thus, the set
F of actions corresponds to the family of “feasible sub-
sets” of A. The rewards and resource consumption is ad-
ditive over the atoms: for each round ¢ and each atom a
there is a reward u:(a) € [0, 1] and consumption vector
C(a) € [0,1) such that for each action S C F it holds

that ‘llf(S) = ZGES ut(a) and Cf(S) = Zaes Ct(a).

We assume the i.i.d. property across rounds, but allow ar-
bitrary correlations within the same round. For a given
round ¢ we consider the n x (d + 1) “outcome matrix”
(ue(a),C¢(a) : a € A), which specifies rewards and re-
source consumption for all resources and all atoms. We
assume that the outcome matrix is chosen independently
from a fixed distribution Dy over such matrices, which is
not revealed to the algorithm. The mean rewards and mean
consumption is denoted p(a) := E[u:(a)] and C(a) =
E[C'(a)]. We extend the notation to actions, i.e., to subsets
of atoms: ;u(S) := > cgp(a) and C(S) := >, .5 C(a).

An instance of SemiBwK consists of the action set F C 2],
the budgets B = (B, : j € [d]), and the distribution Dy.

>We use bold font to indicate vectors and matrices.

SThis is w.l.o.g. because we can divide all consumption of
each resource j by B;/ minj/¢(q) B;s. Effectively, B is the small-
est budget in the original problem instance.
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The F and B are known to the algorithm, and Dy is not. As
explained in the introduction, SemiBwK subsumes Bandits
with Knapsacks (BwK) and semi-bandits. BwK is the special
case when F consists of singletons, and semi-bandits is the
special case when all budgets are equal to B; = nT' (so
that the resource consumption is irrelevant).

Following the prior work on BwK, we compete against the
“optimal all-knowing algorithm”: an algorithm that opti-
mizes the expected total reward for a given problem in-
stance; its expected total reward is denoted by OPT. As
observed in Badanidiyuru et al. [2013a], OPT can be much
larger (e.g., factor of 2 larger) than the expected cumulative
reward of the best action, for a variety of important special
cases of BwK. Our goal is to minimize regret, defined as
OPT minus algorithm’s total reward.

Combinatorial constraints. Action set F is given by a
combinatorial constraint, i.e., a family of subsets. Treating
subsets of atoms as n-dimensional binary vectors, F corre-
sponds to a finite set of points in R”. We assume that the
convex hull of F forms a polytope in R™. In other words,
there exists a set of linear constraints over R whose set of
feasible integral solutions is F. We call such F lineariz-
able; the convex hull is called the polytope induced by F.

Our main result is for matroid constraints, a family of lin-
earizable combinatorial constraints which subsumes sev-
eral important special cases such as cardinality constraints,
partition matroid constraints, spanning tree constraints and
transversal constraints. Formally, F is a matroid if it con-
tains the empty set, and satisfies two properties: (i) if F
contains a subset S, then it also contains every subset of .5,
and (ii) for any two subsets S, S’ € F with |S| > |5’] it
holds that S” U {a} € F for each atom a € S\ S’. See
Appendix B for more background and examples.

We incorporate prior work on randomized rounding for lin-
ear programs. Consider a linearizable action set F with
induced polytope P C [0, 1]™. The randomized rounding
scheme (henceforth, RRS) for F is an algorithm which in-
puts a feasible fractional solution £ € P and the linear
equations describing P, and produces a random vector Y
over . We consider RRS’s such that E[Y] = ¢ and Y
is negatively correlated (see below for definition); we call
such RRS’s negatively correlated. Several such RRS are
known: e.g., for cardinality constraints and bipartite match-
ing [Gandhi et al., 2006], for spanning trees [Asadpour
et al., 2010], and for matroids [Chekuri et al., 2010].

Negative correlation. Let X = (X1, X5, ..., X,,) denote
a family of random variables which take values in [0, 1].
Let X := -L 3™ X be the average, and 1 := E[X].

