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A APPENDIX

Proof of Proposition 3. We prove the result by show-
ing that the best item cannot always be ranked at
the top, because that would depress its score sit suffi-
ciently much that it cannot be at the top.

Fix a sample path ω ∈ Ω. Note that by assumption,
each arm is optimal for a constant fraction of agents.
Define

xit =
|{τ : aτ = i}|

t
. (1)

Then, if lim inft xit < x∗i for some sufficiently small
x∗i > 0, we incur linear regret almost surely. Instead,
assume that each arm is sampled a constant fraction,
lim inft xit > δi for some δi for each arm i. We note
that the expected reward for the item ranked highest
is

Qi +
p

p+ (1− p)K
= Q+ ρ, (2)

where we define ρ = p
p+(1−p)K : With probability p this

item is chosen because of a positive signal, and with
probability (1 − p)K it is chosen because none of the
items have a positive signal. For the other items, the
expected reward is Qi + 1.

To understand limiting behavior of the item scores, it
is thus important to understand how often an item is
ranked first by the platform. Define ct as the fraction
(up to time t) that the first (best) item is not ranked
at the top:

ct =
|{τ < t : ∃j > 1 : s1τ < sjτ}|

t
. (3)

We note that if lim supt ct > c∗ for some c∗ > 0, then
the regret is linear.

Informally, we proceed by bounding
P(item is ranked first | item is selected), and use
that to understand the evolution of the averages of
ratings the platform observes. To bound the above
probability, we note that there are two extremes when
the item is not ranked first; it is ranked second, or
ranked last. If it is always ranked second if the item
is not ranked first, it is less likely the item was ranked
first given selection than when it is either ranked
first or last. If, overall, the item is ranked first with
fraction y, then we obtain

λ(y) ≤ P(item ranked first | item selected) ≤ λ′(y)
(4)

where

λ(y) =
(1− y)(p+ (1− p)K)

(1− y)(p+ (1− p)K) + yp(1− p)
, (5)

and

λ′(y) =
(1− y)(p+ (1− p)K)

(1− y)(p+ (1− p)K) + yp(1− p)K−1
(6)

correspond to the two extreme cases. Note that λ and
λ′ are both decreasing.1

Now suppose lim sup ct = c. By the stong law of large
numbers, the empirical average converges to its mean
and thus

lim sup
t

s1t ≤ Q1 + λ(c)ρ+ (1− λ(c)), (7)

where the second term corresponds to the expected
reward from being ranked first and the last term cor-
responds to the contribution from when the action is
not ranked first. Similarly

lim inf
t

s2t ≥ Q2 + λ′(1− c)ρ+ (1− λ′(1− c)), (8)

almost surely by the mean-converging condition.

We note for c = 0, this leads to

lim sup
t

s1t ≤ Q1 + ρ and lim inf
t

s2t ≥ Q2 + 1 (9)

This is a contradiction if ∆ < (1−p)K
p+(1−p)K , as this would

imply the score of the second arm is higher in the limit
than that of the first arm, while the first item is always
ranked before the second item (c = 0):

lim sup
t

s1t = Q2 + ∆ + ρ (10)

< Q2 +
(1− p)K

p+ (1− p)K
+

p

p+ (1− p)K
(11)

≤ lim inf
t

s2t. (12)

Furthermore, since λ and λ′ are continuous and mono-
tone, there must exist some c∗ ∈ (0, 1) such that

Q1 + λ(c∗)ρ+ 1− λ(c∗) ≤
Q2 + λ′(1− c∗) + 1− λ′(1− c∗) (13)

1 Both have the form (1−x)a
(1−x)a+xb

for a, b ∈ (0, 1)2, which

has a negative derivative for x ∈ (0, 1)
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almost surely. Thus, if the first item is the top ranked
item fracion 1− c∗ of the time, then its score is almost
surely lower than the second item, which is a contradic-
tion. This implies that lim supt ct > c∗ almost surely,
which proves that the regret is linear.

