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Abstract

Score learning aims at taking advantage of su-
pervised learning to produce interpretable mod-
els which facilitate decision making. Scoring
systems are simple classification models that let
users quickly perform stratification. Ideally, a
scoring system is based on simple arithmetic op-
erations, is sparse, and can be easily explained by
human experts.

In this contribution, we introduce an origi-
nal methodology to simultaneously learn inter-
pretable binning mapped to a class variable, and
the weights associated with these bins contribut-
ing to the score. We develop and show the theo-
retical guarantees for the proposed method. We
demonstrate by numerical experiments on bench-
mark data sets that our approach is competitive
compared to the state-of-the-art methods. We il-
lustrate by a real medical problem of type 2 dia-
betes remission prediction that a scoring system
learned automatically purely from data is compa-
rable to one manually constructed by clinicians.

1 Introduction

Scoring systems are simple linear classification models that
are based on addition, subtraction, and multiplication of
a few small numbers. These models are applied to make
quick predictions, without use of a computer. Tradition-
ally, a problem in supervised machine learning is cast as
a binary or multi-class classification where the goal is to
learn real-valued weights of a model. However, although
the generalizing error is an important criterion, in some ap-
plications, the interpretability of a model plays even a more
significant role. Most machine learning methods produce
highly complex models, not designed to provide explana-
tions about predictions.
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Variable Thresholds Score
Age <40 0

40–49 1
50 – 59 2
>60 3

Glycated hemoglobin <6.5 0
6.5 – 6.9 2
7 – 8.9 4
> 9 6

Insuline No 0
Yes 10

Other drugs No 0
Yes 3

Classify as Remission if sum of scores < 7
Classify as Non-remission if sum of scores � 7

Table 1: The DiaRem Score to assess the outcome of the
bariatric surgery [24]

Clinical scoring systems are of particular interest since they
are expected to predict a state of a patient and to help physi-
cians to provide accurate diagnostics. An example of such
a score, shown in Table 1, is the DiaRem score [24] which
is a preoperative method to predict remission of type 2 di-
abetes after a gastric bypass surgery. The DiaRem is based
on four clinical variables and a few thresholds per variable.
Only one arithmetic operation is involved into the DiaRem
computation: the scores are added, and if the sum is < 7,
then a patient is likely to benefit from the surgery and to get
the diabetes remission. Some other widely used medical
scores are SAPS I, II, and III [10, 21] and APACHE I, II, III
to assess intensive care units mortality risks [14], CHADS2

to assess the risk of stroke [9]; TIMI to estimate the risk
of death of ischemic events [2]. Despite widespread use in
clinical routines, there has been no principled approach to
learn scores from observational data. Most of existing clin-
ical scores are built by a panel of experts, or by combining
multiple heuristics.

In many applications, although continuous features are
available for a prediction task, it is often beneficial to use
discretized features or categories. Predictors that use cate-
gorical variables need smaller memory footprint, are easier



A Provable Algorithm for Learning Interpretable Scoring Systems

to interpret, and can be applied directly by a human expert
to make a new prediction. The difficulty to learn discrete
classifiers is well known (see, e.g., [4]): minimizing a con-
vex loss function with discrete weights is NP-complete.

In this paper, we propose a principled approach to learn
discrete scoring systems. Our approach is unique since
it learns both the thresholds to discretize continuous vari-
ables, and the weights for the corresponding bins. The
weights can be also discretized with a randomized rounding
after training. To our knowledge, this paper is the first at-
tempt to learn a discrete scoring system which relies on si-
multaneous learning of bins and their corresponding scores.

The algorithm we provide has the best of two worlds: ac-
curacy and interpretability. It is fully optimised for feature
selection, and it converges to an optimal solution.

This paper is organised as follows. We discuss the related
work in Section 2. In Section 3, we introduce the novel
algorithm and show its theoretical properties. The results
of the numerical experiments are discussed in Section 4.
Concluding remarks and perspectives close the paper.