Family X is called negatively correlated if

E [[Lies Xi] < TLiesEIX:] VS CS[m] @1
E[Ties(1 = Xi)] < [LiesEL - Xi] VS C [m] (22)

Independent random variables satisfy both properties with
equality. For intuition: if X7, X5 are Bernoulli and (2.1) is
strict, then X is more likely to be 0 if Xy = 1.

Negative correlation is a generalization of independence
that allows for similar concentration bounds, i.e., high-
probability upper bounds on | X —p|. However, our analysis
does not invoke them directly. Instead, we use a concentra-
tion bound given a closely related property:

E[lics X:] <(3)151 vSCm].  (23)

Theorem 2.1. If (2.3), then for some absolute constant c,

PrX >L4p<c-e?  (¥p>0)  (24)

This theorem easily follows from [Impagliazzo and Ka-
banets, 2010], see Appendix A in the full version.

Confidence radius. We bound deviations | X — p in a way
that gets sharper when g is small, without knowing p in
advance. (We use the notation X', X, i as above.) To this
end, we use the notion of confidence radius from [Klein-
berg et al., 2015, Babaioff et al., 2015, Badanidiyuru et al.,
2013a, Agrawal and Devanur, 2014b]7:

Rady(z,m) = Jaz/m+ a/m. (2.5)
If random variables X" are independent, then event
|X — p] < Rady (X, m) < 3Rada(p, m) (2.6)

happens with probability at least 1 — O(e~%(®)), for any
given a > 0. We use this notion to define upper/lower con-
fidence bounds on the mean rewards and mean resource
consumption. Fix round ¢, atom a, and resource j. Let
fit(a) and Cy(a, j) denote the empirical average of the re-
wards and resource-j consumption, resp., between rounds
land ¢t — 1. Let N¢(a) be the number of times atom a has
been chosen in these rounds (i.e., included in the chosen
actions). The confidence bounds are defined as

Cti(a’]) = proj( C’(a’]) + Rada(é(a’vj)v Nt(a)) )
i (a) = proj ( a) & Rada(ia), Nu(a)) ) (2.7)

where proj(z) := argmin, ¢ 1) |y — x| denotes the pro-
jection into [0,1]. We always use the same parameter
Q' = Ceons log(ndT), for an appropriately chosen absolute
constant C.ops. We suppress « and c.ops from the notation.
We use a vector notation uti and C f (4) to denote the cor-
responding n-dimensional vectors over all atoms a.

By (2.6), with probability 1 — O(e~**(*)) we have:

p(a) € [y (a), pi (a)]
C(a,j) € [C™(a,5), C(a,)"]

"For instance, Theorem 2.1 in [Badanidiyuru et al., 2013b]
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3 Main algorithm

Let us define our main algorithm, called SemiBwK-RRS.
The algorithm builds on an arbitrary RRS for the action set
F. Itis parameterized by this RRS, the polytope P induced
by F (represented as a collection of linear constraints), and
a number € > 0. In each round ¢, it recomputes the up-
per/lower confidence bounds, as defined in (2.7), and solves
the following linear program:

maximize u;" T
subjectto C; (j) - <
rcP

5029 jeld LPara)

This linear program defines a linear relaxation of the orig-
inal problem which is “optimistic” in the sense that it uses
upper confidence bounds for rewards and lower confidence
bounds for consumption. The linear relaxation is also “con-
servative” in the sense that it rescales the budget by 1 — e.
Essentially, this is to ensure that the algorithm does not
run out of budget with high probability. Parameter ¢ will
be fixed throughout. For ease of notation, we will denote
B, := (1 — €)B henceforth. The LP solution « can be
seen as a probability vector over the atoms. Finally, the
algorithm uses the RRS to convert the LP solution into a
feasible action. The pseudocode is given as Algorithm 1.