Proof Proposition 4. To bound the regret, we look at
individual arms and note that if at time t all scores sit
are reasonably accurate, i.e. |sit −Qi| < λ for all i, at
such time the regret is at most 2λ. Furthermore, if λ <
∆min

2 , then the regret is 0 as each agent is compelled
to pick the best item for them. Finally, it is important
to note that the regret at each period is at most 2.

We proceed as follows; we use concentration to bound
the estimation error when we have observed enough
sample values. Furthermore, we show that due to nat-
ural exploration, we have a high probability guarantee
of observing samples for each item. When combined,
they lead to a logarithmic regret bound.

To use a concentration bound on the estimation error,
we define event

Am(i, λ) =

∃s ∈ {m, . . . , T} :
1

s

∣∣∣∣∣∣
s∑
j=1

εij

∣∣∣∣∣∣ > λ

 .

(14)
That is, Am(i, λ) is the bad event that after m pulls,
there is some time t that the score sit is off by more
than λ.

Furthermore, we define events

Bm(i,M) = {|S| < m : τ ∈ S ⇐⇒ aτ = i and τ < M}
(15)

that indicate whether within M time steps, at least m
users reported values for item i.

Using these two events, we can bound the expected
regret by

E[regret(T )] ≤
K∑
i=1

2(P(Am(i, λ)) + P(Bm(i,M)))T

+ 2M + λT I
λ>

∆min
2

(16)

Bounding Am Using the standard σ-sub-Gaussian
concentration bound (see, for example, Wainwright

[2015, Chapter 2]), we have

P(Am(i, λ)) ≤ P

(
∃s ∈ {m, . . . , t} :

1

s

∣∣∣∣∣
s∑
i=1

εi

∣∣∣∣∣ > λ

)
(17)

≤
t∑

s=m

P

(
1

s

∣∣∣∣∣
s∑
i=1

εi

∣∣∣∣∣ > λ

)
(18)

≤ 2

t∑
s=m

exp

(
− sλ

2

2σ2

)
(19)

≤ 2

∫ t+1

m

exp

(
− sλ

2

2σ2

)
ds (20)

≤ 4σ2

λ2
exp

(
−mλ

2

2σ2

)
(21)

Now set

m =
2σ2(log(T )− log(λ))

λ2
, (22)

and obtain

P(Am(i, λ)) ≤ 4σ2

λ2
exp

(
−mλ

2

2σ2

)
=

4σ2

λT
(23)

Bounding Bm From the above, we know that the
estimation error concentrates well after observing m
selections. Now we show that with high probability, it
does not take too long to wait for m selections.

First note that the probability of selection of any item
at any time t is at least 21−Kγ. This follows from the
conditions imposed on Fi. For M > m, we note that
the probability that we have not observed m selec-
tions is lower bounded by a Binomial random variable
Z ∼ B(M, 21−Kγ) since preferences are independent
between agents. Consider

M =
2αm

21−Kγ
=

4ασ2(log(T )− log(λ))

λ221−Kγ
(24)

where α = max
(
1, 2λ2/σ2

)
.

First we note that in this case, E(Z) = 2αm ≥ 2m
and thus

P(Bm) ≤ P
(
Z ≤ 1

2
E(Z)

)
(25)

≤ exp

(
−E(Z)

8

)
(26)

≤ exp

(
−ασ

2(log(T )− log(λ))

2λ2

)
(27)

≤ λ

T
(28)

where third inequality is a standard Chernoff bound
and the second to last step follows from the condition
on α.



Plugging these bounds on Am(i, λ) and Bm(i,M) in
to our bound for regret (16), we obtain

E[regret(T )] ≤ 2

(
4σ2

λ
+ λ

)
K

+
8ασ2K(log(T )− log(λ))

λ221−Kγ
+ λKT I

λ>
∆min

2

(29)

and thus if we set λ = ∆min

2 , we find

E[regret(T )] ≤
(

16σ2

∆min
+ ∆min

)
K

+
32ασ2K(log(T )− log(∆min) + log(2))

∆2
min21−Kγ

(30)

as desired.
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