2 Related Work

Our contribution is related to the new methods for inter-
pretable machine learning. The SLIM (Supersparse Linear
Integer Models) [27] is formulated as an integer program-
ming task and optimizes directly the accuracy, the 0-1 loss,
and the degree of sparsity. However, optimizing the 0-1
loss is NP-hard even with continuous weights, and training
of a SLIM model on a large data set can be challenging.

Another modern avenue of research are Bayesian-based
approaches to learn scoring systems. So, [7] introduced
a Bayesian model where a prior favours fewer significant
digits, and, therefore, the solution is sparse. A Bayesian
model is also developed in [29] to construct a falling rule
list, which is a list of simple if-then rules containing a
decision-making process and which stratifies patients from
the highest at-risk group to the lowest at-risk group. A sim-
ilar idea, also based on Bayesian learning is considered by
[16, 30] where the main motivation is to construct simple
rules which are interpretable by human experts and can be
used by healthcare providers.

Recently, [28] proposed to solve the score learning task
with a cutting plane algorithm which is computationally ef-
ficient, since it iteratively solves a surrogate problem with
a linear approximation of the loss function.

The state-of-the-art methods [27, 7, 16, 30, 28] are reported
to be accurate, but an obvious drawback is that their out-
put, the learned scores, apply to real-valued data (if the in-
put data were real). Although medical data are often real
indeed, a model which provides some interpretable dis-
cretization or learns diagnostic thresholds, is of a bigger

interest for diagnostic purposes.

In our work, we cast the problem of binning as a feature
selection task, where to add a bin, i.e. to add a thresh-
old, is equivalent to add a feature into a model. It is
known that feature selection and data categorization can
slightly degrade performance relative to a real-valued pre-
dictor, however, in domains such as medical diagnostics, an
interpretable model is preferred to a complex real-valued
model which is the most accurate, if their performances
are comparable. It was demonstrated [23] that it is pos-
sible to estimate sparse predictors efficiently while com-
promising on prediction accuracy. Binning or supervised
discretization was reported to simplify the models, and not
to degrade the generalizing performance. Usually, binning
is performed as a pre-processing step before learning (see,
e.g., [6, 19, 18, 3, 20, 11]).

Very recently, [1] introduced a new penalization called bi-
narsity which penalizes the weights of a model learned
from grouped one-hot encodings. Their approach is an at-
tempt to learn an interpretable model using a penalty term.

3 Learning Scoring Systems

In this section, we introduce a novel algorithm called Fully
Corrective Binning (FCB) which efficiently performs both
binning and continuous weights learning. We also discuss
how to produce a discrete scoring system, i.e. a model with
discrete weights after the fully corrective binning proce-
dure.

3.1 Preliminaries

In a supervised learning scenario, an algorithm has access
to training data {Xi, Yi}Ni=1 2 (X ⇥ Y)

N , and the goal is
to find a rule to discriminate observations into two or more
classes as accurate as possible. The matrix of observations
X has N rows (samples), and p columns (variables), and
let Xij 2 [�⌦,⌦].
Definition 1. (Encodings). For any X 2 X , we define the
interval encoding

Zijlu =

(
1, if Xij 2 ]l, u] ,

0, otherwise.
(3.1)

Therefore, Z could be viewed as a matrix with N rows and
an extended number of d columns (where d � p) indexed
by the triplets j, l, u. The j-th column X·j is thus replaced
in Z by dj columns containing only zeros and ones.

We will show later that our problem can be cast as learning
a linear prediction model on Z. This linear model will be
represented by a parameter vector ✓ 2 ⇥ ⇢ d

Without loss of generality, we consider a binary classifica-
tion problem, where Y 2 {�1, 1}.



Nataliya Sokolovska, Yann Chevaleyre, Jean-Daniel Zucker

var 1
X1 �1.6

X2 2.2

(�1,�1.6] (�1.6,+1)

Z1 1 0

Z2 0 1

Table 2: A one-dimensional dataset composed of two samples (on the left), and the interval encoding of the dataset (on
the right).