Algorithm 1: SemiBwK-RRS

input: an RRS for action set F, induced polytope P (as a
set of linear constraints), ¢ > 0.

fort=1,2, ... ,Tdo

1. Recompute Confidence Bounds as in (2.7)

2. Obtain fractional solution x; € [0, 1] by solving
the linear program LP a1,q.

3. Obtain a feasible action S; € F by invoking the
RRS on vector x;.

4. Semi-bandit Feedback: observe the
rewards/consumption for all atoms a € S;.

If action set F is described by a matroid constraint, we
can use the negatively correlated RRS from Chekuri et al.
[2010]. In particular, we obtain a complete algorithm for
several combinatorial constraints commonly used in the
literature on semi-bandits, such as partition matroid con-
straints, spanning trees. More background on matroid con-
straints can be found in the full version (see Appendix B).

Theorem 3.1. Consider the SemiBwK problem with a lin-
earizable action set F that admits a negatively corre-
lated RRS. Then algorithm SemiBwK-RRS with this RRS
achieves expected regret bound at most the following.

O(log(ndT)) v (OPT JVB+VT + OPT) 3.1)

Here T is the time horizon, n is the number of atoms, and
B is the budget. We require B > 3(an + vanT'), where
a = O(log(ndT)) is the parameter in confidence radius.

Parameter € in the algorithm is set to \/ G + 5 + ~ ";;"T.

Corollary 3.2. Consider the setting in Theorem 3.1 and
assume that the action set F is defined by a matroid on the
set of atoms. Then, using the negatively correlated RRS
from [Chekuri et al., 2010], we obtain regret bound (3.1).

The proof of the theorem is very technical. We provide an
overview below, and defer the full proof to the full version.
We actually prove a slightly stronger statement involving
high-probability regret rather than expected regret.

3.1 Proof overview of Main Result

First, we argue that LPs1,¢ provides a good benchmark
that we can use instead of OPT. Specifically, at any given
round, the optimal value for LP1,¢ in each round is at
least % (1—¢) OPT with high probability. We prove this by
constructing a series of LPs, starting with a generic linear
relaxation for BwK and ending with LP a1, and showing
that the optimal value does not decrease along the series.

Next we define an event that occur with high probability,
henceforth called clean event. This event concerns total
rewards, and compares our algorithm against LP a1,:

| Zte[T] Tt — Zte[T] N;,i_ e

<0 (, /anztem re + \/W—i—om) . (32

We prove that it is indeed a high-probability event in three
steps. First, we relate the algorithm’s reward ), r; to its
expected reward ), p - S;, where we interpret the chosen
action Sy, a subset of atoms, as a binary vector over the
atoms. Then we relate >, pt - Sy to 3, i - S;, replac-
ing expected rewards with the upper confidence bounds.
Finally, we relate ), pi - S to Do pi - x4, replacing
the output of the RRS with the corresponding expecta-
tions. Putting it together, we relate algorithm’s reward to
Do uj‘ - T, as needed. It is essential to bound the devia-
tions in the sharpest way possible; in particular, the naive
O(\/T) bounds are not good enough. To this end, we use
several tools: the confidence radius from (2.5), the negative
correlation property of the RRS, and another concentration
bound from prior work.

A similar “clean event” (with a similar proof) concerns the
total resource consumption of the algorithm. We condition
on both clean events, and perform the rest of the analysis
via a “deterministic” argument not involving probabilities.
In particular, we use the second “clean event” to guarantee
that the algorithm never runs out of resources.

We use negative correlation via a rather delicate argument.
We extend the concentration bound in Theorem 2.1 to a
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random process that evolves over time, and only assumes
that property (2.3) holds within each round conditional on
the history. For a given round, we start with a negative
correlation property of .S; and construct another family of
random variables that conditionally satisfies (2.3). The ex-
tended concentration bound is then applied to this family.
The net result is a concentration bound for ", uj‘ - St as
if we had n x T independent random variables there.

3.2 Running time of the algorithm

The algorithm does two computationally intensive steps in
each round: solves the linear program (LPs1,g) and runs
the RRS. For matroid constraints, the RRS from Chekuri
et al. [2010] has O(n?) running time. Hence, in the gen-
eral case the computational bottleneck is solving the LP,
which has n variables and O(2") constraints. Matroids
are known to admit a polynomial-time seperation oracle
[e.g., see Schrijver, 2002]. It follows that the entire set of
constraints in LP o1, admits a polynomial-time separation
oracle, and therefore we can use the Ellipsoid algorithm
to solve LPar,¢ in polynomial time. For some classes of
matroid constraints the LP is much smaller: e.g., for cardi-
nality constraints (just d + 1 constraints) and for traversal
matroids on bipartite graphs (just 2n + d constraints). Then
near-linear-time algorithms can be used.

