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APPENDIX

A.1 Tensor Product and Partial Trace as
Matrix Operations

Here we go into more depth on how we construct matrices
W , V

y

and V
w

to perform the tensor product and partial
trace operations for use in our Algorithm 1.

A.1.1 Tensor Product

We construct a matrix W that performs tensor product with
an s⇥ s density matrix ⇢̂

B

with all zeros, except ⇢̂1,1 = 1,

i.e., ⇢̂
B

=

0
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1 0 . . . 0

0 0 . . . 0

...
...

. . .
0

0 0 0 0

1

CCCA

s⇥s

.

Observe that for an n⇥ n density matrix ⇢̂
A

, we the tensor
product yields an ns⇥ns matrix ⇢̂

AB

= ⇢̂
A

⌦ ⇢̂
B

. Thus, our
matrix W will be an ns⇥ n matrix, such that ⇢̂

A

⌦ ⇢̂
B

=

W ⇢̂
A

W †.

To construct W , take n of s⇥ n matrices of zeros, for the
ith among those n matrices, place ‘1’ on the first row and
ith column. Then stack all of those matrices vertically to
obtain the ns⇥ n matrix W .

Example If we have a 3 ⇥ 3 density matrix we wished to
tensor with a 4⇥ 4 density matrix, we construct W such
that:

W =
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Then, we find that:

⇢̂
A

⌦

2

64
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3

75 = W ⇢̂
A

W † (2)

A.1.2 Partial Trace

The partial trace cannot ordinarily be implemented with
a single matrix operation. However, if a projection oper-
ator has just been applied, this operation becomes trivial
and easy to perform with a matrix multiplication, i.e.,
tr

B

⇣
ˆP
y

⇢̂
AB

ˆP †
y

⌘
= V

y

ˆP
y

⇢̂
AB

ˆP †
y

V †
y

. On the other hand, if
we wish to take the partial trace without applying a pro-
jection operator, i.e., without a measurement of one of the
two subsystems, we must take a sum over these matrices
like so: tr

A

(⇢̂
AB

) =

P
w

V
w

⇢̂
AB

V †
w

. The subscript of ‘tr’
tells us which particle we are tracing over.

Partial Trace after Projection Here, we will assume that a
projection operator ˆP

y

corresponding to an observation on

the second particle in the same basis was applied on the
joint state of a system prior to the partial trace. If this is
not the case, we simply construct all matrices V

y

for each
observation and take a sum as previously described.

The construction of this matrix V
y

is straightforward. We
take s of n⇥ s matrices of zeros, and for the ith of these s
matrices, place ‘1’ on the yth column and ith row. Then,
concatenate these matrices horizontally to obtain V

y

.

Example If we have a 12⇥ 12 density matrix describing the
joint state of a 3-state particle and 4-state particle, we can
construct V2 to trace over the second particle after applying
a projection operator ˆP2 to be:

V2 =

2

4
0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0
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Then, we find that if we have applied a projection operator:

tr
B

⇣
ˆP2⇢̂AB

ˆP †
2

⌘
= V2

ˆP2⇢̂AB

ˆP †
2V

†
2 (4)

Partial Trace without Projection Here, we assume that no
measurement/projection has been made, since this is how
we use it in the algorithm. If this is not the case and there a
projection operator was applied, forgo the sum and simply
apply the V

w

corresponding to the measurement.

To perform partial trace where there has been no obser-
vation, we must construct a set of matrices V

w

, which we
apply and then sum over. The construction of each matrix
V
w

is as follows. We take s of s⇥n matrices of zeros, except
the wth out these s matrices which is an identity matrix.
Then concatenate these matrices horizontally to obtain V

w

.

Example If we have a 12⇥ 12 density matrix describing the
joint state of a 3-state particle and 4-state particle, we can
construct V

w

to trace over the first particle as:

V1 =

2

64

1 0 0 0 0 0 0 0 0 0 0 0
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V2 =
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V3 =

2
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0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0
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Then, we find that:

⇢̂
B

= tr
A

(⇢̂
AB

) =

3X

w=1

V
w
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AB

V †
w

(6)

B.2 Factorizing Unitary Matrices into H
Matrices

The proof of this theorem is a generalization of the proof
found in Zhao and Jaeger [2007].
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Lemma 1. For any vector ~x 2 Cn where n � 2, there
exists a matrix A that is a product of H matrices, such
that A~x = k~xk~e1 where ~e1 =

⇥
1 0 . . . 0

⇤
T

1⇥n

(unit
vector in Rn).