The learning problem is defined as the minimization of a
loss function `(., ., .) as follows:

R(✓) = min

✓2⇥

1

N

NX

i=1

`(Zi, Yi, ✓). (3.2)

The sparsity of the vector ✓ is defined as a number of non-
zero elements in ✓, and is defined as the L0 norm:

k✓k0 = |{i : ✓i 6= 0}|. (3.3)

In the following, the set of integers {1, . . . , d} is denoted
by [d]. For a vector ✓, the support of ✓ is defined as

supp(✓) = {i 2 [d] : ✓i 6= 0}. (3.4)

Following the notations of [23], if F = supp(✓), and F

0
=

supp(✓0), the set difference is F � F

0.

3.2 Problem Statement

We define the problem of scoring systems learning as fol-
lows. We have a set of training examples {Zi, Yi}Ni=1,
where Z is the interval encoding of some matrix X , and
Y is a class label. A score function is defined as h✓, Zi,
where ✓ is a coefficient vector, and h·, ·i is the scalar prod-
uct. Given Z, and estimated weights ✓, a score si for an
observation Zi is equal to h✓, Zii. A class can be predicted
according to the conditional probability

p(y = 1|Z) =

1

1 + exp(�h✓, Zi) . (3.5)

Definition 2. (Scoring model). Using the original matrix
X , a scoring model is defined as a real-valued vector ✓ such
that there exists a function sj which for every possible X·j
returns its weight (or score) ✓jlu:

sj(Xij) = ✓jlu for Xij 2 ]l, u] . (3.6)

A scoring model is in its minimal form if for a variable j

for any two consecutive intervals ]l, r] and ]r, u]

✓jlr 6= ✓jru. (3.7)

Note that the minimal form is unique.

Two scoring models ✓ and ✓0 are equivalent if

supp(✓) ✓ supp(✓0) or supp(✓0) ✓ supp(✓), (3.8)
and h✓, Zi = h✓0, Zi, (3.9)

For any scoring system in its minimal form, we define

k✓kfused =

X

j=1,...,p;l,r,u2[�⌦;⌦]

|✓jlr � ✓jru|. (3.10)

For example, a possible scoring model ✓ for the data set
presented in Table 2 could be

{✓1 �1 �1.6 = �2, ✓1 �1.6 +1 = 2}, (3.11)

where the weights ✓ = [�2, 2] are either provided by hu-
man experts or estimated purely from data. In this exam-
ple, the values of X·1 are split into two bins (�1,�1.6]

and (�1.6,+1).

3.3 Relation to Feature Selection

We formulate the problem of optimal binning as a feature
selection task, where to split a bin means to add a feature
into a model, and to merge two bins, means to delete a fea-
ture from this model.

The trade-off between accuracy and sparsity of feature se-
lection methods was extensively studied by [23]. The goal
is to find a reasonable balance between R(✓) and k✓k0, and
the aim is to solve the following constrained optimization
problem

min

✓:k✓k0B
R(✓), (3.12)

i.e. to minimize the empirical risk with the L0 norm
bounded by a sparsity constraint B. It is easy to see that
the problem (3.12) is not convex due to the constraint
k✓k0  B, and the task is NP-hard. Several approaches
are considered in [23] in order to find an approximation of
equation (3.12). One of the methods discussed in their pa-
per is the fully corrective greedy selection which first fully
adjusts weights of the current model so as to minimize the
empirical risk, and then adds a new feature. Under fully
corrective it is meant that the weights are optimized over all
features added so far. A post-processing procedure based
on replacement steps was also proposed by [23], and it aims
to remove the feature with the smallest weights.

3.4 Continuous Scoring Models

In this section, we introduce the Fully Corrective Binning
algorithm which efficiently performs binning and learning
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of the corresponding scores. Our method is parameter-free.
It needs neither the L1, nor the L0 constraints, and relies
on early stopping or on a similar greedy criterion.