Our algorithm works under any negatively correlated RRS.
We can use this flexibility to improve the per-round run-
ning time for some special cases. (Making decisions ex-
tremely fast is often critical in practical applications of ban-
dits [e.g., see Agarwal et al., 2016].) We obtain near-linear
per-round running times for cardinality constraints and par-
tition matroid constraints. Indeed, LP a1, can be solved
in near-linear time, as mentioned above, and we can use a
negatively correlated RRS from [Gandhi et al., 2006] which
runs in linear time. These classes of matroid constraints are
important in our applications (see Section 4).

4 Applications and special cases

Let us discuss some notable examples of SemiBwK (which
generalize some of the numerous applications listed in
Badanidiyuru et al. [2013a]). Our results for these exam-
ples improve exponentially over a naive application of the
BwK framework. Compared to what can be derived from
[Agrawal and Devanur, 2014a, 2016], our results feature a
substantially better dependence on parameters, a much bet-
ter per-round running time, and apply to a wider range of
parameters. However, we leave open the possibility that the
regret bounds can be improved for some special cases.

Dynamic pricing. The dynamic pricing application is as
follows. The algorithm has d products on sale with limited
supply: for simplicity, B units of each. Following Bes-
bes and Zeevi [2012], we allow supply constraints across

products, e.g., a “gadget” that goes into multiple products.
In each round ¢, an agent arrives (who can buy any subset
of the products), the algorithm chooses a vector of prices
p: € [0,1]% to offer the agent, and the agent chooses what
to buy at these prices. For simplicity, the agent is interested
in buying (or is only allowed to buy) at most one item of
each product. The agent has a valuation vector over prod-
ucts, so that the agent buys a given product if and only if
her valuation for this product is at least as high as the of-
fered price. The entire valuation vector is drawn as an in-
dependent sample from a fixed and unknown distribution
(but valuations may be correlated across products). The al-
gorithm maximizes the total revenue from sales.

To side-step discretization issues, we assume that prices are
restricted to a known finite subset S C [0,1]. Achieving
general regret bounds without such restriction appears be-
yond reach of the current techniques for BukK.®

To model it as a SemiBwK problem, the set of atoms is all
price-product pairs. The combinatorial constraint is that at
most one price is chosen for each product. (If an action
does not specify a price for some product, the default price
is used.) This is a “partition matroid” constraint, see Ap-
pendix B. Rewards correspond to revenue from sales, and
resources correspond to inventory constraints.

We obtain regret O(d\/dB|S| + /T|S]) using Corol-
lary 3.2, whenever B > Q(n + +/nT). This is because
OPT < dB, since that is the maximum number of prod-
ucts available, and the number of atoms is n = d|S]|.

For comparison, results of [Agrawal and Devanur, 2014a,
2016] apply only when B > /nT3/*, and yield regret
bound of O(d?|S|2v/T).? Thus, our regret bounds feature
a better dependence on the number of allowed prices |S|
(which can be very large) and the number of products d.
Further, our regret bounds hold in a meaningful way for
the much larger range of values for budget B.

For a naive application of the BwK framework, arms corre-
spond to every possible realization of prices for the d prod-
ucts. Thus, we have |S|? arms, with a corresponding expo-
nential blow-up in regret.

Dynamic assortment. The dynamic assortment problem
is similar to dynamic pricing in that the algorithm is sell-
ing d products to an agent, with a limited inventory B of
each product, and is interested in maximizing the total rev-
enue from sales. As before, agents can have arbitrary val-

8Prior work on dynamic pricing with limited supply
[e.g., Besbes and Zeevi, 2009, Babaioff et al., 2015, Badanidiyuru
et al., 2013a] achieves regret bounds without restricting itself to a
particular finite set of prices, but only for a simple special case of
(essentially) a single product.