Proof. Consider an arbitrary vector ~x 2 Cn, written
as ~x =

⇥
x1 x2 . . . x

n

⇤
T

1⇥n

. Let us define y2 =

p
kx1k2 + kx2k2 and parameterize the entries x1 and x2 in

~x with ↵2 and �2 so as to write:

x1 = y2e
i�2

cos(↵2)

x2 = y2e
i�2

sin(↵2)

(7)

Now consider the action of H1(1, 2,↵2,�2�2, 0, 0) on ~x:
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Next, we can define y
3

=

p
ky

2

k2 + kx
3

k2 and parame-
terize y

2

and x
3

using ↵
3

and �
3

, just like we previously.
We can then apply H

2

(1, 3,↵
3

,�2�
3

, 0, 0), and we find
that:

H2H1~x =
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Following this pattern, we can construct
a sequence of H matrices such that
H

n�1

. . .H
2

H
1

~x =

⇥
y
n

0 0 . . . 0

⇤
T .

Observe that y
n

=

p
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n�1

k2 + kx
n

k2 =p
ky
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k2 + kx
n�1

k2 + kx
n

k2 =p
kx

1

k2 + . . . kx
n

k2 = k~xk. Thus, with
A = H

n�1

. . .H
2

H
1

, we have shown that there
exists a matrix A that is a product of H matrices,
such that A~x = k~xk~e

1

.

Lemma 2. Any 2x2 unitary matrix A can be written as
H(1, 2, ✓,�, , �).

Proof. A generalized 2x2 unitary matrix is written as:


e
i�

/2ei cos ✓ e
i�

/2ei� sin ✓

�e
i�

/2e�i�

sin ✓ e
i�

/2e�i 

cos ✓

�
(10)

which is exactly H(1, 2, ✓,�, , �).

Theorem 3. A matrix ˆU is unitary if and only if it can
be written as a product of H(i, j, ✓,�, , �) matrices with
the following form, where i, j denote the rows and columns
with special entries:

H(i, j, ✓,�, , �) =
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Proof. We will prove both the forward and reverse direc-
tions:

1. A matrix

ˆU is unitary if it can be written as a product

of H matrices.

Observe that matrix H is unitary, since H†H = I. A
product of unitary matrices is itself unitary, hence a
matrix ˆU that is a product of these H matrices is
unitary.

2. If a matrix

ˆU is unitary, it can be written as a product

of H matrices.

We will give a proof by induction. We want to show
that any n ⇥ n ˆU unitary matrix can be written as
product of H matrices.

Base Case When n = 2, i.e., for a 2 ⇥ 2 unitary
matrix, we know that it can be written as product of
H matrices from Lemma 2.

Inductive Hypothesis Assume that the claim holds
for n = k, i.e., any k ⇥ k unitary matrix can be
written as a product of H matrices.

With n = k+1, consider an arbitrary (k+1)⇥ (k+1)

unitary matrix ˆU =

⇥
~u1 ~u2 . . . ~u

k+1

⇤
where ~u

i

is the ith column. Since ˆU is unitary, k~u
i

k = 1 for
1  i  k + 1. Then, by Lemma 1, we have a matrix
A that is a product of H matrices such that A ~u1 =

k~u1k~e1 = ~e1.

Using this matrix, we find that ˆU0
= A ˆU =


1

~C
~
0 V

�

where ~0 represents a k⇥1 column vector, ~C represents
a 1⇥ k row vector, and V represents a k ⇥ k matrix.
But ˆU0 is unitary, so ˆU0

(

ˆU0
)

†
= I, which means

VV†
= I

k⇥k

and ~C =

~
0.

Inductive Step From the inductive hypothesis, we
know that V can be written as a product of H matrices,
so let us write V = H

k

, . . . ,H1. Next, we take each
of these k ⇥ k H matrices and pad them to obtain

(k + 1) ⇥ (k + 1) matrices H0
i

=


1 0

0 H
i

�
. Then, we

see that H0
k

, . . . ,H0
1 =


1

~
0

~
0 V

�
=

ˆU0.
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Finally, we can write our arbitrary unitary matrix
ˆU = A�1H0

k

, . . . ,H0
1, which is indeed a product of

H matrices. Hence, we have shown that any unitary
matrix can be written as a product of H matrices.

C.3 Monras et al. [2010] 2-state HQMM

Monras et al. [2010] present a 4-state HMM with a loose
lower bound requirement of 3 classical latent states that
can be modeled by the following 2-state, 4-output HQMM:
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✓
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◆
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Observe that this model also treats state evolution as uni-
tary since there is only 1 Kraus operator per observable.
We use this model to generate 20 training sequences of
length 3000, and 10 validation sequences of length 3000,
with a ‘burn-in’ of 1000 to disregard the influence of the
starting distribution. Our results in Table 4 show that our
algorithm is capable of learning an HQMM that can match
the performance of the original model, while the HMM
needs more states to model this process.

D.4 Synthetic Data from a hand-written
HMM

We have shown that we can generate data using HQMMs
that classical HMMs with the same number of hidden states
or parameters struggle to model. In this section, we explore
how well HQMMs can model data generated by a classical
HMM. In general, randomly generated HMMs generate
data that’s hard to predict (i.e., DA closer to 0), so we
hand-author an arbitrary, well-behaved HMM with full-rank
transition matrix A and full-rank emission matrix C to
compare HQMM learning with EM for HMMs.