The proposed algorithm at each iteration finds an optimal
model over all already added features, and adds a new fea-
ture, i.e., splits one of the existing bins into two bins, if this
operation minimizes the empirical risk:

j, l, u, r = argmax

for all j,]l,u],r2]l,u]

⇣
max(|(rR)jlr|, |(rR)jru|)

⌘
,

(3.13)

✓ =(✓ [ {✓jlr, ✓jru})� {✓jlu}. (3.14)

In a replacement step of the algorithm, the least important
feature

j, l, u, q = argmin

for all j,]l,q],]q,u],q2]l,u]

⇣
|✓jlq � ✓jqu|

⌘
, (3.15)

✓ =(✓ [ {✓jlu})� {✓jlq, ✓jqu}. (3.16)

is removed from the model if this operation does not de-
grade the performance. In other words, one of the bins is
merged with its neighbour. Now let us consider the theoret-
ical guarantees of the newly introduced procedure which is
given as Algorithm 1. The parameter K controls the num-
ber of bins, and can vary for different applications.

The proof of convergence of the introduced algorithm relies
heavily on the following lemma [23].

Lemma 3. (Progress of one greedy iteration. Lemma A.5
of [23]).

Let ✓ and ˆ

✓ be two scoring models. Let F and ˆ

F be the
corresponding supports of vectors ✓ and ˆ

✓, with ˆ

F�F 6= 0,
and such that

✓ = argmin

✓:supp(✓)=F
R(✓). (3.17)

Assume the loss function used in R is �-smooth. Then, for

]

ˆ

l, û] = argmax

]l,u]

���(rR(✓))]l,u]

��� , (3.18)

we have:

R(✓)�min

↵
R(✓ + ↵e]l̂,û]) �

⇣
R(✓)�R(

ˆ

✓)

⌘2

2�

⇣P
b2F̂�F |ˆ✓b|

⌘2 ,

where e]l̂,û] refers to the unitary vector where only compo-
nent

i
ˆ

l, û

i
is non-zero.

Lemma 4. Let ˆ

✓ and ✓ be two minimal scoring models
such that supp(ˆ✓) 6= supp(✓). Let ¯

✓ be a scoring model
containing all possible splits ]l, r] and ]r, u] 2 ]l, u] for all

variables j 2 {1, . . . , p}. Then ¯

✓ is equivalent to ✓, and ✓0
is also equivalent to ✓. It can be verified that

k✓k1  kˆ✓k1 + kˆ✓kfused. (3.19)

Proposition 5. Let us consider an arbitrary scoring model
in minimal form ˆ

✓. After T iterations of the Fully Correc-
tive Binning, we will get a scoring model ✓ such that

R(✓)  R(

ˆ

✓) +

2�(kˆ✓k1 + kˆ✓kfused)
2

T

. (3.20)

Proof. Let F and ˆ

F be the supports of ✓ and ˆ

✓ respectively,
ˆ

✓ 6= ✓ and F 6= ˆ

F . Let us build a scoring model ¯

✓ that
includes all possible splits of all existing bins

]l, r], ]r, u] 2]l, u], l < r < u. (3.21)

The Fully Corrective Binning considers all these candidate
splits in the binning phase of the learning procedure. Note
that ✓ is equivalent to ¯

✓, since supp(✓) ✓ supp(¯✓), and also
ˆ

✓ is equivalent to ¯

✓, since supp(ˆ✓) ✓ supp(¯✓).

If we apply Lemma 4, we see that all conditions required
by Lemma 3 are met:

R(

¯

✓) = R(✓)  R(

ˆ

✓), (3.22)

i.e. one greedy iteration of the algorithm leads to a substan-
tial improvement.

To evaluate the model produced after T iterations, let us
now apply the same trick recursively. Finding the maxi-
mal value among the gradient coordinates over all possible
splits, what is exactly done by our algorithm, stems down to
computing maxfor all ]l,u] |(rR)]l,u]|, since the gradient val-
ues over intervals in supp(✓) are equal to zero given that ✓
is optimal. Assume that ]l, r] is an interval on which the ab-
solute value of the gradient is maximal, and, hence, we split
]l, u] into ]l, r] and ]r, u]. Lemma 3 gives us a bound on the
progress brought by changing simultaneously the weights
corresponding to ]l, r] and ]r, u].