“We obtain this by plugging in OPT < dB and n = d|S|
into their regret bound. For dynamic pricing the total per-resource
consumption is bounded by 1, so we can apply their results with-
out rescaling the consumption.
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uation vectors, drawn from a fixed but unknown distribu-
tion. However, the algorithm chooses which products to
offer, whereas all prices are fixed externally. There is a
large number of products to choose from, and any subset of
k < d of them can be offered in any given round.

To model this as SemiBwK, atoms correspond to products,
and actions correspond to subsets of at most £ atoms.
The combinatorial constraint forms a matroid (see Ap-
pendix B). Rewards correspond to sales, and resources cor-
respond to products, as in dynamic pricing. Since OPT <
min(dB, kT'), Corollary 3.2 yields regret O(kv/dT) when
B > Q(T), and regret O(dv/dB + +/dT) in general.

In a naive application of BwK, arms are subsets of &k prod-
ucts. Hence, we have O(d*) arms. The other parameters
of the problem remain the same. This leads to regret bound
O(dv/BdF), with an exponential dependence on k.

Repeated auctions. Consider a repeated auction with
adjustable parameters, e.g., repeated second-price auction
with reserve price that can be adjusted from one round
to another. While prior work [Cesa-Bianchi et al., 2013,
Badanidiyuru et al., 2013a] concerned running one re-
peated auction, we generalize this scenario to multiple re-
peated auctions with shared inventory (e.g., the same in-
ventory may be sold via multiple channels to different au-
diences).

More formally, the auctioneer is running r simultaneous
repeated auctions to sell a shared inventory of d products,
with limited supply B of each product (e.g., different auc-
tions can cater to different audiences). Each auction has a
parameter which the algorithm can adjust over time. We
assume that this parameter comes from a finite domain
S C [0, 1]. For simplicity, assume the auctions are synchro-
nized with one another. As in prior work, we assume that
in every round of each auction a fresh set of participants
arrives, sampled independently from a fixed joint distribu-
tion, and only a minimal feedback is observed: the products
sold and the combined revenue.

Following prior work [Cesa-Bianchi et al., 2013, Badani-
diyuru et al., 2013a], we only assume minimal feedback:
for each auction, what were the products sold and what was
the combined revenue from this auction. In particular, we
do not assume that the algorithm has access to participants’
bids. Not using participants’ bids is desirable for privacy
considerations, and in order to reduce the participants’ in-
centives to game the learning algorithm.

To model this problem as SemiBwK, atoms are all auction-
parameter pairs. The combinatorial constraint is that an
action must specify at most one parameter value for each
auction. This corresponds to partition matroid constraints,
see Appendix B. There is a “default parameter” for each
auction, in case an action does not specify the parameter.
We have a resource for each product being auctioned. For

simplicity, each product has supply of B. Note that OPT <
dB and number of atoms is n = r|S|. Hence, our main
result yields regret O(d+/7|S|B + \/7|S|T).

A naive application of the BwK framework would have arms
that correspond to all possible combinations of parameters,
for the total of O(|S|") arms. Again, we have an exponen-
tial blow-up in regret. Alternatively, one may try running
r seperate instances of BwK, one for each auction, but that
may result result in budgets being violated since the items
are shared across the auctions and it is unclear a priori how
much of each item will be sold in each auction.

One can also consider a “flipped” version of the previous
example, where the algorithm is a bidder rather than the
auction maker. The bidder participates in r repeated auc-
tions, e.g., ad auctions for different keywords. We assume a
stationary environment: bidder’s utility from a given bid in
a given round of a given auction is an independent sample
from a fixed but unknown distribution. The only limited re-
source here is the bidder’s budget B. Bids are constrained
to lie in a finite subset S.