A =

2

666664

0.8 0.01 0 0.1 0.3 0

0.02 0.02 0.1 0.15 0.05 0

0.08 0.03 0.1 0.4 0.05 0.5
0.05 0.04 0.5 0.35 0 0.5
0.03 0.5 0.03 0 0.6 0

0.02 0.4 0.27 0 0 0

3
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C =

2

666664

0.2 0 0.05 0.95 0.01 0.05
0.7 0.1 0.05 0.01 0.05 0.05
0.05 0.8 0.1 0.02 0.05 0.04
0.04 0.04 0.02 0 0.84 0.11
0.01 0.03 0.7 0.01 0.02 0.2
0 0.03 0.08 0.01 0.03 0.55

3

777775

(14)

As before, we generate 20 training sequences of length 3000,
and 10 validation sequences of length 3000, with a ‘burn-in’
of 1000 to disregard the influence of the starting distribution.
Results are presented in Table 5.

E.5 Converting Column Stochastic Matrices
to Unitary Matrices

Refer to Algorithm 3 on the following page.
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Algorithm 3 s⇥ n Column-Stochastic Matrix to ns⇥ ns Unitary Matrix
Input: s⇥ n Column-Stochastic Matrix A
Output: ns⇥ns block diagonal Unitary Matrix ˆU with n blocks of s⇥ s unitary matrices, zeros everywhere else
1: Construct an s⇥ s unitary matrix from each column of A: Let c

i

denote the ith column of A. First
create an s⇥ s matrix whose each row is the square root of column c

i

. Find the null space of this matrix, and
you will get the s� 1 vectors that are linearly independent of c

i

. Make c
i

the first column, and the remaining
s� 1 vectors the other columns of an s⇥ s matrix.

2: Stack each s⇥ s matrix on a diagonal: Follow step 1 for each column of A, and obtain n unitary matrices
of dimension s ⇥ s. Create a block diagonal matrix with each of these smaller unitary matrices along the
diagonal, and you will obtain an ns⇥ ns dimensional unitary matrix ˆU .

3: Note: The unitary operator constructed here is designed to be applied on a density matrix
tensored with an ancilla density matrix prepared with zeros everywhere except ⇢̂

1,1

= 1.

Table 4: Performance of various HQMMs and HMMs on data generated by the Monras et al. [2010] model.
HQMM parameters are given as (n, s, w) and HMM parameters are given as (n, s), where n is the number of
hidden states, s is the number of observables, and w is the number of Kraus operators per observable

Model P Train DA Test DA

2, 4, 1�HQMM (true) 16 0.2505 (0.0037) 0.2516 (0.0063)
2, 4, 1�HQMM (learned) 16 0.2501 (0.0085) 0.2512 (0.0064)
2, 4, 2�HQMM (learned) 32 0.2499 (0.0035) 0.2508 (0.0060)

2, 4�HMM (learned) 12 0.0960 (0.0085) 0.0963 (0.0064)
3, 4�HMM (learned) 21 0.1387 (0.0067) 0.1416 (0.0070)
4, 4�HMM (learned) 32 0.2504 (0.0037) 0.2515 (0.0062)

Table 5: Performance of various HQMMs and HMMs on synthetic data generated by an HMM. HQMM parameters
are given as (n, s, w) and HMM parameters are given as (n, s), where n is the number of hidden states, s is the
number of observables, and w is the number of Kraus operators per observable

Model P Train DA Test DA

6, 6�HMM (true) 72 0.1838 (0.0095) 0.1903 (0.0071)
2, 6, 1�HQMM (learned) 24 0.1597 (0.0088) 0.1659 (0.0073)
3, 6, 1�HQMM (learned) 54 0.1655 (0.0101) 0.1715 (0.0085)
4, 6, 1�HQMM (learned) 96 0.1732 (0.0103) 0.1772 (0.0103)
5, 6, 1�HQMM (learned) 150 0.1680 (0.0093) 0.1706 (0.0084)
5, 6, 2�HQMM (learned) 300 0.1817 (0.0096) 0.1863 (0.0069)
5, 6, 3�HQMM (learned) 450 0.1817 (0.0093) 0.1866 (0.0064)
5, 6, 5�HQMM (learned) 750 0.1821 (0.0095) 0.1877 (0.0060)
6, 6, 1�HQMM (learned) 216 0.1713 (0.0113) 0.1708 (0.0079)
6, 6, 2�HQMM (learned) 432 0.1817 (0.0096) 0.1870 (0.0070)

2, 6�HMM (learned) 16 0.1282 (0.0074) 0.1314 (0.0062)
3, 6�HMM (learned) 27 0.1555 (0.0097) 0.1625 (0.0073)
4, 6�HMM (learned) 40 0.1667 (0.0099) 0.1732 (0.0068)
5, 6�HMM (learned) 55 0.1751 (0.0097 0.1816 (0.0070)
6, 6�HMM (learned) 72 0.1841 (0.0095) 0.1901 (0.0070)
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