Let ✓ be the updated model after the split. Applying the
result recursively T times, we get the bound.

3.5 Discrete Scoring Systems

Although real-valued scoring systems are of a big inter-
est, discrete scores are even easier to be interpreted and
to be used by human experts. In this section we discuss
two methods how to construct scoring systems where the
weights are integers.

A natural idea to learn a system where the weights are dis-
crete is to apply the interval encoding, eq. (3.1), and to min-
imize the 0-1 loss penalized by the L0 norm:

min

✓

1

N

NX

i=1

{Yi✓TXi0} + �(✓), (3.23)
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Algorithm 1. The Fully Corrective Binning

Input: Training data {Xi, Yi}Ni=1, X : N ⇥ p

Output: Scoring model ✓
Construct matrix Z from X according to eq. (3.1) // Initialize the bins
for all j 2 {1, . . . , p}

✓j�1+1 = 0 // Initialize the weights
end for
✓ = arg min

supp(✓)
R(✓) // Update the parameters

for t = 1, . . . , T

j, l, u, r = argmaxfor all j,]l,u],r2]l,u]

⇣
max(|(rR)jlr|, |(rR)jru|)

⌘
, // Split (add) a variable and update the

binning
✓ = (✓ [ {✓jlr, ✓jru})� {✓jlu}.
✓ = arg min

supp(✓)
R(✓) // Update the parameters, update Z

if t > K

j, l, u, q = argminfor all j,]l,q],]q,u],q2]l,u]

⇣
|✓jlq � ✓jqu|

⌘
, // Merge (delete) a variable and update the

binning
✓ = (✓ [ {✓jlu})� {✓jlq, ✓jqu}.
✓ = arg min

supp(✓)
R(✓) // Update the parameters again, update Z

end if
end for

where

�(✓) =C1

pX

j=1

X

for all ]l,u]

|✓jlu|1+ (3.24)

C0

pX

j=1

X

for all ]l,u]
{✓jlu}+ (3.25)

C1f

pX

j=2

X

for all ]l,r],]r,u]

|✓jru � ✓jlr|1+ (3.26)

C0f

pX

j=2

X

for all ]l,r],]r,u]
{✓jru�✓jlr 6=0}, (3.27)

with C1, C0, C1f , and C0f chosen by cross validation.
Such an approach is a generalization of the SLIM scoring
system [27], and we provide its integer programming for-
mulation in Appendix. The task is presented and solved as
an integer programming problem, and we use the Matlab
implementation1 provided by the SLIM authors. The train-
ing procedure relies on the IBM ILOG CPLEX Optimiza-
tion Studio2 which efficiently performs the constrained op-
timization. In particular, integrity constraints are added to
the optimisation problem to obtain integer solutions.

Another idea to construct a model with integer weights,
is to discretize the real-valued weights after the fully cor-
rective binning procedure, e.g., a randomized rounding

1https://github.com/ustunb/slim-matlab
2http://www-03.ibm.com/software

method (see [12, 4] for details) can be applied to the con-
tinuous scores after training.

4 Experiments

In this section, we share the results of our experiments on
simulated data, on two standard benchmarks, and a real
biomedical challenge. We compare the proposed approach
both with continuous and discrete weights to the state-of-
the-art SLIM scoring system [27], and to the 0-1 loss pe-
nalized by the fused L0. We also test the performance
of models where we perform data discretization as the
pre-processing step using top-down discretization methods
such as CAIM [15], CACC [26], Ameva [13], and the Min-
imum Description Length Principle method [8]. FCB on
the figures below stands for the proposed Fully Corrective
Binning approach. We show the performance of the con-
tinuous and discrete versions of the algorithm.

4.1 Synthetic Data

We first illustrate how the proposed approach performs bin-
ning and weight estimation on a simulated data set. The
binary artificial task is constructed as follows. We fix the
number of variables, and the number of optimal bins per
each variable. We randomly draw the optimal weights as-
sociated with each bin of each variable according to the
Gaussian normal distribution. The class label is equal to 1
if the sum of corresponding weights over all variables is
bigger or equal to 0, and otherwise the class label is set
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to 0.