To model this as SemiBwK, atoms correspond to the
auction-bid pairs. The combinatorial constraint is that
each action must specify at most one bid for each auction.
(There is a “default bid” for each auction in case an action
does not specify the bid for this auction.) There is exactly
one resource, which is money and the total budget is B.
Note that the number of atoms is n = r|S|. Hence, our
main result yields regret O(OPT \/7|S|/B + \/7|S|T).

A naive application of BwK would have arms that corre-
spond to all possible combinations of bids, for the total of
O(|S|") arms; so we have an exponential blow-up in regret.

5 Numerical Simulations

We ran some experiments on simulated datasets in order
to compare our algorithm, SemiBwK-RRS, with some prior
work that can be used to solve SemiBwK:

e the primal-dual algorithm for BwK from Badanidiyuru
et al. [2013a], denoted pdBwK.

e an algorithm for combinatorial semi-bandits with a
matroid constraint: “Optimistic Matroid Maximiza-
tion” from Kveton et al. [2014], denoted OMM.

o the linear-contextual BwK algorithm from Agrawal and
Devanur [2016], discussed in the Introduction, de-
noted 1inCBwK.

To speed up the computation in 1inCBwK, we used a heuris-
tic modification suggested by the authors in a private com-
munication. This modification did not substantially affect
average rewards in our preliminary experiments. We also
made a heuristic improvement to our algorithm, setting
e = 0 and o = 5. We use the same value of o for the
pdBwK algorithm as well.
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Figure 1: Experimental Results for Dynamic Assortment (left) and Dynamic Pricing (right) problems for n = 26.

Problem instances. We did not attempt to comprehen-
sively cover the huge variety of problem instances in
SemiBwK. Instead, we focus on several representative spe-
cial cases. Below we describe experiments with two appli-
cations from Section 4. We also experimented with some
other special cases, with qualitatively similar results; more
details can be found in the full version.

The first experiment is on dynamic assortment. We have n
products, and for each product ¢ there is an atom ¢ and a re-
source ¢. The (fixed) price for each product is generated as
an independent sample from Ul 1), a uniform distribution
on [0, 1]. At each round, we sample the buyers’s valuation
from U|g 1), independently for each product. If the valua-
tion for a given product is greater than the price, one item
of this product is sold (and then the reward for atom ¢ is
the price, and consumption of resource ¢ is 1). Else, we set
reward for atom 7 and consumption for resource % to be 0.

The second experiment is on dynamic pricing with two
products. We have n/2 allowed prices, uniformly spaced
in the [0, 1] interval. Recall that atoms correspond to price-
product pairs, for the total of n atoms. In each round ¢, the
valuation v, ; for each product 7 is chosen independently
from a normal distribution A/ (v{,1) truncated on [0, 1].
The mean valuation v? is drawn (once for all rounds) from
Uo,1]- If vy; is greater than the offered price p, one item
of this product is sold. Then reward for the correspond-
ing atom (p, ¢) is the price p, and consumption of product
i is 1. If there is no sale for this product, the reward and
consumption for each atom (p, 4) is set to 0.

Experimental setup and results. We choose various val-
ues of n, B and T and run our algorithms on the above
two datasets assuming both a uniform matroid constraint
and a partition matroid constraint. We choose n € {6, 26},
T € {1000, 2000, 3000, 4000, 5000, 6000} and B = T'/2.
The maximum number of atoms in any action is set to

Comparison of Running Times
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Figure 2: Variation of per-step running times as n increases
for the various algorithms.

K = 2. For a given algorithm, dataset and configuration
of n and T', we simulate each algorithm for 20 independent
runs and take the average. We calculate the total reward
obtained by the algorithm at the end of 7" time-steps.

Figure 3 shows results for n = 26. Our algorithm achieves
the best total reward among the competitors. As a bench-
mark, we included the performance of the fractional allo-
cation in LPgpr.

Additional experiment. 1inCBwK and pdBwK have run-
ning times proportional to the number of actions. We ran
an additional experiment which compared per-step running
times. We first calculate the average running time for ev-
ery 10 steps and take the median of 50 such runs. For both
Uniform matroid and Partition matroid, we run the faster
RRS due to Gandhi et al. [2006]. See Figure 2 for results.
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