We test two simple cases. The first case with one variable
and two bins, and a slightly more complex problem with
two variables and two bins for each variable. We generate
10 000 observations and labels, and we show the estimated
cuts defining bins, and the corresponding weights. We min-
imize the hinge loss to perform training. Note that the
model we fit is not the model from which the data were gen-
erated. Hence, the model we learn is always ill-specified.

Figure 1 illustrates the cuts and the weights. The red lines
are the optimal cuts defined by the true unknown model.
On the left is the simplest case with 1 variable with two
bins, and our algorithm finds the optimal cut at the first
iteration, and the learned weights let to predict the class
with accuracy which is very close to 100%. In the case
with 2 variables, our algorithm finds a reasonable model
after 2 iterations only, and after 10 iterations it finds the
true cuts.

Next, we illustrate on Figure 2 the performance of the Fully
Corrective Binning on three simulated data sets. The tasks
are two-dimensional binary classification problems, with
blue points belonging to class 1, and red points belonging
to class 2. The first row of Figure 2 shows the distribution
of points in the data sets. In the second row we plot the
boundaries found by the linear hinge loss classifier. The
third row displays the boundaries obtained with the Fully
Corrective Binning algorithm. The last row shows the per-
formance in terms of 10-fold cross validation test error of
the hinge loss and of the FCB. Our results are similar to the
findings of [1]: the discretized classifier is promising on
non-linear data sets, shown in the columns 1 and 2 of Fig-
ure 2. However, in some cases such as the case of a linear
classification problem shown in the column 3, it seems that
the binarization of features can lead to an important over-
fitting. If we allow the algorithm to produce too many bins,
i.e. if K in Algorithm 1 is chosen too big, a model can be
overfitted.

4.2 Standard Biomedical Benchmarks

In this section, we share our results on two standard bench-
marks, Glaucoma and Breast cancer prediction tasks. The
Breast cancer data are downloadable from the UCI Ma-
chine Learning repository3 [17]. In the Breast Cancer Wis-
consin (Prognostic) data set, we dispose of about 30 param-
eters describing characteristics of the cell nuclei present in
the medical images for 198 patients [25]. All parameters
are continuous. Glaucoma diagnosis set includes data from
laser scanning images taken from the eye background for
170 patients and 66 attributes, providing information on the
morphology of the optic nerve head, the visual field, the in-
tra occular pressure and a membership variable. The data

3http://archive.ics.uci.edu/ml/

Variable Thresholds Score
Age <38 0

38 – 52 2
52 – 70 4

Glycated hemoglobin <7.0 0
7.0 – 7.4 2
7.4 – 20 4

Insuline No 0
Yes 7

Other drugs No 0
Yes 2

Classify as Remission if sum of scores < 8
Classify as Non-remission if sum of scores � 8

Table 4: Diabetes remission scoring model learnt by for the
Fully Corrective Binning algorithm.

is part of the “ipred” R package [22].

To evaluate our approach, we perform 10-fold cross vali-
dation and boxplot the testing error. The error rates for all
tested methods are shown on Figure 3. On the left, we show
the results for the Breast cancer data, in the center, for the
Glaucoma data, and on the right, for the original Diabetes
remission task described in the following section. It is easy
to see that the discrete fully corrective binning outperforms
the state-of-the-art. Note that it does not make any sense to
test the FCB on the data sets chosen by [16, 30, 28], since
these benchmarks are discrete.

4.3 Real Biomedical Challenge

Recently physicians [24] proposed a discrete clinical score
called DiaRem score to predict whether a gastric bypass
surgery could lead to a diabetes remission. It is based
on four clinical variables only, namely, age, glycated
hemoglobin, and it takes into account whether insuline is
taken, and whether other anti-diabetic drugs are prescribed
to a patient. Each clinical continuous variable (age and gly-
cated hemoglobin) was discretized in some meaningful for
physicians and clinicians way. It was reported that to obtain
the score for each category, the odd ratios were computed,
and some heuristic method was applied to get the integer
weights. The original DiaRem clinical thresholds and the
scores for the bins are shown in Table 1.

Only one arithmetic operation is needed to predict an out-
come for a new patient. If the final score which is the sum
of weights associated with each clinical category is < 7,
then this patient will benefit from the operation with proba-
bility 80%. If the sum of corresponding values for age, gly-
cated hemoglobin, insuline, and other drugs for a particular
patient is more than 7, then the remission is not likely. The
separator value which is equal to 7 was reported to be the
optimal one by [5].
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Figure 1: Simulated Data. On the left: 1 variable, 2 bins, and 1 iteration. In the center: 2 variables, 2 bins, and 2 iterations.
On the right: 2 variables, 2 bins, and 10 iterations. Above: the cuts, below: the weights.
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Figure 2: Comparison of the linear hinge loss and the FCB separators on three simulated toy data sets.
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Figure 3: Test error. On the left: Breast cancer data; in the center: Glaucoma data set; on the right: Diabetes remission
prediction.

We tried to learn the DiaRem score automatically. The data
set of type 2 diabetic subjects is produced and managed
by the Department of Nutrition, Center of Reference for
Medical and Surgical Care of Obesity, at the Institute of
Cardiometabolism and Nutrition (ICAN), Pitié-Salpêtrière
Hospital (Paris, France).

We applied the fully corrective binning both continuous
and discrete, the SLIM scoring system, and its version pe-
nalized by the L0 norm to learn the diabetes remission scor-
ing system in a completely automated way. The general-
izing error is shown on Figure 3 on the right. With our
algorithm, we got an alternative score which can be com-
pared to the DiaRem (Table 1), presented as Table 4. Both
scoring systems have similar accuracy (around 82%).

5 Conclusions

Our goal was to develop a principled approach to learn
scores from continuous data where we simultaneously es-
timate interpretable thresholds to bin data, and the corre-
sponding scores. The proper theoretical support for the pro-
posed fully corrective binning algorithm is provided in Sec-
tion 3. We have visualized the intuition how the proposed
method learns the separator between two classes. We have
demonstrated by our experiments on standard biomedical
data from the UCI machine learning repository that the
novel approach is promising and competitive compared to
several modern methods. Namely, the algorithm outper-
forms or achieves the state-of-the-art accuracy. Also note,
that the state-of-the-art method SLIM relies on linear pro-
gramming optimization with integrity constraints what is
computationally expensive, and can be intractable for huge
data sets.

Another important result is discussed in Section 4.3 where
we describe a real original medical challenge. We illus-
trated by a problem of type 2 diabetes remission the po-
tential of the proposed algorithm to efficiently learn scores
purely from data, what traditionally costs many hours of

work of human experts. Although quite promising and ef-
ficient, the current version of the novel algorithm is not
fully optimized. Currently we are investigating applica-
tions of the fully corrective binning to huge data sets such
as metagenomic data, and consider the scalability issues.
Another avenue of research is to adopt deep learning archi-
tectures for learning scoring systems.
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Appendix

Here we provide an Integer Programming formulation to
train the 0-1 loss penalized by the fused L0 norm:

min

�, ,�,↵,�

1

N

NX

i=1

 i +

pX

j=1

�j (5.1)

such that for i = 1, . . . , N, j = 1, . . . , p (5.2)

Mi i � � �
pX

j=1

yi�jxij (5.3)

�j = C0↵j + C1�j + C0f↵jf + C1f�jf (5.4)
�⇤j↵j  �j  ⇤j↵j ,��j  �j  �j (5.5)
�⇤jf↵jf  �j � �j�1  ⇤jf↵jf (5.6)

��jf  �j � �j�1  �jf (5.7)
 i 2 {0, 1}�j 2 R+�j 2 Lj (5.8)
↵j 2 {0, 1} �j 2 {0, 1} (5.9)
↵jf 2 {0, 1} �jf 2 {0, 1} (5.10)
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